메뉴 건너뛰기




Volumn 108, Issue 6, 2016, Pages 2519-2526

Spectroscopic determination of leaf nitrogen concentration and mass per area in sweet corn and snap bean

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84994805850     PISSN: 00021962     EISSN: 14350645     Source Type: Journal    
DOI: 10.2134/agronj2016.05.0260     Document Type: Article
Times cited : (16)

References (55)
  • 1
    • 75349085529 scopus 로고    scopus 로고
    • Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy
    • Abdel-Rahman, E.M., F.B. Ahmed, and M. van den Berg. 2010. Estimation of sugarcane leaf nitrogen concentration using in situ spectroscopy. Int. J. Appl. Earth Obs. Geoinf. 12(SUPPL. 1):S52– S57. doi:10.1016/j.jag.2009.11.003
    • (2010) Int. J. Appl. Earth Obs. Geoinf. , vol.12
    • Abdel-Rahman, E.M.1    Ahmed, F.B.2    Van Den Berg, M.3
  • 2
    • 84880623351 scopus 로고    scopus 로고
    • Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices
    • Abrahão, S.A., F. de Assis de Carvalho Pinto, D.M. de Queiroz, N.T. Santos, and J.E. de S. Carneiro. 2013. Determination of nitrogen and chlorophyll levels in bean-plant leaves by using spectral vegetation bands and indices. Rev. Ciencia Agron. 44(3):464–473. doi:10.1590/S1806-66902013000300007
    • (2013) Rev. Ciencia Agron , vol.44 , Issue.3 , pp. 464-473
    • Abrahão, S.A.1    De Assis De Carvalho Pinto, F.2    De Queiroz, D.M.3    Santos, N.T.4    Carneiro, J.E.S.5
  • 3
    • 0033842092 scopus 로고    scopus 로고
    • Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems
    • Acutis, M., G. Ducco, and C. Grignani. 2000. Stochastic use of the LEACHN model to forecast nitrate leaching in different maize cropping systems. Eur. J. Agron. 13(2-3):191–206. doi:10.1016/ S1161-0301(00)00074-5
    • (2000) Eur. J. Agron. , vol.13 , Issue.2-3 , pp. 191-206
    • Acutis, M.1    Ducco, G.2    Grignani, C.3
  • 5
    • 79955531406 scopus 로고    scopus 로고
    • Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests
    • Asner, G.P., R.E. Martin, R. Tupayachi, R. Emerson, P. Martinez, F. Sinca et al. 2011b. Taxonomy and remote sensing of leaf mass per area (LMA) in humid tropical forests. Ecol. Appl. 21(1):85–98. doi:10.1890/09-1999.1
    • (2011) Ecol. Appl , vol.21 , Issue.1 , pp. 85-98
    • Asner, G.P.1    Martin, R.E.2    Tupayachi, R.3    Emerson, R.4    Martinez, P.5    Sinca, F.6
  • 6
    • 0031902677 scopus 로고    scopus 로고
    • Short and long term fluctuations of the leaf mass per area of tomato plants—Implications for growth models
    • London
    • Bertin, N., and C. Gary. 1998. Short and long term fluctuations of the leaf mass per area of tomato plants—Implications for growth models. Ann. Bot. (London) 82(1):71–81. doi:10.1006/ anbo.1998.0647
    • (1998) Ann. Bot , vol.82 , Issue.1 , pp. 71-81
    • Bertin, N.1    Gary, C.2
  • 7
    • 1842430977 scopus 로고    scopus 로고
    • Sparse modeling using orthogonal forward regression with PRESS statistic and regularization
    • Chen, S., X. Hong, C.J. Harris, and P.M. Sharkey. 2004. Sparse modeling using orthogonal forward regression with PRESS statistic and regularization. IEEE Trans. Syst. Man Cybern. B Cybern. 34(2):898–911. doi:10.1109/TSMCB.2003.817107
    • (2004) IEEE Trans. Syst. Man Cybern. B Cybern , vol.34 , Issue.2 , pp. 898-911
    • Chen, S.1    Hong, X.2    Harris, C.J.3    Sharkey, P.M.4
  • 8
    • 84888266742 scopus 로고    scopus 로고
    • Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis
    • Cheng, T., B. Rivard, A.G. Sánchez-Azofeifa, J.-B. Féret, S. Jacque-moud, and S.L. Ustin. 2014. Deriving leaf mass per area (LMA) from foliar reflectance across a variety of plant species using continuous wavelet analysis. ISPRS J. Photogramm. Remote Sens. 87:28–38. doi:10.1016/j.isprsjprs.2013.10.009
    • (2014) ISPRS J. Photogramm. Remote Sens , vol.87 , pp. 28-38
    • Cheng, T.1    Rivard, B.2    Sánchez-Azofeifa, A.G.3    Féret, J.-B.4    Jacque-Moud, S.5    Ustin, S.L.6
  • 9
    • 0041380904 scopus 로고    scopus 로고
    • Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data
    • Coops, N.C., M.-L. Smith, M.E. Martin, and S.V. Ollinger. 2003. Prediction of eucalypt foliage nitrogen content from satellite-derived hyperspectral data. IEEE Trans. Geosci. Rem. Sens. 41(6):1338– 1346. doi:10.1109/TGRS.2003.813135
    • (2003) IEEE Trans. Geosci. Rem. Sens , vol.41 , Issue.6
    • Coops, N.C.1    Smith, M.-L.2    Martin, M.E.3    Ollinger, S.V.4
  • 10
    • 84874198649 scopus 로고    scopus 로고
    • Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage Methods Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage
    • Couture, J.J., S.P. Serbin, and P.A. Townsend. 2013. Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage Methods Spectroscopic sensitivity of real-time, rapidly induced phytochemical change in response to damage. New Phytol. 198(1):311–319. doi:10.1111/nph.12159
    • (2013) New Phytol , vol.198 , Issue.1 , pp. 311-319
    • Couture, J.J.1    Serbin, S.P.2    Townsend, P.A.3
  • 11
    • 0024856758 scopus 로고
    • Remote sensing of foliar chemistry
    • Curran, P.J. 1989. Remote sensing of foliar chemistry. Remote Sens. Environ. 30:271–278. doi:10.1016/0034-4257(89)90069-2
    • (1989) Remote Sens. Environ , vol.30 , pp. 271-278
    • Curran, P.J.1
  • 12
    • 30344475483 scopus 로고    scopus 로고
    • Relationship Between the Normalized SPAD Index and the Nitrogen Nutrition Index: Application to Durum Wheat
    • Debaeke, P., P. Rouet, and E. Justes. 2006. Relationship Between the Normalized SPAD Index and the Nitrogen Nutrition Index: Application to Durum Wheat. J. Plant Nutr. 29(1):75–92. doi:10.1080/01904160500416471
    • (2006) J. Plant Nutr , vol.29 , Issue.1 , pp. 75-92
    • Debaeke, P.1    Rouet, P.2    Justes, E.3
  • 14
    • 84869223866 scopus 로고    scopus 로고
    • Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer
    • Ecarnot, M., F. Compan, and P. Roumet. 2013. Assessing leaf nitrogen content and leaf mass per unit area of wheat in the field throughout plant cycle with a portable spectrometer. Field Crop. Res. 140:44–50. doi:10.1016/j.fcr.2012.10.013
    • (2013) Field Crop. Res , vol.140 , pp. 44-50
    • Ecarnot, M.1    Compan, F.2    Roumet, P.3
  • 15
    • 70349767915 scopus 로고    scopus 로고
    • Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape (Brassica napus L
    • Jullien, A., J.-M. Allirand, A. Mathieu, B. Andrieu, and B. Ney. 2009. Variations in leaf mass per area according to N nutrition, plant age, and leaf position reflect ontogenetic plasticity in winter oilseed rape (Brassica napus L.). Field Crop. Res. 114(2):188–197. doi:10.1016/j.fcr.2009.07.015
    • (2009) Field Crop. Res , vol.114 , Issue.2 , pp. 188-197
    • Jullien, A.1    Allirand, J.-M.2    Mathieu, A.3    Andrieu, B.4    Ney, B.5
  • 17
    • 84940028252 scopus 로고    scopus 로고
    • Simultaneous identification of spring wheat nitrogen and water status using visible and near infrared spectra and powered partial least squares regression
    • Kusnierek, K., and A. Korsaeth. 2015. Simultaneous identification of spring wheat nitrogen and water status using visible and near infrared spectra and powered partial least squares regression. Comput. Electron. Agric. 117:200–213. doi:10.1016/j. compag.2015.08.001
    • (2015) Comput. Electron. Agric. , vol.117 , pp. 200-213
    • Kusnierek, K.1    Korsaeth, A.2
  • 18
    • 51049120933 scopus 로고    scopus 로고
    • Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass
    • le Maire, G., C. François, K. Soudani, D. Berveiller, J.Y. Pontailler, N. Bréda et al. 2008. Calibration and validation of hyperspectral indices for the estimation of broadleaved forest leaf chlorophyll content, leaf mass per area, leaf area index and leaf canopy biomass. Remote Sens. Environ. 112(10):3846–3864. doi:10.1016/j. rse.2008.06.005
    • (2008) Remote Sens. Environ , vol.112 , Issue.10 , pp. 3846-3864
    • Le Maire, G.1    François, C.2    Soudani, K.3    Berveiller, D.4    Pontailler, J.Y.5    Bréda, N.6
  • 19
    • 68949128607 scopus 로고    scopus 로고
    • Mechanisms of nitrogen limitation affecting maize growth: A comparison of different modelling hypotheses
    • Li, F.Y., P.D. Jamieson, P.R. Johnstone, and A.J. Pearson. 2009. Mechanisms of nitrogen limitation affecting maize growth: A comparison of different modelling hypotheses. Crop Pasture Sci. 60(8):738–752. doi:10.1071/CP08412
    • (2009) Crop Pasture Sci , vol.60 , Issue.8 , pp. 738-752
    • Li, F.Y.1    Jamieson, P.D.2    Johnstone, P.R.3    Pearson, A.J.4
  • 20
    • 68249093475 scopus 로고    scopus 로고
    • A maize N: Developing a decision-support tool to optimise nitrogen management of maize. Agron
    • Li, F.Y., P.D. Jamieson, and A.J. Pearson. 2006. A maize N: Developing a decision-support tool to optimise nitrogen management of maize. Agron. New Zealand 36:61–70.
    • (2006) New Zealand , vol.36 , pp. 61-70
    • Li, F.Y.1    Jamieson, P.D.2    Pearson, A.J.3
  • 21
    • 84892503131 scopus 로고    scopus 로고
    • Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices
    • Li, F., Y. Miao, G. Feng, F. Yuan, S. Yue, X. Gao, Y. Liu, B. Liu, S.L. Ustin, and X. Chen. 2014a. Improving estimation of summer maize nitrogen status with red edge-based spectral vegetation indices. Field Crop. Res. 157:111–123. doi:10.1016/j. fcr.2013.12.018
    • (2014) Field Crop. Res , vol.157 , pp. 111-123
    • Li, F.1    Miao, Y.2    Feng, G.3    Yuan, F.4    Yue, S.5    Gao, X.6    Liu, Y.7    Liu, B.8    Ustin, S.L.9    Chen, X.10
  • 22
    • 77954145922 scopus 로고    scopus 로고
    • Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages
    • Li, F., Y. Miao, S.D. Hennig, M.L. Gnyp, X. Chen, L. Jia, and G. Bareth. 2010. Evaluating hyperspectral vegetation indices for estimating nitrogen concentration of winter wheat at different growth stages. Precis. Agric. 11(4):335–357. doi:10.1007/ s11119-010-9165-6
    • (2010) Precis. Agric. , vol.11 , Issue.4 , pp. 335-357
    • Li, F.1    Miao, Y.2    Hennig, S.D.3    Gnyp, M.L.4    Chen, X.5    Jia, L.6    Bareth, G.7
  • 23
    • 84888336388 scopus 로고    scopus 로고
    • Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression
    • Li, F., B. Mistele, Y. Hu, X. Chen, and U. Schmidhalter. 2014b. Reflectance estimation of canopy nitrogen content in winter wheat using optimised hyperspectral spectral indices and partial least squares regression. Eur. J. Agron. 52:198–209. doi:10.1016/jeja.2013.09.006
    • (2014) Eur. J. Agron. , vol.52 , pp. 198-209
    • Li, F.1    Mistele, B.2    Hu, Y.3    Chen, X.4    Schmidhalter, U.5
  • 24
    • 84917676207 scopus 로고    scopus 로고
    • Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.)
    • Mahajan, G.R., R.N. Sahoo, R.N. Pandey, V.K. Gupta, and D. Kumar. 2014. Using hyperspectral remote sensing techniques to monitor nitrogen, phosphorus, sulphur and potassium in wheat (Triticum aestivum L.). Precis. Agric. 15(5):499–522. doi:10.1007/ s11119-014-9348-7
    • (2014) Precis. Agric , vol.15 , Issue.5 , pp. 499-522
    • Mahajan, G.R.1    Sahoo, R.N.2    Gupta, V.K.3    Kumar, D.4
  • 26
    • 33846829987 scopus 로고    scopus 로고
    • The pls package: Principal component and partial least squares regression in R
    • Mevik, B.-H., and R. Wehrens. 2007. The pls package: Principal component and partial least squares regression in R. J. Stat. Softw. 18(2):1–24.
    • (2007) J. Stat. Softw. , vol.18 , Issue.2 , pp. 1-24
    • Mevik, B.-H.1    Wehrens, R.2
  • 27
    • 84883663428 scopus 로고    scopus 로고
    • Hyperspectral estimation model for nitrogen contents of summer corn leaves under rainred conditions
    • Naveed, M., and T. Et. 2013. Hyperspectral estimation model for nitrogen contents of summer corn leaves under rainred conditions. Pak. J. Bot. 45(5):1623–1630.
    • (2013) Pak. J. Bot. , vol.45 , Issue.5 , pp. 1623-1630
    • Naveed, M.1    Et, T.2
  • 28
    • 33749432909 scopus 로고    scopus 로고
    • Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice
    • Nguyen, H.T., J.H. Kim, A.T. Nguyen, L.T. Nguyen, J.C. Shin, and B.-W. Lee. 2006. Using canopy reflectance and partial least squares regression to calculate within-field statistical variation in crop growth and nitrogen status of rice. Precis. Agric. 7(4):249– 264. doi:10.1007/s11119-006-9010-0
    • (2006) Precis. Agric , vol.7 , Issue.4
    • Nguyen, H.T.1    Kim, J.H.2    Nguyen, A.T.3    Nguyen, L.T.4    Shin, J.C.5    Lee, B.-W.6
  • 29
    • 52649128369 scopus 로고    scopus 로고
    • Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis
    • Pimstein, A., A. Karnieli, and D.J. Bonfil. 2007. Wheat and maize monitoring based on ground spectral measurements and multivariate data analysis. J. Appl. Remote Sens. 1(1):013530. doi:10.1117/1.2784799
    • (2007) J. Appl. Remote Sens. , vol.1 , Issue.1 , pp. 013530
    • Pimstein, A.1    Karnieli, A.2    Bonfil, D.J.3
  • 30
    • 79151485807 scopus 로고    scopus 로고
    • Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy
    • Pimstein, A., A. Karnieli, S.K. Bansal, and D.J. Bonfil. 2011. Exploring remotely sensed technologies for monitoring wheat potassium and phosphorus using field spectroscopy. Field Crop. Res. 121(1):125– 135. doi:10.1016/j.fcr.2010.12.001
    • (2011) Field Crop. Res , vol.121 , Issue.1
    • Pimstein, A.1    Karnieli, A.2    Bansal, S.K.3    Bonfil, D.J.4
  • 31
    • 65249150658 scopus 로고    scopus 로고
    • Causes and consequences of variation in leaf mass per area (LMA):A meta-analysis
    • Poorter, H., U. Niinemets, L. Poorter, I.J. Wright, and R. Villar. 2009. Causes and consequences of variation in leaf mass per area (LMA):A meta-analysis. New Phytol. 182:565–588. doi:10.1111/j.1469-8137.2009.02830.x
    • (2009) New Phytol , vol.182 , pp. 565-588
    • Poorter, H.1    Niinemets, U.2    Poorter, L.3    Wright, I.J.4    Villar, R.5
  • 33
    • 24644458871 scopus 로고    scopus 로고
    • Quantitative reflectance spectroscopy as an alternative to traditional wet lab analysis of foliar chemistry: Near-infrared and mid-infrared calibrations compared
    • Richardson, A.D., and J.B. Reeves, III. 2005. Quantitative reflectance spectroscopy as an alternative to traditional wet lab analysis of foliar chemistry: Near-infrared and mid-infrared calibrations compared. Can. J. For. Res. 35(5):1122–1130. doi:10.1139/ x05-037
    • (2005) Can. J. For. Res , vol.35 , Issue.5 , pp. 1122-1130
    • Richardson, A.D.1    Reeves, J.B.2
  • 35
    • 84889589109 scopus 로고    scopus 로고
    • Comparing the performance of the STICS, DNDC, and DayCent models for predicting N uptake and biomass of spring wheat in Eastern Canada
    • Sansoulet, J., E. Pattey, R. Kröbel, B. Grant, W. Smith, G. Jégo et al. 2014. Comparing the performance of the STICS, DNDC, and DayCent models for predicting N uptake and biomass of spring wheat in Eastern Canada. Field Crop. Res. 156:135–150. doi:10.1016/j.fcr.2013.11.010
    • (2014) Field Crop. Res , vol.156 , pp. 135-150
    • Sansoulet, J.1    Pattey, E.2    Kröbel, R.3    Grant, B.4    Smith, W.5    Jégo, G.6
  • 37
    • 84555204870 scopus 로고    scopus 로고
    • Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature
    • Serbin, S.P., D.N. Dillaway, E.L. Kruger, and P.A. Townsend. 2012. Leaf optical properties reflect variation in photosynthetic metabolism and its sensitivity to temperature. J. Exp. Bot. 63(1):489–502. doi:10.1093/jxb/err294
    • (2012) J. Exp. Bot. , vol.63 , Issue.1 , pp. 489-502
    • Serbin, S.P.1    Dillaway, D.N.2    Kruger, E.L.3    Townsend, P.A.4
  • 38
    • 84903762295 scopus 로고    scopus 로고
    • Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species
    • Serbin, S.P., A. Singh, B.E. McNeil, C.C. Kingdon, and P.A. Townsend. 2014. Spectroscopic determination of leaf morphological and biochemical traits for northern temperate and boreal tree species. Ecol. Appl. 24(7):1651–1669. doi:10.1890/13-2110.1
    • (2014) Ecol. Appl. , vol.24 , Issue.7 , pp. 1651-1669
    • Serbin, S.P.1    Singh, A.2    McNeil, B.E.3    Kingdon, C.C.4    Townsend, P.A.5
  • 39
    • 84943410280 scopus 로고    scopus 로고
    • Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance
    • Shi, T., J. Wang, H. Liu, and G. Wu. 2015. Estimating leaf nitrogen concentration in heterogeneous crop plants from hyperspectral reflectance. Int. J. Remote Sens. 36(18):4652–4667. doi:10.1080/ 01431161.2015.1088676
    • (2015) Int. J. Remote Sens. , vol.36 , Issue.18 , pp. 4652-4667
    • Shi, T.1    Wang, J.2    Liu, H.3    Wu, G.4
  • 40
    • 33745505381 scopus 로고    scopus 로고
    • Evaluation of the PNM model for simulating drain flow nitrate-N concentration under manure-fertilized maize
    • Sogbedji, J.M., H.M. Es, J.J. Melkonian, and R.R. Schindelbeck. 2006. Evaluation of the PNM model for simulating drain flow nitrate-N concentration under manure-fertilized maize. Plant Soil 282(1-2):343–360. doi:10.1007/s11104-006-0006-3
    • (2006) Plant Soil , vol.282 , Issue.1-2 , pp. 343-360
    • Sogbedji, J.M.1    Es, H.M.2    Melkonian, J.J.3    Schindelbeck, R.R.4
  • 41
    • 33646783992 scopus 로고    scopus 로고
    • Modeling chickpea growth and development: Nitrogen accumulation and use
    • Soltani, A., M.J. Robertson, and A.M. Manschadi. 2006. Modeling chickpea growth and development: Nitrogen accumulation and use. Field Crop. Res. 99(1):24–34. doi:10.1016/j.fcr.2006.02.006
    • (2006) Field Crop. Res , vol.99 , Issue.1 , pp. 24-34
    • Soltani, A.1    Robertson, M.J.2    Manschadi, A.M.3
  • 42
    • 79959855336 scopus 로고    scopus 로고
    • Sensing of Crop Nitrogen Status: Opportunities, Tools, Limitations, and Supporting Information Requirements
    • Tremblay, N., E. Fallon, and N. Ziadi. 2011. Sensing of Crop Nitrogen Status: Opportunities, Tools, Limitations, and Supporting Information Requirements. Horttechnology 21(3):274–281.
    • (2011) Horttechnology , vol.21 , Issue.3 , pp. 274-281
    • Tremblay, N.1    Fallon, E.2    Ziadi, N.3
  • 43
    • 71649104784 scopus 로고    scopus 로고
    • Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content
    • Tremblay, N., Z. Wang, and C. Bélec. 2009. Performance of Dualex in spring wheat for crop nitrogen status assessment, yield prediction and estimation of soil nitrate content. J. Plant Nutr. 33(1):57–70. doi:10.1080/01904160903391081
    • (2009) J. Plant Nutr , vol.33 , Issue.1 , pp. 57-70
    • Tremblay, N.1    Wang, Z.2    Bélec, C.3
  • 44
    • 0035208002 scopus 로고    scopus 로고
    • A methodology for precision nitrogen fertilization in high-input farming systems
    • Van Alphen, B.J., and J.J. Stoorvogel. 2000. A methodology for precision nitrogen fertilization in high-input farming systems. Precis. Agric. 2(4):319–332. doi:10.1023/A:1012338414284
    • (2000) Precis. Agric. , vol.2 , Issue.4 , pp. 319-332
    • Van Alphen, B.J.1    Stoorvogel, J.J.2
  • 45
    • 84930032973 scopus 로고    scopus 로고
    • Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance
    • Wang, J., T. Wang, A.K. Skidmore, T. Shi, and G. Wu. 2015. Evaluating different methods for grass nutrient estimation from canopy hyperspectral reflectance. Remote Sens. 7(5):5901–5917. doi:10.3390/rs70505901
    • (2015) Remote Sens , vol.7 , Issue.5 , pp. 5901-5917
    • Wang, J.1    Wang, T.2    Skidmore, A.K.3    Shi, T.4    Wu, G.5
  • 46
    • 84907044565 scopus 로고    scopus 로고
    • Determination of nitrogen concentration in fresh pear leaves by visible/near-infrared reflectance spectroscopy
    • Wang, J., H. Zhao, C. Shen, Q.-W. Chen, C. Dong, and Y. Xun. 2014. Determination of nitrogen concentration in fresh pear leaves by visible/near-infrared reflectance spectroscopy. Agron. J. 106(5):1867–1872. doi:10.2134/agronj13.0303
    • (2014) Agron. J. , vol.106 , Issue.5 , pp. 1867-1872
    • Wang, J.1    Zhao, H.2    Shen, C.3    Chen, Q.-W.4    Dong, C.5    Xun, Y.6
  • 47
    • 0001681052 scopus 로고
    • The collinearity problem in linear regression. The partial least-squares (PLS) regression approach to generalized inverses
    • Wold, S., A. Ruhe, H. Wold, and W.J. Dunn. 1984. The collinearity problem in linear regression. The partial least-squares (PLS) regression approach to generalized inverses. Siam J. Sci. Stat. Comp. 5(3):735–743.
    • (1984) Siam J. Sci. Stat. Comp , vol.5 , Issue.3 , pp. 735-743
    • Wold, S.1    Ruhe, A.2    Wold, H.3    Dunn, W.J.4
  • 49
    • 84896700284 scopus 로고    scopus 로고
    • Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley
    • Xu, X., C. Zhao, J. Wang, J. Zhang, and X. Song. 2014. Using optimal combination method and in situ hyperspectral measurements to estimate leaf nitrogen concentration in barley. Precis. Agric. 15(2):227–240. doi:10.1007/s11119-013-9339-0
    • (2014) Precis. Agric. , vol.15 , Issue.2 , pp. 227-240
    • Xu, X.1    Zhao, C.2    Wang Zhang, J.3    Song, X.4
  • 50
    • 47749121860 scopus 로고    scopus 로고
    • Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale
    • Yi, Q., J. Huang, F. Wang, and X. Wang. 2008. Quantifying biochemical variables of corn by hyperspectral reflectance at leaf scale. J. Zhejiang Univ. Sci. B 9(5):378–384. doi:10.1631/jzus.B0730019
    • (2008) J. Zhejiang Univ. Sci. B , vol.9 , Issue.5 , pp. 378-384
    • Yi, Q.1    Huang, J.2    Wang, F.3    Wang, X.4
  • 51
    • 84874562558 scopus 로고    scopus 로고
    • Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain
    • Yu, K., F. Li, M.L. Gnyp, Y. Miao, G. Bareth, and X. Chen. 2013. Remotely detecting canopy nitrogen concentration and uptake of paddy rice in the Northeast China Plain. ISPRS J. Photogramm. Remote Sens. 78:102–115. doi:10.1016/j.isprsjprs.2013.01.008
    • (2013) ISPRS J. Photogramm. Remote Sens , vol.78 , pp. 102-115
    • Yu, K.1    Li, F.2    Gnyp, M.L.3    Miao, Y.4    Bareth, G.5    Chen, X.6
  • 52
    • 67349199682 scopus 로고    scopus 로고
    • Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review
    • Zebarth, B.J., C.F. Drury, N. Tremblay, and A.N. Cambouris. 2009. Opportunities for improved fertilizer nitrogen management in production of arable crops in eastern Canada: A review. Can. J. Soil Sci. 89(2):113–132. doi:10.4141/CJSS07102
    • (2009) Can. J. Soil Sci. , vol.89 , Issue.2 , pp. 113-132
    • Zebarth, B.J.1    Drury, C.F.2    Tremblay, N.3    Cambouris, A.N.4
  • 53
    • 84872311164 scopus 로고    scopus 로고
    • Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square regression and support vector machine regression met
    • Zhai, Y., L. Cui, X. Zhou, Y. Gao, T. Fei, and W. Gao. 2013. Estimation of nitrogen, phosphorus, and potassium contents in the leaves of different plants using laboratory-based visible and near-infrared reflectance spectroscopy: Comparison of partial least-square regression and support vector machine regression met. Int. J. Remote Sens. 34(7):2502–2518. doi:10.1080/01431161.2012.74 6484
    • (2013) Int. J. Remote Sens. , vol.34 , Issue.7 , pp. 2502-2518
    • Zhai, Y.1    Cui, L.2    Zhou, X.3    Gao, Y.4    Fei, T.5    Gao, W.6
  • 54
    • 84873503436 scopus 로고    scopus 로고
    • Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection
    • Zhao, K., D. Valle, S. Popescu, X. Zhang, and B. Mallick. 2013. Hyperspectral remote sensing of plant biochemistry using Bayesian model averaging with variable and band selection. Remote Sens. Environ. 132:102–119. doi:10.1016/j.rse.2012.12.026
    • (2013) Remote Sens. Environ , vol.132 , pp. 102-119
    • Zhao, K.1    Valle, D.2    Popescu, S.3    Zhang, X.4    Mallick, B.5
  • 55
    • 53149122460 scopus 로고    scopus 로고
    • Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status
    • Ziadi, N., M. Brassard, G. Bélanger, A. Claessens, N. Tremblay, A.N. Cambouris et al. 2008. Chlorophyll measurements and nitrogen nutrition index for the evaluation of corn nitrogen status. Agron. J. 100(5):1264–1273. doi:10.2134/agronj2008.0016
    • (2008) Agron. J , vol.100 , Issue.5 , pp. 1264-1273
    • Ziadi, N.1    Brassard, M.2    Bélanger, G.3    Claessens, A.4    Tremblay, N.5    Cambouris, A.N.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.