-
1
-
-
78449289476
-
Solar water splitting cells
-
M.G. Walter, E.L. Warren, J.R. McKone, S.W. Boettcher, Q.X. Mi, E.A. Santori, N.S. Lewis, Solar water splitting cells. Chem. Rev. 110(11), 6446–6473 (2010). doi:10.1021/cr1002326
-
(2010)
Chem. Rev.
, vol.110
, Issue.11
, pp. 6446-6473
-
-
Walter, M.G.1
Warren, E.L.2
McKone, J.R.3
Boettcher, S.W.4
Mi, Q.X.5
Santori, E.A.6
Lewis, N.S.7
-
3
-
-
38549129332
-
2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol
-
2 nanotube arrays with controllable length for photoelectrocatalytic degradation of phenol. J. Phys. Chem. C 112(1), 253–259 (2008). doi:10.1021/jp0772732
-
(2008)
J. Phys. Chem. C
, vol.112
, Issue.1
, pp. 253-259
-
-
Liu, Z.1
Zhang, X.2
Nishimoto, S.3
Jin, M.4
Tryk, D.A.5
Murakami, T.6
Fujishima, A.7
-
4
-
-
77954624574
-
A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline
-
J. Bai, Y.B. Liu, J.H. Li, B.X. Zhou, Q. Zheng, W.M. Cal, A novel thin-layer photoelectrocatalytic (PEC) reactor with double-faced titania nanotube arrays electrode for effective degradation of tetracycline. Appl. Catal. B 98(3–4), 154–160 (2010). doi:10.1016/j.apcatb.2010.05.024
-
(2010)
Appl. Catal. B
, vol.98
, Issue.3-4
, pp. 154-160
-
-
Bai, J.1
Liu, Y.B.2
Li, J.H.3
Zhou, B.X.4
Zheng, Q.5
Cal, W.M.6
-
6
-
-
0037414621
-
2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts
-
2 under visible light irradiation with a new series of mixed oxide semiconductor photocatalysts. J. Photochem. Photobiol. A 158(2–3), 145–162 (2003). doi:10.1016/S1010-6030(03)00029-7
-
(2003)
J. Photochem. Photobiol. A
, vol.158
, Issue.2-3
, pp. 145-162
-
-
Zou, Z.G.1
Arakawa, H.2
-
7
-
-
0041992534
-
Photocatalyst materials for water splitting
-
A. Kudo, Photocatalyst materials for water splitting. Catal. Surv. Asia 7(1), 31–38 (2003). doi:10.1023/A:1023480507710
-
(2003)
Catal. Surv. Asia
, vol.7
, Issue.1
, pp. 31-38
-
-
Kudo, A.1
-
8
-
-
84874491562
-
Progress in bismuth vanadate photoanodes for use in solar water oxidation
-
Y. Park, K.J. McDonald, K.S. Choi, Progress in bismuth vanadate photoanodes for use in solar water oxidation. Chem. Soc. Rev. 42(6), 2321–2337 (2013). doi:10.1039/C2CS35260E
-
(2013)
Chem. Soc. Rev.
, vol.42
, Issue.6
, pp. 2321-2337
-
-
Park, Y.1
McDonald, K.J.2
Choi, K.S.3
-
9
-
-
84955416987
-
4 photoanode for >2% efficient water splitting
-
4 photoanode for >2% efficient water splitting. Adv. Energy Mater. 6(2), 1501645 (2016). doi:10.1002/aenm.201501645
-
(2016)
Adv. Energy Mater.
, vol.6
, Issue.2
, pp. 1501645
-
-
Kuang, Y.B.1
Jia, Q.X.2
Nishiyama, H.3
Yamada, T.4
Kudo, A.5
Domen, K.6
-
10
-
-
84938125427
-
Green-synthesized W- and Mo-doped BiVO4 oriented along the 040 facet with enhanced activity for the sun-driven water oxidation
-
S.M. Thalluri, S. Hernandez, S. Bensaid, G. Saracco, N. Russo, Green-synthesized W- and Mo-doped BiVO4 oriented along the 040 facet with enhanced activity for the sun-driven water oxidation. Appl. Catal. B 180, 630–636 (2016). doi:10.1016/j.apcatb.2015.07.029
-
(2016)
Appl. Catal. B
, vol.180
, pp. 630-636
-
-
Thalluri, S.M.1
Hernandez, S.2
Bensaid, S.3
Saracco, G.4
Russo, N.5
-
11
-
-
84896735953
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting
-
4 photoanodes with dual-layer oxygen evolution catalysts for solar water splitting. Science 343(6174), 990–994 (2014). doi:10.1126/science.1246913
-
(2014)
Science
, vol.343
, Issue.6174
, pp. 990-994
-
-
Kim, T.W.1
Choi, K.S.2
-
12
-
-
33644789209
-
4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties
-
4 nanosheets: hydrothermal preparation, formation mechanism, and coloristic and photocatalytic properties. J. Phys. Chem. B 110(6), 2668–2673 (2006). doi:10.1021/jp056367d
-
(2006)
J. Phys. Chem. B
, vol.110
, Issue.6
, pp. 2668-2673
-
-
Zhang, L.1
Chen, D.R.2
Jiao, X.L.3
-
13
-
-
79954422025
-
2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene
-
2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl. Catal. B 104(1–2), 30–36 (2011). doi:10.1016/j.apcatb.2011.02.031
-
(2011)
Appl. Catal. B
, vol.104
, Issue.1-2
, pp. 30-36
-
-
Hu, Y.1
Li, D.Z.2
Zheng, Y.3
Chen, W.4
He, Y.H.5
Shao, Y.6
Fu, X.Z.7
Xiao, G.C.8
-
14
-
-
84908178783
-
Titanium dioxide nanomaterials for sensor applications
-
J. Bai, B.X. Zhou, Titanium dioxide nanomaterials for sensor applications. Chem. Rev. 114(19), 10131–10176 (2014). doi:10.1021/cr400625j
-
(2014)
Chem. Rev.
, vol.114
, Issue.19
, pp. 10131-10176
-
-
Bai, J.1
Zhou, B.X.2
-
15
-
-
84875171955
-
Self-Assembled, nanowire network electrodes for depleted bulk heterojunction solar cells
-
X.Z. Lan, J. Bai, S. Masala, S.M. Thon, Y. Ren et al., Self-Assembled, nanowire network electrodes for depleted bulk heterojunction solar cells. Adv. Mater. 25(12), 1769–1773 (2013). doi:10.1002/adma.201203759
-
(2013)
Adv. Mater.
, vol.25
, Issue.12
, pp. 1769-1773
-
-
Lan, X.Z.1
Bai, J.2
Masala, S.3
Thon, S.M.4
Ren, Y.5
-
17
-
-
84880029186
-
2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants
-
2 composite photocatalyst: synergistic synthesis, growth and photocatalytic treatment of hazardous pollutants. Appl. Catal. B 142, 718–728 (2013). doi:10.1016/j.apcatb.2013.05.077
-
(2013)
Appl. Catal. B
, vol.142
, pp. 718-728
-
-
Sridharan, K.1
Jang, E.2
Park, T.J.3
-
18
-
-
84922011786
-
2 nanotube array electrode prepared by sonoelectrochemical deposition
-
2 nanotube array electrode prepared by sonoelectrochemical deposition. Nano-Micro Lett. 2(4), 277–284 (2010). doi:10.3786/nml.v2i4.p277-284
-
(2010)
Nano-Micro Lett.
, vol.2
, Issue.4
, pp. 277-284
-
-
Liu, Y.1
Zhou, H.2
Li, J.3
Chen, H.4
Li, D.5
Zhou, B.6
Cai, W.7
-
19
-
-
84897582991
-
4 nanocomposites and their unexpected photoactivity for water splitting
-
4 nanocomposites and their unexpected photoactivity for water splitting. Adv. Energy Mater. 4(5), 1300995 (2014). doi:10.1002/aenm.201300995
-
(2014)
Adv. Energy Mater.
, vol.4
, Issue.5
, pp. 1300995
-
-
Xie, M.Z.1
Fu, X.D.2
Jing, L.Q.3
Luan, P.4
Feng, Y.J.5
Fu, H.G.6
-
21
-
-
84959280939
-
A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation
-
J. Bai, R. Wang, Y.P. Li, Y.Y. Tang, Q.Y. Zeng et al., A solar light driven dual photoelectrode photocatalytic fuel cell (PFC) for simultaneous wastewater treatment and electricity generation. J. Hazard. Mater. 311, 51–62 (2016). doi:10.1016/j.jhazmat.2016.02.052
-
(2016)
J. Hazard. Mater.
, vol.311
, pp. 51-62
-
-
Bai, J.1
Wang, R.2
Li, Y.P.3
Tang, Y.Y.4
Zeng, Q.Y.5
-
22
-
-
0041305911
-
Low-temperature wafer-scale production of ZnO nanowire arrays
-
L.E. Greene, M. Law, J. Goldberger, F. Kim, J.C. Johnson, Y.F. Zhang, R.J. Saykally, P.D. Yang, Low-temperature wafer-scale production of ZnO nanowire arrays. Angew. Chem. Int. Ed. 42(26), 3031–3034 (2003). doi:10.1002/anie.200351461
-
(2003)
Angew. Chem. Int. Ed.
, vol.42
, Issue.26
, pp. 3031-3034
-
-
Greene, L.E.1
Law, M.2
Goldberger, J.3
Kim, F.4
Johnson, J.C.5
Zhang, Y.F.6
Saykally, R.J.7
Yang, P.D.8
-
23
-
-
22944437388
-
2 nanostructured arrays using a one-step templating solution approach
-
2 nanostructured arrays using a one-step templating solution approach. J. Phys. Chem. B 109(27), 13056–13059 (2005). doi:10.1021/jp052203l
-
(2005)
J. Phys. Chem. B
, vol.109
, Issue.27
, pp. 13056-13059
-
-
Lee, J.H.1
Leu, I.C.2
Hsu, M.C.3
Chung, Y.W.4
Hon, M.H.5
-
24
-
-
84863974121
-
4 thin film electrode for water splitting under visible light irradiation
-
4 thin film electrode for water splitting under visible light irradiation. Proc. Natl. Acad. Sci. 109(29), 11564–11569 (2012). doi:10.1073/pnas.1204623109
-
(2012)
Proc. Natl. Acad. Sci.
, vol.109
, Issue.29
, pp. 11564-11569
-
-
Jia, Q.X.1
Iwashina, K.2
Kudo, A.3
-
25
-
-
47249086789
-
2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures
-
2 nanotubular arrays for photoelectrochemical hydrogen generation: effect of crystallization and defect structures. J. Phys. D 41(12), 125307 (2008). doi:10.1088/0022-3727/41/12/125307
-
(2008)
J. Phys. D
, vol.41
, Issue.12
, pp. 125307
-
-
Mahajan, V.K.1
Misra, M.2
Raja, K.S.3
Mohapatra, S.K.4
-
28
-
-
77955948814
-
4 fine particles prepared in an aqueous acetic acid solution
-
4 fine particles prepared in an aqueous acetic acid solution. J. Mater. Chem. 20(35), 7536–7542 (2010). doi:10.1039/c0jm00961j
-
(2010)
J. Mater. Chem.
, vol.20
, Issue.35
, pp. 7536-7542
-
-
Iwase, A.1
Kudo, A.2
-
29
-
-
84979211174
-
A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage
-
C. Liu, Y. Ding, W. Wu, Y. Teng, A simple and effective strategy to fast remove chromium (VI) and organic pollutant in photoelectrocatalytic process at low voltage. Chem. Eng. J. 306, 22–30 (2016). doi:10.1016/j.cej.2016.07.043
-
(2016)
Chem. Eng. J.
, vol.306
, pp. 22-30
-
-
Liu, C.1
Ding, Y.2
Wu, W.3
Teng, Y.4
-
32
-
-
33847252860
-
2 nanotubes
-
2 nanotubes. Electrochim. Acta 52(12), 4167–4176 (2007). doi:10.1016/j.electacta.2006.11.035
-
(2007)
Electrochim. Acta
, vol.52
, Issue.12
, pp. 4167-4176
-
-
Munoz, A.G.1
-
33
-
-
0043235733
-
Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy
-
J. Kruger, R. Plass, M. Gratzel, P.J. Cameron, L.M. Peter, Charge transport and back reaction in solid-state dye-sensitized solar cells: a study using intensity-modulated photovoltage and photocurrent spectroscopy. J. Phys. Chem. B 107(31), 7536–7539 (2003). doi:10.1021/jp0348777
-
(2003)
J. Phys. Chem. B
, vol.107
, Issue.31
, pp. 7536-7539
-
-
Kruger, J.1
Plass, R.2
Gratzel, M.3
Cameron, P.J.4
Peter, L.M.5
|