메뉴 건너뛰기




Volumn 23, Issue 6, 2016, Pages 1077-1084

Efficient identification of nationally mandated reportable cancer cases using natural language processing and machine learning

Author keywords

Electronic health records; Information extraction; Machine learning; Natural language processing; Neoplasms; User computer interface

Indexed keywords

CANCER REGISTRY; COMPUTER INTERFACE; ELECTRONIC HEALTH RECORD; EXTRACTION; HUMAN; MACHINE LEARNING; NATURAL LANGUAGE PROCESSING; PATHOLOGY; RECALL; SOFTWARE; VALIDATION PROCESS; VELOCITY; DATA MINING; INTERNATIONAL CLASSIFICATION OF DISEASES; MANDATORY REPORTING; NEOPLASM; PROCEDURES; UNITED STATES;

EID: 84994756904     PISSN: 10675027     EISSN: 1527974X     Source Type: Journal    
DOI: 10.1093/jamia/ocw006     Document Type: Article
Times cited : (48)

References (15)
  • 1
    • 84994701836 scopus 로고    scopus 로고
    • Accessed May 1, 2015
    • National Cancer Registrars Association. Become a Cancer Registrar. 2014. http://www.ncra-usa.org/files/public/BecomeaCancerRegistrar2014%29. pdf. Accessed May 1, 2015.
    • (2014) Become a Cancer Registrar
  • 2
    • 84925884336 scopus 로고    scopus 로고
    • Text mining of cancer-related information: review of current status and future directions
    • Spasić I, Livsey J, Keane JA, et al. Text mining of cancer-related information: review of current status and future directions. Int J Med Inf. 2014;83:605-623.
    • (2014) Int J Med Inf , vol.83 , pp. 605-623
    • Spasić, I.1    Livsey, J.2    Keane, J.A.3
  • 4
    • 77955287813 scopus 로고    scopus 로고
    • An overview of MetaMap: historical perspective and recent advances
    • Aronson AR, Lang FM. An overview of MetaMap: historical perspective and recent advances. J Am Med Inform Assoc. 2010;17:229-236.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 229-236
    • Aronson, A.R.1    Lang, F.M.2
  • 5
    • 70349473063 scopus 로고    scopus 로고
    • Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model
    • Coden A, Savova G, Sominsky I, et al. Automatically extracting cancer disease characteristics from pathology reports into a disease knowledge representation model. J Biomed Inform. 2009;42:937-949.
    • (2009) J Biomed Inform , vol.42 , pp. 937-949
    • Coden, A.1    Savova, G.2    Sominsky, I.3
  • 6
    • 78449282862 scopus 로고    scopus 로고
    • Pattern-based information extraction from pathology reports for cancer registration
    • Napolitano G, Fox C, Middleton R, et al. Pattern-based information extraction from pathology reports for cancer registration. Cancer Causes Control. 2010;21:1887-1894.
    • (2010) Cancer Causes Control , vol.21 , pp. 1887-1894
    • Napolitano, G.1    Fox, C.2    Middleton, R.3
  • 7
    • 77958187989 scopus 로고    scopus 로고
    • Symbolic rule-based classification of lung cancer stages from free-text pathology reports
    • Nguyen AN, Lawley MJ, Hansen DP, et al. Symbolic rule-based classification of lung cancer stages from free-text pathology reports. J Am Med Inform Assoc. 2010;17:440-445.
    • (2010) J Am Med Inform Assoc , vol.17 , pp. 440-445
    • Nguyen, A.N.1    Lawley, M.J.2    Hansen, D.P.3
  • 8
    • 21644474846 scopus 로고    scopus 로고
    • Facilitating cancer research using natural language processing of pathology reports
    • Xu H, Anderson K, Grann VR, et al. Facilitating cancer research using natural language processing of pathology reports. Medinfo. 2004;11:565-572.
    • (2004) Medinfo , vol.11 , pp. 565-572
    • Xu, H.1    Anderson, K.2    Grann, V.R.3
  • 9
    • 84964959539 scopus 로고    scopus 로고
    • Comparing methods for identifying pancreatic cancer patients using electronic data sources
    • 2010 American Medical Informatics Association
    • Friedlin J, Overhage M, Al-Haddad MA, et al. Comparing methods for identifying pancreatic cancer patients using electronic data sources. In: AMIA Annual Symposium Proceedings. 2010 American Medical Informatics Association; 2010: 237-241.
    • (2010) AMIA Annual Symposium Proceedings , pp. 237-241
    • Friedlin, J.1    Overhage, M.2    Al-Haddad, M.A.3
  • 10
    • 84865393336 scopus 로고    scopus 로고
    • Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases
    • American Medical Informatics Association; 2011
    • Xu H, Fu Z, Shah A, et al. Extracting and integrating data from entire electronic health records for detecting colorectal cancer cases. In: AMIA Annual Symposium Proceedings 2011. American Medical Informatics Association; 2011: 1564-1572.
    • (2011) AMIA Annual Symposium Proceedings , pp. 1564-1572
    • Xu, H.1    Fu, Z.2    Shah, A.3
  • 11
    • 84994793883 scopus 로고    scopus 로고
    • Accessed September 10, 2015
    • The Apache Software Foundation. Getting Started: Apache UIMA Asynchronous Scaleout. 2013. http://incubator.apache.org/uima/docuimaas-what.html. Accessed September 10, 2015.
    • (2013) Getting Started: Apache UIMA Asynchronous Scaleout
  • 12
    • 0345863927 scopus 로고    scopus 로고
    • The unified medical language system (UMLS): integrating biomedical terminology
    • Bodenreider O. The unified medical language system (UMLS): integrating biomedical terminology. Nucleic Acids Res. 2004;32:D267-D270.
    • (2004) Nucleic Acids Res , vol.32 , pp. D267-D270
    • Bodenreider, O.1
  • 13
    • 84994760596 scopus 로고    scopus 로고
    • Accessed September 10, 2015
    • North American Association of Cancer Registries. Search Terms List for Screening Pathology Reports. 2010. http://www.naaccr.org/LinkClick. aspx?fileticket=3by-8n_JswA%3d&tabid=128&mid=468. Accessed September 10, 2015.
    • (2010) Search Terms List for Screening Pathology Reports
  • 14
    • 34547592488 scopus 로고    scopus 로고
    • Secondary Facility Oncology Registry Data Standards. Accessed September 10, 2015
    • The American College of Surgeons. Facility Oncology Registry Data Standards. Secondary Facility Oncology Registry Data Standards. 2015. https://www.facs.org/~/media/files/quality%20programs/cancer/coc/fords/fords%202015.ashx. Accessed September 10, 2015.
    • (2015) Facility Oncology Registry Data Standards


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.