메뉴 건너뛰기




Volumn 2, Issue 7, 2016, Pages

Epigenetics and aging

Author keywords

[No Author keywords available]

Indexed keywords

ALKYLATION; BIOLOGY; NUCLEIC ACIDS; PROTEINS;

EID: 84994420131     PISSN: None     EISSN: 23752548     Source Type: Journal    
DOI: 10.1126/sciadv.1600584     Document Type: Review
Times cited : (555)

References (230)
  • 1
    • 84901033375 scopus 로고    scopus 로고
    • Epigenetics of aging and aging-related disease
    • A. Brunet, S. L. Berger, Epigenetics of aging and aging-related disease. J. Gerontol. A Biol. Sci. Med. Sci. 69 (Suppl. 1), S17–S20 (2014).
    • (2014) J. Gerontol. A Biol. Sci. Med. Sci. , vol.69 , pp. S17-S20
    • Brunet, A.1    Berger, S.L.2
  • 2
    • 79959836522 scopus 로고    scopus 로고
    • Chromatin structure as a mediator of aging
    • J. Feser, J. Tyler, Chromatin structure as a mediator of aging. FEBS Lett. 585, 2041–2048 (2011).
    • (2011) FEBS Lett. , vol.585 , pp. 2041-2048
    • Feser, J.1    Tyler, J.2
  • 5
    • 84873638532 scopus 로고    scopus 로고
    • Aging, cellular senescence, and cancer
    • J. Campisi, Aging, cellular senescence, and cancer. Annu. Rev. Physiol. 75, 685–705 (2013).
    • (2013) Annu. Rev. Physiol. , vol.75 , pp. 685-705
    • Campisi, J.1
  • 6
    • 84904702784 scopus 로고    scopus 로고
    • Cellular senescence: From physiology to pathology
    • D. Muñoz-Espín, M. Serrano, Cellular senescence: From physiology to pathology. Nat. Rev. Mol. Cell Biol. 15, 482–496 (2014).
    • (2014) Nat. Rev. Mol. Cell Biol. , vol.15 , pp. 482-496
    • Muñoz-Espín, D.1    Serrano, M.2
  • 8
    • 33847047461 scopus 로고    scopus 로고
    • Epigenetics: A landscape takes shape
    • A. D. Goldberg, C. D. Allis, E. Bernstein, Epigenetics: A landscape takes shape. Cell 128, 635–638 (2007).
    • (2007) Cell , vol.128 , pp. 635-638
    • Goldberg, A.D.1    Allis, C.D.2    Bernstein, E.3
  • 10
    • 84867907645 scopus 로고    scopus 로고
    • The great unravelling: Chromatin as a modulator of the aging process
    • R. J. O’Sullivan, J. Karlseder, The great unravelling: Chromatin as a modulator of the aging process. Trends Biochem. Sci. 37, 466–476 (2012).
    • (2012) Trends Biochem. Sci. , vol.37 , pp. 466-476
    • O’Sullivan, R.J.1    Karlseder, J.2
  • 11
    • 84927698872 scopus 로고    scopus 로고
    • Common features of chromatin in aging and cancer: Cause or coincidence?
    • L. Zane, V. Sharma, T. Misteli, Common features of chromatin in aging and cancer: Cause or coincidence? Trends Cell Biol. 24, 686–694 (2014).
    • (2014) Trends Cell Biol. , vol.24 , pp. 686-694
    • Zane, L.1    Sharma, V.2    Misteli, T.3
  • 13
    • 85041902730 scopus 로고    scopus 로고
    • Why twins age differently
    • M. Sargent, Why twins age differently. Nature 464, 1130–1131 (2010).
    • (2010) Nature , vol.464 , pp. 1130-1131
    • Sargent, M.1
  • 14
    • 0030062815 scopus 로고    scopus 로고
    • The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900
    • A. M. Herskind, M. McGue, N. V. Holm, T. I. Sørensen, B. Harvald, J. W. Vaupel, The heritability of human longevity: A population-based study of 2872 Danish twin pairs born 1870–1900. Hum. Genet. 97, 319–323 (1996).
    • (1996) Hum. Genet. , vol.97 , pp. 319-323
    • Herskind, A.M.1    McGue, M.2    Holm, N.V.3    Sørensen, T.I.4    Harvald, B.5    Vaupel, J.W.6
  • 15
    • 34247473478 scopus 로고    scopus 로고
    • The epigenetic basis of twin discordance in age-related diseases
    • P. Poulsen, M. Esteller, A. Vaag, M. F. Fraga, The epigenetic basis of twin discordance in age-related diseases. Pediatr. Res. 61, 38R–42R (2007).
    • (2007) Pediatr. Res. , vol.61 , pp. 38R-42R
    • Poulsen, P.1    Esteller, M.2    Vaag, A.3    Fraga, M.F.4
  • 16
    • 41349085806 scopus 로고    scopus 로고
    • Nutritional control of reproductive status in honeybees via DNA methylation
    • R. Kucharski, J. Maleszka, S. Foret, R. Maleszka, Nutritional control of reproductive status in honeybees via DNA methylation. Science 319, 1827–1830 (2008).
    • (2008) Science , vol.319 , pp. 1827-1830
    • Kucharski, R.1    Maleszka, J.2    Foret, S.3    Maleszka, R.4
  • 17
    • 0016221697 scopus 로고
    • Chromatin structure: A repeating unit of histones and DNA
    • R. D. Kornberg, Chromatin structure: A repeating unit of histones and DNA. Science 184, 868–871 (1974).
    • (1974) Science , vol.184 , pp. 868-871
    • Kornberg, R.D.1
  • 18
    • 1842411320 scopus 로고    scopus 로고
    • Crystal structure of the nucleosome core particle at 2.8 Å resolution
    • K. Luger, A. W. Mäder, R. K. Richmond, D. F. Sargent, T. J. Richmond, Crystal structure of the nucleosome core particle at 2.8 Å resolution. Nature 389, 251–260 (1997).
    • (1997) Nature , vol.389 , pp. 251-260
    • Luger, K.1    Mäder, A.W.2    Richmond, R.K.3    Sargent, D.F.4    Richmond, T.J.5
  • 19
    • 1842733449 scopus 로고    scopus 로고
    • HP1 and the dynamics of heterochromatin maintenance
    • C. Maison, G. Almouzni, HP1 and the dynamics of heterochromatin maintenance. Nat. Rev. Mol. Cell Biol. 5, 296–304 (2004).
    • (2004) Nat. Rev. Mol. Cell Biol. , vol.5 , pp. 296-304
    • Maison, C.1    Almouzni, G.2
  • 20
    • 0141677687 scopus 로고    scopus 로고
    • Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin
    • K. J. Bitterman, O. Medvedik, D. A. Sinclair, Longevity regulation in Saccharomyces cerevisiae: Linking metabolism, genome stability, and heterochromatin. Microbiol. Mol. Biol. Rev. 67, 376–399 (2003).
    • (2003) Microbiol. Mol. Biol. Rev. , vol.67 , pp. 376-399
    • Bitterman, K.J.1    Medvedik, O.2    Sinclair, D.A.3
  • 22
    • 0034626747 scopus 로고    scopus 로고
    • Genetic pathways that regulate ageing in model organisms
    • L. Guarente, C. Kenyon, Genetic pathways that regulate ageing in model organisms. Nature 408, 255–262 (2000).
    • (2000) Nature , vol.408 , pp. 255-262
    • Guarente, L.1    Kenyon, C.2
  • 24
    • 84899449661 scopus 로고    scopus 로고
    • Epigenetic involvement in Hutchinson-Gilford progeria syndrome: A mini-review
    • W. Arancio, G. Pizzolanti, S. I. Genovese, M. Pitrone, C. Giordano, Epigenetic involvement in Hutchinson-Gilford progeria syndrome: A mini-review. Gerontology 60, 197–203 (2014).
    • (2014) Gerontology , vol.60 , pp. 197-203
    • Arancio, W.1    Pizzolanti, G.2    Genovese, S.I.3    Pitrone, M.4    Giordano, C.5
  • 25
    • 77954950116 scopus 로고    scopus 로고
    • Progeria syndromes and ageing: What is the connection?
    • C. R. Burtner, B. K. Kennedy, Progeria syndromes and ageing: What is the connection? Nat. Rev. Mol. Cell Biol. 11, 567–578 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 567-578
    • Burtner, C.R.1    Kennedy, B.K.2
  • 26
    • 84863806968 scopus 로고    scopus 로고
    • Global heterochromatin loss: A unifying theory of aging?
    • A. Tsurumi, W. Li, Global heterochromatin loss: A unifying theory of aging? Epigenetics 7, 680–688 (2012).
    • (2012) Epigenetics , vol.7 , pp. 680-688
    • Tsurumi, A.1    Li, W.2
  • 27
    • 0030759780 scopus 로고    scopus 로고
    • The heterochromatin loss model of aging
    • B. Villeponteau, The heterochromatin loss model of aging. Exp. Gerontol. 32, 383–394 (1997).
    • (1997) Exp. Gerontol. , vol.32 , pp. 383-394
    • Villeponteau, B.1
  • 30
    • 0030053650 scopus 로고    scopus 로고
    • Loss of transcriptional silencing causes sterility in old mother cells of S. Cerevisiae
    • T. Smeal, J. Claus, B. Kennedy, F. Cole, L. Guarente, Loss of transcriptional silencing causes sterility in old mother cells of S. cerevisiae. Cell 84, 633–642 (1996).
    • (1996) Cell , vol.84 , pp. 633-642
    • Smeal, T.1    Claus, J.2    Kennedy, B.3    Cole, F.4    Guarente, L.5
  • 31
    • 79958206937 scopus 로고    scopus 로고
    • Epstein Lecture: Sirtuins, aging, and medicine
    • L. Guarente, Franklin H. Epstein Lecture: Sirtuins, aging, and medicine. N. Engl. J. Med. 364, 2235–2244 (2011).
    • (2011) N. Engl. J. Med. , vol.364 , pp. 2235-2244
    • Guarente, L.1    Franklin, H.2
  • 32
    • 77949887506 scopus 로고    scopus 로고
    • Mammalian sirtuins: Biological insights and disease relevance
    • M. C. Haigis, D. A. Sinclair, Mammalian sirtuins: Biological insights and disease relevance. Annu. Rev. Pathol. 5, 253–295 (2010).
    • (2010) Annu. Rev. Pathol. , vol.5 , pp. 253-295
    • Haigis, M.C.1    Sinclair, D.A.2
  • 34
    • 0030916153 scopus 로고    scopus 로고
    • Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. Cerevisiae
    • B. K. Kennedy, M. Gotta, D. A. Sinclair, K. Mills, D. S. McNabb, M. Murthy, S. M. Pak, T. Laroche, S. M. Gasser, L. Guarente, Redistribution of silencing proteins from telomeres to the nucleolus is associated with extension of life span in S. cerevisiae. Cell 89, 381–391 (1997).
    • (1997) Cell , vol.89 , pp. 381-391
    • Kennedy, B.K.1    Gotta, M.2    Sinclair, D.A.3    Mills, K.4    McNabb, D.S.5    Murthy, M.6    Pak, S.M.7    Laroche, T.8    Gasser, S.M.9    Guarente, L.10
  • 35
    • 34548150187 scopus 로고    scopus 로고
    • The role of nuclear architecture in genomic instability and ageing
    • P. Oberdoerffer, D. A. Sinclair, The role of nuclear architecture in genomic instability and ageing. Nat. Rev. Mol. Cell Biol. 8, 692–702 (2007).
    • (2007) Nat. Rev. Mol. Cell Biol. , vol.8 , pp. 692-702
    • Oberdoerffer, P.1    Sinclair, D.A.2
  • 36
    • 79953707188 scopus 로고    scopus 로고
    • Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast
    • T. Kobayashi, Regulation of ribosomal RNA gene copy number and its role in modulating genome integrity and evolutionary adaptability in yeast. Cell. Mol. Life Sci. 68, 1395–1403 (2011).
    • (2011) Cell. Mol. Life Sci. , vol.68 , pp. 1395-1403
    • Kobayashi, T.1
  • 37
    • 0031459980 scopus 로고    scopus 로고
    • Extrachromosomal rDNA circles—A cause of aging in yeast
    • D. A. Sinclair, L. Guarente, Extrachromosomal rDNA circles—A cause of aging in yeast. Cell 91, 1033–1042 (1997).
    • (1997) Cell , vol.91 , pp. 1033-1042
    • Sinclair, D.A.1    Guarente, L.2
  • 39
    • 33646745137 scopus 로고    scopus 로고
    • Lamin A-dependent nuclear defects in human aging
    • P. Scaffidi, T. Misteli, Lamin A-dependent nuclear defects in human aging. Science 312, 1059–1063 (2006).
    • (2006) Science , vol.312 , pp. 1059-1063
    • Scaffidi, P.1    Misteli, T.2
  • 45
    • 43049162647 scopus 로고    scopus 로고
    • Aging by epigenetics—A consequence of chromatin damage?
    • J. M. Sedivy, G. Banumathy, P. D. Adams, Aging by epigenetics—A consequence of chromatin damage? Exp. Cell Res. 314, 1909–1917 (2008).
    • (2008) Exp. Cell Res. , vol.314 , pp. 1909-1917
    • Sedivy, J.M.1    Banumathy, G.2    Adams, P.D.3
  • 48
    • 84893931097 scopus 로고    scopus 로고
    • Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging
    • Z. Hu, K. Chen, Z. Xia, M. Chavez, S. Pal, J.-H. Seol, C.-C. Chen, W. Li, J. K. Tyler, Nucleosome loss leads to global transcriptional up-regulation and genomic instability during yeast aging. Genes Dev. 28, 396–408 (2014).
    • (2014) Genes Dev. , vol.28 , pp. 396-408
    • Hu, Z.1    Chen, K.2    Xia, Z.3    Chavez, M.4    Pal, S.5    Seol, J.-H.6    Chen, C.-C.7    Li, W.8    Tyler, J.K.9
  • 49
    • 84961216002 scopus 로고    scopus 로고
    • The overlooked fact: Fundamental need for spike-in control for virtually all genome-wide analyses
    • K. Chen, Z. Hu, Z. Xia, D. Zhao, W. Li, J. K. Tyler, The overlooked fact: Fundamental need for spike-in control for virtually all genome-wide analyses. Mol. Cell. Biol. 36, 662–667 (2016).
    • (2016) Mol. Cell. Biol. , vol.36 , pp. 662-667
    • Chen, K.1    Hu, Z.2    Xia, Z.3    Zhao, D.4    Li, W.5    Tyler, J.K.6
  • 50
    • 1542344026 scopus 로고    scopus 로고
    • The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells
    • I. Lesur, J. L. Campbell, The transcriptome of prematurely aging yeast cells is similar to that of telomerase-deficient cells. Mol. Biol. Cell 15, 1297–1312 (2004).
    • (2004) Mol. Biol. Cell , vol.15 , pp. 1297-1312
    • Lesur, I.1    Campbell, J.L.2
  • 53
    • 84964545846 scopus 로고    scopus 로고
    • Dietary restriction with and without caloric restriction for healthy aging
    • pii: F1000
    • C. Lee, V. Longo, Dietary restriction with and without caloric restriction for healthy aging. F1000Res. 5, pii: F1000 (2016).
    • (2016) F1000Res , vol.5
    • Lee, C.1    Longo, V.2
  • 54
    • 38049161971 scopus 로고    scopus 로고
    • Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans
    • Supported by the American Federation for Aging Research, D. W. Killilea
    • G. McColl; Supported by the American Federation for Aging Research, D. W. Killilea, A. E. Hubbard, M. C. Vantipalli, S. Melov, G. J. Lithgow, Pharmacogenetic analysis of lithium-induced delayed aging in Caenorhabditis elegans. J. Biol. Chem. 283, 350–357 (2008).
    • (2008) J. Biol. Chem. , vol.283 , pp. 350-357
    • McColl, G.1    Hubbard, A.E.2    Vantipalli, M.C.3    Melov, S.4    Lithgow, G.J.5
  • 55
    • 84862777569 scopus 로고    scopus 로고
    • Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans
    • Z. Ni, A. Ebata, E. Alipanahiramandi, S. S. Lee, Two SET domain containing genes link epigenetic changes and aging in Caenorhabditis elegans. Aging Cell 11, 315–325 (2012).
    • (2012) Aging Cell , vol.11 , pp. 315-325
    • Ni, Z.1    Ebata, A.2    Alipanahiramandi, E.3    Lee, S.S.4
  • 56
    • 77957814604 scopus 로고    scopus 로고
    • Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres
    • R. J. O’Sullivan, S. Kubicek, S. L. Schreiber, J. Karlseder, Reduced histone biosynthesis and chromatin changes arising from a damage signal at telomeres. Nat. Struct. Mol. Biol. 17, 1218–1225 (2010).
    • (2010) Nat. Struct. Mol. Biol. , vol.17 , pp. 1218-1225
    • O’Sullivan, R.J.1    Kubicek, S.2    Schreiber, S.L.3    Karlseder, J.4
  • 58
    • 84867794356 scopus 로고    scopus 로고
    • Chromatin remodeling, DNA damage repair and aging
    • B. Liu, R. Yip, Z. Zhou, Chromatin remodeling, DNA damage repair and aging. Curr. Genomics 13, 533–547 (2012).
    • (2012) Curr. Genomics , vol.13 , pp. 533-547
    • Liu, B.1    Yip, R.2    Zhou, Z.3
  • 59
    • 77950961695 scopus 로고    scopus 로고
    • GH2AX: A sensitive molecular marker of DNA damage and repair
    • L.-J. Mah, A. El-Osta, T. C. Karagiannis, gH2AX: A sensitive molecular marker of DNA damage and repair. Leukemia 24, 679–686 (2010).
    • (2010) Leukemia , vol.24 , pp. 679-686
    • Mah, L.-J.1    El-Osta, A.2    Karagiannis, T.C.3
  • 62
    • 77953218871 scopus 로고    scopus 로고
    • Age- And temperature-dependent somatic mutation accumulation in Drosophila melanogaster
    • A. M. Garcia, R. B. Calder, M. E. T. Dollé, M. Lundell, P. Kapahi, J. Vijg, Age- and temperature-dependent somatic mutation accumulation in Drosophila melanogaster. PLOS Genet. 6, e1000950 (2010).
    • (2010) PLOS Genet. , vol.6 , pp. e1000950
    • Garcia, A.M.1    Calder, R.B.2    Dollé, M.E.T.3    Lundell, M.4    Kapahi, P.5    Vijg, J.6
  • 63
    • 0037198009 scopus 로고    scopus 로고
    • Large genome rearrangements as a primary cause of aging
    • J. Vijg, M. E. T. Dollé, Large genome rearrangements as a primary cause of aging. Mech. Ageing Dev. 123, 907–915 (2002).
    • (2002) Mech. Ageing Dev. , vol.123 , pp. 907-915
    • Vijg, J.1    Dollé, M.E.T.2
  • 64
    • 84927913417 scopus 로고    scopus 로고
    • Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae
    • A. Kaya, A. V. Lobanov, V. N. Gladyshev, Evidence that mutation accumulation does not cause aging in Saccharomyces cerevisiae. Aging Cell 14, 366–371 (2015).
    • (2015) Aging Cell , vol.14 , pp. 366-371
    • Kaya, A.1    Lobanov, A.V.2    Gladyshev, V.N.3
  • 66
    • 84891506556 scopus 로고    scopus 로고
    • Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues
    • M. De Cecco, S. W. Criscione, A. L. Peterson, N. Neretti, J. M. Sedivy, J. A. Kreiling, Transposable elements become active and mobile in the genomes of aging mammalian somatic tissues. Aging 5, 867–883 (2013).
    • (2013) Aging , vol.5 , pp. 867-883
    • De Cecco, M.1    Criscione, S.W.2    Peterson, A.L.3    Neretti, N.4    Sedivy, J.M.5    Kreiling, J.A.6
  • 67
    • 84861219911 scopus 로고    scopus 로고
    • Germ Cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotranspo-son
    • S. Dennis, U. Sheth, J. L. Feldman, K. A. English, J. R. Priess, C. elegans germ cells show temperature and age-dependent expression of Cer1, a Gypsy/Ty3-related retrotranspo-son. PLOS Pathog. 8, e1002591 (2012).
    • (2012) PLOS Pathog. , vol.8 , pp. e1002591
    • Dennis, S.1    Sheth, U.2    Feldman, J.L.3    English, K.A.4    Priess, J.R.5    Elegans, C.6
  • 69
    • 84855496921 scopus 로고    scopus 로고
    • Retrotransposition is associated with genome instability during chronological aging
    • P. H. Maxwell, W. C. Burhans, M. J. Curcio, Retrotransposition is associated with genome instability during chronological aging. Proc. Natl. Acad. Sci. U.S.A. 108, 20376–20381 (2011).
    • (2011) Proc. Natl. Acad. Sci. U.S.A. , vol.108 , pp. 20376-20381
    • Maxwell, P.H.1    Burhans, W.C.2    Curcio, M.J.3
  • 71
    • 84892429004 scopus 로고    scopus 로고
    • Chromatin structure and transposable elements in organismal aging
    • J. G. Wood, S. L. Helfand, Chromatin structure and transposable elements in organismal aging. Front. Genet. 4, 274 (2013).
    • (2013) Front. Genet. , vol.4 , pp. 274
    • Wood, J.G.1    Helfand, S.L.2
  • 74
    • 84904086862 scopus 로고    scopus 로고
    • Transcriptional landscape of repetitive elements in normal and cancer human cells
    • S. W. Criscione, Y. Zhang, W. Thompson, J. M. Sedivy, N. Neretti, Transcriptional landscape of repetitive elements in normal and cancer human cells. BMC Genomics 15, 583 (2014).
    • (2014) BMC Genomics , vol.15 , pp. 583
    • Criscione, S.W.1    Zhang, Y.2    Thompson, W.3    Sedivy, J.M.4    Neretti, N.5
  • 76
    • 84887107288 scopus 로고    scopus 로고
    • The role of transposable elements in health and diseases of the central nervous system
    • M. T. Reilly, G. J. Faulkner, J. Dubnau, I. Ponomarev, F. H. Gage, The role of transposable elements in health and diseases of the central nervous system. J. Neurosci. 33, 17577–17586 (2013).
    • (2013) J. Neurosci. , vol.33 , pp. 17577-17586
    • Reilly, M.T.1    Faulkner, G.J.2    Dubnau, J.3    Ponomarev, I.4    Gage, F.H.5
  • 77
    • 83455162755 scopus 로고    scopus 로고
    • Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration
    • H. Tan, A. Qurashi, M. Poidevin, D. L. Nelson, H. Li, P. Jin, Retrotransposon activation contributes to fragile X premutation rCGG-mediated neurodegeneration. Hum. Mol. Genet. 21, 57–65 (2012).
    • (2012) Hum. Mol. Genet. , vol.21 , pp. 57-65
    • Tan, H.1    Qurashi, A.2    Poidevin, M.3    Nelson, D.L.4    Li, H.5    Jin, P.6
  • 78
    • 13244255650 scopus 로고    scopus 로고
    • Histone variants: Deviants?
    • R. T. Kamakaka, S. Biggins, Histone variants: Deviants? Genes Dev. 19, 295–310 (2005).
    • (2005) Genes Dev. , vol.19 , pp. 295-310
    • Kamakaka, R.T.1    Biggins, S.2
  • 79
    • 84878282462 scopus 로고    scopus 로고
    • Histone variants in pluripotency and disease
    • P. J. Skene, S. Henikoff, Histone variants in pluripotency and disease. Development 140, 2513–2524 (2013).
    • (2013) Development , vol.140 , pp. 2513-2524
    • Skene, P.J.1    Henikoff, S.2
  • 80
    • 84924620908 scopus 로고    scopus 로고
    • Histone H3 variants and their chaperones during development and disease: Contributing to epigenetic control
    • D. Filipescu, S. Muller, G. Almouzni, Histone H3 variants and their chaperones during development and disease: Contributing to epigenetic control. Annu. Rev. Cell Dev. Biol. 30, 615–646 (2014).
    • (2014) Annu. Rev. Cell Dev. Biol. , vol.30 , pp. 615-646
    • Filipescu, D.1    Muller, S.2    Almouzni, G.3
  • 83
    • 34147182401 scopus 로고    scopus 로고
    • Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging
    • P. D. Adams, Remodeling of chromatin structure in senescent cells and its potential impact on tumor suppression and aging. Gene 397, 84–93 (2007).
    • (2007) Gene , vol.397 , pp. 84-93
    • Adams, P.D.1
  • 86
    • 84856839544 scopus 로고    scopus 로고
    • Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes
    • V. Pasque, R. P. Halley-Stott, A. Gillich, N. Garrett, J. B. Gurdon, Epigenetic stability of repressed states involving the histone variant macroH2A revealed by nuclear transfer to Xenopus oocytes. Nucleus 2, 533–539 (2011).
    • (2011) Nucleus , vol.2 , pp. 533-539
    • Pasque, V.1    Halley-Stott, R.P.2    Gillich, A.3    Garrett, N.4    Gurdon, J.B.5
  • 88
    • 84940887570 scopus 로고    scopus 로고
    • MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype
    • H. Chen, P. D. Ruiz, W. M. McKimpson, L. Novikov, R. N. Kitsis, M. J. Gamble, MacroH2A1 and ATM play opposing roles in paracrine senescence and the senescence-associated secretory phenotype. Mol. Cell 59, 719–731 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 719-731
    • Chen, H.1    Ruiz, P.D.2    McKimpson, W.M.3    Novikov, L.4    Kitsis, R.N.5    Gamble, M.J.6
  • 89
    • 84940828750 scopus 로고    scopus 로고
    • ATM, MacroH2A.1, and SASP: The checks and balances of cellular senescence
    • M. Kozlowski, A. G. Ladurner, ATM, MacroH2A.1, and SASP: The checks and balances of cellular senescence. Mol. Cell 59, 713–715 (2015).
    • (2015) Mol. Cell , vol.59 , pp. 713-715
    • Kozlowski, M.1    Ladurner, A.G.2
  • 90
    • 79952534189 scopus 로고    scopus 로고
    • Regulation of chromatin by histone modifications
    • A. J. Bannister, T. Kouzarides, Regulation of chromatin by histone modifications. Cell Res. 21, 381–395 (2011).
    • (2011) Cell Res. , vol.21 , pp. 381-395
    • Bannister, A.J.1    Kouzarides, T.2
  • 91
    • 33847076849 scopus 로고    scopus 로고
    • Chromatin modifications and their function
    • T. Kouzarides, Chromatin modifications and their function. Cell 128, 693–705 (2007).
    • (2007) Cell , vol.128 , pp. 693-705
    • Kouzarides, T.1
  • 94
    • 79953009238 scopus 로고    scopus 로고
    • Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae
    • M. Hachinohe, F. Hanaoka, H. Masumoto, Hst3 and Hst4 histone deacetylases regulate replicative lifespan by preventing genome instability in Saccharomyces cerevisiae. Genes Cells 16, 467–477 (2011).
    • (2011) Genes Cells , vol.16 , pp. 467-477
    • Hachinohe, M.1    Hanaoka, F.2    Masumoto, H.3
  • 96
  • 97
    • 48249148195 scopus 로고    scopus 로고
    • Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation
    • S. K. Williams, D. Truong, J. K. Tyler, Acetylation in the globular core of histone H3 on lysine-56 promotes chromatin disassembly during transcriptional activation. Proc. Natl. Acad. Sci. U.S.A. 105, 9000–9005 (2008).
    • (2008) Proc. Natl. Acad. Sci. U.S.A. , vol.105 , pp. 9000-9005
    • Williams, S.K.1    Truong, D.2    Tyler, J.K.3
  • 98
    • 18844413266 scopus 로고    scopus 로고
    • Acetylation in histone H3 globular domain regulates gene expression in yeast
    • F. Xu, K. Zhang, M. Grunstein, Acetylation in histone H3 globular domain regulates gene expression in yeast. Cell 121, 375–385 (2005).
    • (2005) Cell , vol.121 , pp. 375-385
    • Xu, F.1    Zhang, K.2    Grunstein, M.3
  • 99
    • 0033214237 scopus 로고    scopus 로고
    • The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
    • M. Kaeberlein, M. McVey, L. Guarente, The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms. Genes Dev. 13, 2570–2580 (1999).
    • (1999) Genes Dev. , vol.13 , pp. 2570-2580
    • Kaeberlein, M.1    McVey, M.2    Guarente, L.3
  • 100
    • 84885355365 scopus 로고    scopus 로고
    • Calorie restriction and sirtuins revisited
    • L. Guarente, Calorie restriction and sirtuins revisited. Genes Dev. 27, 2072–2085 (2013).
    • (2013) Genes Dev. , vol.27 , pp. 2072-2085
    • Guarente, L.1
  • 101
    • 84960153337 scopus 로고    scopus 로고
    • The role of sirtuins in aging and age-related diseases
    • M. Wątroba, D. Szukiewicz, The role of sirtuins in aging and age-related diseases. Adv. Med. Sci. 61, 52–62 (2016).
    • (2016) Adv. Med. Sci. , vol.61 , pp. 52-62
    • Wątroba, M.1    Szukiewicz, D.2
  • 103
    • 0032831936 scopus 로고    scopus 로고
    • Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae
    • S. Kim, A. Benguria, C.-Y. Lai, S. M. Jazwinski, Modulation of life-span by histone deacetylase genes in Saccharomyces cerevisiae. Mol. Biol. Cell 10, 3125–3136 (1999).
    • (1999) Mol. Biol. Cell , vol.10 , pp. 3125-3136
    • Kim, S.1    Benguria, A.2    Lai, C.-Y.3    Jazwinski, S.M.4
  • 104
    • 18744416824 scopus 로고    scopus 로고
    • Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction
    • B. Rogina, S. L. Helfand, S. Frankel, Longevity regulation by Drosophila Rpd3 deacetylase and caloric restriction. Science 298, 1745 (2002).
    • (2002) Science , vol.298 , pp. 1745
    • Rogina, B.1    Helfand, S.L.2    Frankel, S.3
  • 105
    • 84958149071 scopus 로고    scopus 로고
    • RPD3 histone deacetylase and nutrition have distinct but interacting effects on Drosophila longevity
    • S. Frankel, J. Woods, T. Ziafazeli, B. Rogina, RPD3 histone deacetylase and nutrition have distinct but interacting effects on Drosophila longevity. Aging 7, 1112–1129 (2015).
    • (2015) Aging , vol.7 , pp. 1112-1129
    • Frankel, S.1    Woods, J.2    Ziafazeli, T.3    Rogina, B.4
  • 106
    • 80052264685 scopus 로고    scopus 로고
    • Transcriptional repression of repeat-derived transcripts correlates with histone hypoacetylation at repetitive DNA elements in aged mice brain
    • S. H. Ryu, K. Kang, T. Yoo, C. O. Joe, J. H. Chung, Transcriptional repression of repeat-derived transcripts correlates with histone hypoacetylation at repetitive DNA elements in aged mice brain. Exp. Gerontol. 46, 811–818 (2011).
    • (2011) Exp. Gerontol. , vol.46 , pp. 811-818
    • Ryu, S.H.1    Kang, K.2    Yoo, T.3    Joe, C.O.4    Chung, J.H.5
  • 109
    • 73449105432 scopus 로고    scopus 로고
    • Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8
    • C. M. Wang, S. N. Tsai, T. W. Yew, Y. W. Kwan, S. M. Ngai, Identification of histone methylation multiplicities patterns in the brain of senescence-accelerated prone mouse 8. Biogerontology 11, 87–102 (2010).
    • (2010) Biogerontology , vol.11 , pp. 87-102
    • Wang, C.M.1    Tsai, S.N.2    Yew, T.W.3    Kwan, Y.W.4    Ngai, S.M.5
  • 110
    • 84913530417 scopus 로고    scopus 로고
    • Histone methylation and aging: Lessons learned from model systems
    • B. S. McCauley, W. Dang, Histone methylation and aging: Lessons learned from model systems. Biochim. Biophys. Acta 1839, 1454–1462 (2014).
    • (2014) Biochim. Biophys. Acta , vol.1839 , pp. 1454-1462
    • McCauley, B.S.1    Dang, W.2
  • 111
    • 84919712381 scopus 로고    scopus 로고
    • Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver
    • I. M. Bochkis, D. Przybylski, J. Chen, A. Regev, Changes in nucleosome occupancy associated with metabolic alterations in aged mammalian liver. Cell Rep. 9, 996–1006 (2014).
    • (2014) Cell Rep. , vol.9 , pp. 996-1006
    • Bochkis, I.M.1    Przybylski, D.2    Chen, J.3    Regev, A.4
  • 113
    • 84876886897 scopus 로고    scopus 로고
    • Coordinated cell type–specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood
    • H. P. Shulha, I. Cheung, Y. Guo, S. Akbarian, Z. Weng, Coordinated cell type–specific epigenetic remodeling in prefrontal cortex begins before birth and continues into early adulthood. PLOS Genet. 9, e1003433 (2013).
    • (2013) PLOS Genet. , vol.9 , pp. e1003433
    • Shulha, H.P.1    Cheung, I.2    Guo, Y.3    Akbarian, S.4    Weng, Z.5
  • 117
    • 84855321183 scopus 로고    scopus 로고
    • Histone methylation makes its mark on longevity
    • S. Han, A. Brunet, Histone methylation makes its mark on longevity. Trends Cell Biol. 22, 42–49 (2012).
    • (2012) Trends Cell Biol. , vol.22 , pp. 42-49
    • Han, S.1    Brunet, A.2
  • 118
    • 78649718101 scopus 로고    scopus 로고
    • Essential functions of the histone demethylase lid
    • L. Li, C. Greer, R. N. Eisenman, J. Secombe, Essential functions of the histone demethylase lid. PLOS Genet. 6, e1001221 (2010).
    • (2010) PLOS Genet. , vol.6 , pp. e1001221
    • Li, L.1    Greer, C.2    Eisenman, R.N.3    Secombe, J.4
  • 120
    • 81155139577 scopus 로고    scopus 로고
    • The H3K27 demethylase UTX-1 regulates C. Elegans lifespan in a germline-independent, insulin-dependent manner
    • T. J. Maures, E. L. Greer, A. G. Hauswirth, A. Brunet, The H3K27 demethylase UTX-1 regulates C. elegans lifespan in a germline-independent, insulin-dependent manner. Aging Cell 10, 980–990 (2011).
    • (2011) Aging Cell , vol.10 , pp. 980-990
    • Maures, T.J.1    Greer, E.L.2    Hauswirth, A.G.3    Brunet, A.4
  • 121
    • 84940748137 scopus 로고    scopus 로고
    • Trithorax and Polycomb group-dependent regulation: A tale of opposing activities
    • S. J. Geisler, R. Paro, Trithorax and Polycomb group-dependent regulation: A tale of opposing activities. Development 142, 2876–2887 (2015).
    • (2015) Development , vol.142 , pp. 2876-2887
    • Geisler, S.J.1    Paro, R.2
  • 123
    • 84878738557 scopus 로고    scopus 로고
    • Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model
    • B. Liu, Z. Wang, L. Zhang, S. Ghosh, H. Zheng, Z. Zhou, Depleting the methyltransferase Suv39h1 improves DNA repair and extends lifespan in a progeria mouse model. Nat. Commun. 4, 1868 (2013).
    • (2013) Nat. Commun. , vol.4 , pp. 1868
    • Liu, B.1    Wang, Z.2    Zhang, L.3    Ghosh, S.4    Zheng, H.5    Zhou, Z.6
  • 125
    • 84926361022 scopus 로고    scopus 로고
    • Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span
    • M. Pu, Z. Ni, M. Wang, X. Wang, J. G. Wood, S. L. Helfand, H. Yu, S. S. Lee, Trimethylation of Lys36 on H3 restricts gene expression change during aging and impacts life span. Genes Dev. 29, 718–731 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 718-731
    • Pu, M.1    Ni, Z.2    Wang, M.3    Wang, X.4    Wood, J.G.5    Helfand, S.L.6    Yu, H.7    Lee, S.S.8
  • 128
    • 84867788817 scopus 로고    scopus 로고
    • Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer
    • J. Cao, Q. Yan, Histone ubiquitination and deubiquitination in transcription, DNA damage response, and cancer. Front. Oncol. 2, 26 (2012).
    • (2012) Front. Oncol. , vol.2 , pp. 26
    • Cao, J.1    Yan, Q.2
  • 129
    • 0034326355 scopus 로고    scopus 로고
    • What does ‘chromatin remodeling’ mean?
    • J. D. Aalfs, R. E. Kingston, What does ‘chromatin remodeling’ mean? Trends Biochem. Sci. 25, 548–555 (2000).
    • (2000) Trends Biochem. Sci. , vol.25 , pp. 548-555
    • Aalfs, J.D.1    Kingston, R.E.2
  • 130
    • 67650725820 scopus 로고    scopus 로고
    • The biology of chromatin remodeling complexes
    • C. R. Clapier, B. R. Cairns, The biology of chromatin remodeling complexes. Annu. Rev. Biochem. 78, 273–304 (2009).
    • (2009) Annu. Rev. Biochem. , vol.78 , pp. 273-304
    • Clapier, C.R.1    Cairns, B.R.2
  • 131
    • 84881166117 scopus 로고    scopus 로고
    • Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes
    • G. J. Narlikar, R. Sundaramoorthy, T. Owen-Hughes, Mechanisms and functions of ATP-dependent chromatin-remodeling enzymes. Cell 154, 490–503 (2013).
    • (2013) Cell , vol.154 , pp. 490-503
    • Narlikar, G.J.1    Sundaramoorthy, R.2    Owen-Hughes, T.3
  • 135
    • 77649131406 scopus 로고    scopus 로고
    • Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis
    • M. E. Moynahan, M. Jasin, Mitotic homologous recombination maintains genomic stability and suppresses tumorigenesis. Nat. Rev. Mol. Cell Biol. 11, 196–207 (2010).
    • (2010) Nat. Rev. Mol. Cell Biol. , vol.11 , pp. 196-207
    • Moynahan, M.E.1    Jasin, M.2
  • 137
    • 84928728856 scopus 로고    scopus 로고
    • Aging and DNA methylation
    • M. Jung, G. P. Pfeifer, Aging and DNA methylation. BMC Biol. 13, 7 (2015).
    • (2015) BMC Biol. , vol.13 , pp. 7
    • Jung, M.1    Pfeifer, G.P.2
  • 142
    • 84886111619 scopus 로고    scopus 로고
    • DNA methylation age of human tissues and cell types
    • S. Horvath, DNA methylation age of human tissues and cell types. Genome Biol. 14, R115 (2013).
    • (2013) Genome Biol. , vol.14 , pp. R115
    • Horvath, S.1
  • 143
    • 77951169806 scopus 로고    scopus 로고
    • Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences
    • P. Jintaridth, A. Mutirangura, Distinctive patterns of age-dependent hypomethylation in interspersed repetitive sequences. Physiol. Genomics 41, 194–200 (2010).
    • (2010) Physiol. Genomics , vol.41 , pp. 194-200
    • Jintaridth, P.1    Mutirangura, A.2
  • 147
    • 0036098657 scopus 로고    scopus 로고
    • Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter
    • Z. Zhang, C. Deng, Q. Lu, B. Richardson, Age-dependent DNA methylation changes in the ITGAL (CD11a) promoter. Mech. Ageing Dev. 123, 1257–1268 (2002).
    • (2002) Mech. Ageing Dev. , vol.123 , pp. 1257-1268
    • Zhang, Z.1    Deng, C.2    Lu, Q.3    Richardson, B.4
  • 148
    • 84861912630 scopus 로고    scopus 로고
    • Programming of DNA methylation patterns
    • H. Cedar, Y. Bergman, Programming of DNA methylation patterns. Annu. Rev. Biochem. 81, 97–117 (2012).
    • (2012) Annu. Rev. Biochem. , vol.81 , pp. 97-117
    • Cedar, H.1    Bergman, Y.2
  • 149
    • 84907653055 scopus 로고    scopus 로고
    • The epigenetic tracks of aging
    • C. I. Weidner, W. Wagner, The epigenetic tracks of aging. Biol. Chem. 395, 1307–1314 (2014).
    • (2014) Biol. Chem. , vol.395 , pp. 1307-1314
    • Weidner, C.I.1    Wagner, W.2
  • 151
    • 84875965163 scopus 로고    scopus 로고
    • Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging
    • I. Beerman, C. Bock, B. S. Garrison, Z. D. Smith, H. Gu, A. Meissner, D. J. Rossi, Proliferation-dependent alterations of the DNA methylation landscape underlie hematopoietic stem cell aging. Cell Stem Cell 12, 413–425 (2013).
    • (2013) Cell Stem Cell , vol.12 , pp. 413-425
    • Beerman, I.1    Bock, C.2    Garrison, B.S.3    Smith, Z.D.4    Gu, H.5    Meissner, A.6    Rossi, D.J.7
  • 152
    • 84924407381 scopus 로고    scopus 로고
    • An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging
    • T. Yuan, Y. Jiao, S. de Jong, R. A. Ophoff, S. Beck, A. E. Teschendorff, An integrative multi-scale analysis of the dynamic DNA methylation landscape in aging. PLOS Genet. 11, e1004996 (2015).
    • (2015) PLOS Genet. , vol.11 , pp. e1004996
    • Yuan, T.1    Jiao, Y.2    De Jong, S.3    Ophoff, R.A.4    Beck, S.5    Teschendorff, A.E.6
  • 155
    • 79955970344 scopus 로고    scopus 로고
    • Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging
    • M. T. Bocker, I. Hellwig, A. Breiling, V. Eckstein, A. D. Ho, F. Lyko, Genome-wide promoter DNA methylation dynamics of human hematopoietic progenitor cells during differentiation and aging. Blood 117, e182–e189 (2011).
    • (2011) Blood , vol.117 , pp. e182-e189
    • Bocker, M.T.1    Hellwig, I.2    Breiling, A.3    Eckstein, V.4    Ho, A.D.5    Lyko, F.6
  • 160
    • 84858342860 scopus 로고    scopus 로고
    • Monitoring of cellular senescence by DNA-methylation at specific CpG sites
    • C. M. Koch, S. Joussen, A. Schellenberg, Q. Lin, M. Zenke, W. Wagner, Monitoring of cellular senescence by DNA-methylation at specific CpG sites. Aging Cell 11, 366–369 (2012).
    • (2012) Aging Cell , vol.11 , pp. 366-369
    • Koch, C.M.1    Joussen, S.2    Schellenberg, A.3    Lin, Q.4    Zenke, M.5    Wagner, W.6
  • 163
    • 34547941973 scopus 로고    scopus 로고
    • The common biology of cancer and ageing
    • T. Finkel, M. Serrano, M. A. Blasco, The common biology of cancer and ageing. Nature 448, 767–774 (2007).
    • (2007) Nature , vol.448 , pp. 767-774
    • Finkel, T.1    Serrano, M.2    Blasco, M.A.3
  • 164
    • 84903693608 scopus 로고    scopus 로고
    • DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells
    • H. E. Gautrey, S. D. van Otterdijk, H. J. Cordell; Newcastle 85+ Study Core Team, J. C. Mathers, G. Strathdee, DNA methylation abnormalities at gene promoters are extensive and variable in the elderly and phenocopy cancer cells. FASEB J. 28, 3261–3272 (2014).
    • (2014) FASEB J. , vol.28 , pp. 3261-3272
    • Gautrey, H.E.1    Van Otterdijk, S.D.2    Cordell, H.J.3    Mathers, J.C.4    Strathdee, G.5
  • 165
    • 34250305146 scopus 로고    scopus 로고
    • J. Lagarde, J. F. Abril, A. Shahab, C. Flamm, C. Fried, J. Hackermüller, J. Hertel, M. Lindemeyer, K. Missal, A. Tanzer, S. Washietl, J. Korbel, O. Emanuelsson, J. S. Pedersen, N. Holroyd, R. Taylor, D. Swarbreck, N. Matthews, M. C. Dickson, D. J. Thomas, M. T. Weirauch, J. Gilbert, J. Drenkow, I. Bell, X. Zhao, K. G. Srinivasan, W. K. Sung, H. S. Ooi, K. Chiu, S. Foissac, T. Alioto, M. Brent, L. Pachter, M. L. Tress, A. Valencia, S. W. Choo, C. Y. Choo, C. Ucla, C. Manzano, C. Wyss, E. Cheung, T. G. Clark, J. B. Brown, M. Ganesh, S. Patel, H. Tammana, J. Chrast, C. N. Henrichsen, C. Kai, J. Kawai, U. Nagalakshmi, J. Wu, Z. Lian, J. Lian, Newburger, X. Zhang, Bickel, J. S. Mattick, Carninci, Y. Hayashizaki, S. Weissman, T. Hubbard, R. M. Myers, J. Rogers, F. Stadler, T. M. Lowe, C. L. Wei, Y. Ruan, K. Struhl, M. Gerstein, S. E. Antonarakis, Y. Fu, E. D. Green, U. Karaöz, A. Siepel, J. Taylor, L. A. Liefer, K. A. Wetterstrand, J. Good, E. A. Feingold, M. S. Guyer, G. M. Cooper, G. Asimenos, C. N. Dewey, M. Hou, S. Nikolaev, J. I. Montoya-Burgos, A. Löytynoja, S. Whelan, F. Pardi, T. Massingham, H. Huang, N. R. Zhang, I. Holmes, J. C. Mullikin, A. Ureta-Vidal, B. Paten, M. Seringhaus, D. Church, K. Rosenbloom, W. J. Kent, E. A. Stone; NISC Comparative Sequencing Program, Baylor College of Medicine Human Genome Sequencing Center, Washington University Genome Sequencing Center, Broad Institute, Children’s Hospital Oakland Research Institute, S. Batzoglou, N. Goldman, R. C. Hardison, D. Haussler, W. Miller, A. Sidow, N. D. Trinklein, Z. D. Zhang, L. Barrera, R. Stuart, D. C. King, A. Ameur, S. Enroth, M. C. Bieda, J. Kim, A. A. Bhinge, N. Jiang, J. Liu, F. Yao, V. B. Vega, C. W. Lee, Ng, A. Shahab, A. Yang, Z. Moqtaderi, Z. Zhu, X. Xu, S. Squazzo, M. J. Oberley, D. Inman, M. A. Singer, T. A. Richmond, K. J. Munn, A. Rada-Iglesias, O. Wallerman, J. Komorowski, J. C. Fowler, Couttet, A. W. Bruce, O. M. Dovey, D. Ellis, C. F. Langford, D. A. Nix, G. Euskirchen, S. Hartman, A. E. Urban, Kraus, S. Van Calcar, N. Heintzman, T. H. Kim, K. Wang, C. Qu, G. Hon, R. Luna, C. K. Glass, M. G. Rosenfeld, S. F. Aldred, S. J. Cooper, A. Halees, J. M. Lin, H. Shulha, X. Zhang, M. Xu, J. N. Haidar, Y. Yu, Y. Ruan, V. R. Iyer, R. D. Green, C. Wadelius, J. Farnham, B. Ren, R. A. Harte, A. S. Hinrichs, H. Trumbower, H. Clawson, J. Hillman-Jackson, A. S. Zweig, K. Smith, A. Thakkapallayil, G. Barber, R. M. Kuhn, D. Karolchik, L. Armengol, C. Bird, I. de Bakker, A. D. Kern, N. Lopez-Bigas, J. D. Martin, B. E. Stranger, A. Woodroffe, E. Davydov, A. Dimas, E. Eyras, I. B. Hallgrímsdóttir, J. Huppert, M. C. Zody, G. R. Abecasis, X. Estivill, G. G. Bouffard, X. Guan, N. F. Hansen, J. R. Idol, V. V. Maduro, B. Maskeri, J. C. McDowell, M. Park, J. Thomas, A. C. Young, R. W. Blakesley, D. M. Muzny, E. Sodergren, D. A. Wheeler, K. C. Worley, H. Jiang, G. M. Weinstock, R. A. Gibbs, T. Graves, R. Fulton, E. R. Mardis, R. K. Wilson, M. Clamp, J. Cuff, S. Gnerre, D. B. Jaffe, J. L. Chang, K. Lindblad-Toh, E. S. Lander, M. Koriabine, M. Nefedov, K. Osoegawa, Y. Yoshinaga, B. Zhu, J. de Jong, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 2007
    • ENCODE Project Consortium, E. Birney, J. A. Stamatoyannopoulos, A. Dutta, R. Guigo, T. R. Gingeras, E. H. Margulies, Z. Weng, M. Snyder, E. T. Dermitzakis, R. E. Thurman, M. S. Kuehn, C. M. Taylor, S. Neph, C. M. Koch, S. Asthana, A. Malhotra, I. Adzhubei, J. A. Greenbaum, R. M. Andrews, P. Flicek, P. J. Boyle, H. Cao, N. P. Carter, G. K. Clelland, S. Davis, N. Day, P. Dhami, S. C. Dillon, M. O. Dorschner, H. Fiegler, P. G. Giresi, J. Goldy, M. Hawrylycz, A. Haydock, R. Humbert, K. D. James, B. E. Johnson, E. M. Johnson, T. T. Frum, E. R. Rosenzweig, N. Karnani, K. Lee, G. C. Lefebvre, P. A. Navas, F. Neri, S. C. Parker, P. J. Sabo, R. Sandstrom, A. Shafer, D. Vetrie, M. Weaver, S. Wilcox, M. Yu, F. S. Collins, J. Dekker, J. D. Lieb, T. D. Tullius, G. E. Crawford, S. Sunyaev, W. S. Noble, I. Dunham, F. Denoeud, A. Reymond, P. Kapranov, J. Rozowsky, D. Zheng, R. Castelo, A. Frankish, J. Harrow, S. Ghosh, A. Sandelin, I. L. Hofacker, R. Baertsch, D. Keefe, S. Dike, J. Cheng, H. A. Hirsch, E. A. Sekinger, J. Lagarde, J. F. Abril, A. Shahab, C. Flamm, C. Fried, J. Hackermüller, J. Hertel, M. Lindemeyer, K. Missal, A. Tanzer, S. Washietl, J. Korbel, O. Emanuelsson, J. S. Pedersen, N. Holroyd, R. Taylor, D. Swarbreck, N. Matthews, M. C. Dickson, D. J. Thomas, M. T. Weirauch, J. Gilbert, J. Drenkow, I. Bell, X. Zhao, K. G. Srinivasan, W. K. Sung, H. S. Ooi, K. P. Chiu, S. Foissac, T. Alioto, M. Brent, L. Pachter, M. L. Tress, A. Valencia, S. W. Choo, C. Y. Choo, C. Ucla, C. Manzano, C. Wyss, E. Cheung, T. G. Clark, J. B. Brown, M. Ganesh, S. Patel, H. Tammana, J. Chrast, C. N. Henrichsen, C. Kai, J. Kawai, U. Nagalakshmi, J. Wu, Z. Lian, J. Lian, P. Newburger, X. Zhang, P. Bickel, J. S. Mattick, P. Carninci, Y. Hayashizaki, S. Weissman, T. Hubbard, R. M. Myers, J. Rogers, P. F. Stadler, T. M. Lowe, C. L. Wei, Y. Ruan, K. Struhl, M. Gerstein, S. E. Antonarakis, Y. Fu, E. D. Green, U. Karaöz, A. Siepel, J. Taylor, L. A. Liefer, K. A. Wetterstrand, P. J. Good, E. A. Feingold, M. S. Guyer, G. M. Cooper, G. Asimenos, C. N. Dewey, M. Hou, S. Nikolaev, J. I. Montoya-Burgos, A. Löytynoja, S. Whelan, F. Pardi, T. Massingham, H. Huang, N. R. Zhang, I. Holmes, J. C. Mullikin, A. Ureta-Vidal, B. Paten, M. Seringhaus, D. Church, K. Rosenbloom, W. J. Kent, E. A. Stone; NISC Comparative Sequencing Program, Baylor College of Medicine Human Genome Sequencing Center, Washington University Genome Sequencing Center, Broad Institute, Children’s Hospital Oakland Research Institute, S. Batzoglou, N. Goldman, R. C. Hardison, D. Haussler, W. Miller, A. Sidow, N. D. Trinklein, Z. D. Zhang, L. Barrera, R. Stuart, D. C. King, A. Ameur, S. Enroth, M. C. Bieda, J. Kim, A. A. Bhinge, N. Jiang, J. Liu, F. Yao, V. B. Vega, C. W. Lee, P. Ng, A. Shahab, A. Yang, Z. Moqtaderi, Z. Zhu, X. Xu, S. Squazzo, M. J. Oberley, D. Inman, M. A. Singer, T. A. Richmond, K. J. Munn, A. Rada-Iglesias, O. Wallerman, J. Komorowski, J. C. Fowler, P. Couttet, A. W. Bruce, O. M. Dovey, P. D. Ellis, C. F. Langford, D. A. Nix, G. Euskirchen, S. Hartman, A. E. Urban, P. Kraus, S. Van Calcar, N. Heintzman, T. H. Kim, K. Wang, C. Qu, G. Hon, R. Luna, C. K. Glass, M. G. Rosenfeld, S. F. Aldred, S. J. Cooper, A. Halees, J. M. Lin, H. P. Shulha, X. Zhang, M. Xu, J. N. Haidar, Y. Yu, Y. Ruan, V. R. Iyer, R. D. Green, C. Wadelius, P. J. Farnham, B. Ren, R. A. Harte, A. S. Hinrichs, H. Trumbower, H. Clawson, J. Hillman-Jackson, A. S. Zweig, K. Smith, A. Thakkapallayil, G. Barber, R. M. Kuhn, D. Karolchik, L. Armengol, C. P. Bird, P. I. de Bakker, A. D. Kern, N. Lopez-Bigas, J. D. Martin, B. E. Stranger, A. Woodroffe, E. Davydov, A. Dimas, E. Eyras, I. B. Hallgrímsdóttir, J. Huppert, M. C. Zody, G. R. Abecasis, X. Estivill, G. G. Bouffard, X. Guan, N. F. Hansen, J. R. Idol, V. V. Maduro, B. Maskeri, J. C. McDowell, M. Park, P. J. Thomas, A. C. Young, R. W. Blakesley, D. M. Muzny, E. Sodergren, D. A. Wheeler, K. C. Worley, H. Jiang, G. M. Weinstock, R. A. Gibbs, T. Graves, R. Fulton, E. R. Mardis, R. K. Wilson, M. Clamp, J. Cuff, S. Gnerre, D. B. Jaffe, J. L. Chang, K. Lindblad-Toh, E. S. Lander, M. Koriabine, M. Nefedov, K. Osoegawa, Y. Yoshinaga, B. Zhu, P. J. de Jong, Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447, 799–816 (2007).
    • Birney, E.1    Stamatoyannopoulos, J.A.2    Dutta, A.3    Guigo, R.4    Gingeras, T.R.5    Margulies, E.H.6    Weng, Z.7    Snyder, M.8    Dermitzakis, E.T.9    Thurman, R.E.10    Kuehn, M.S.11    Taylor, C.M.12    Neph, S.13    Koch, C.M.14    Asthana, S.15    Malhotra, A.16    Adzhubei, I.17    Greenbaum, J.A.18    Andrews, R.M.19    Flicek, P.20    more..
  • 166
    • 67649671961 scopus 로고    scopus 로고
    • Long noncoding RNAs: Functional surprises from the RNA world
    • J. E. Wilusz, H. Sunwoo, D. L. Spector, Long noncoding RNAs: Functional surprises from the RNA world. Genes Dev. 23, 1494–1504 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 1494-1504
    • Wilusz, J.E.1    Sunwoo, H.2    Spector, D.L.3
  • 168
    • 84879671055 scopus 로고    scopus 로고
    • Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs
    • M. J. Hangauer, I. W. Vaughn, M. T. McManus, Pervasive transcription of the human genome produces thousands of previously unidentified long intergenic noncoding RNAs. PLOS Genet. 9, e1003569 (2013).
    • (2013) PLOS Genet. , vol.9 , pp. e1003569
    • Hangauer, M.J.1    Vaughn, I.W.2    McManus, M.T.3
  • 169
    • 33846169089 scopus 로고    scopus 로고
    • Eukaryotic regulatory RNAs: An answer to the ‘genome complexity’ conundrum
    • K. V. Prasanth, D. L. Spector, Eukaryotic regulatory RNAs: An answer to the ‘genome complexity’ conundrum. Genes Dev. 21, 11–42 (2007).
    • (2007) Genes Dev. , vol.21 , pp. 11-42
    • Prasanth, K.V.1    Spector, D.L.2
  • 170
    • 84897128298 scopus 로고    scopus 로고
    • The noncoding RNA revolution—Trashing old rules to forge new ones
    • T. R. Cech, J. A. Steitz, The noncoding RNA revolution—Trashing old rules to forge new ones. Cell 157, 77–94 (2014).
    • (2014) Cell , vol.157 , pp. 77-94
    • Cech, T.R.1    Steitz, J.A.2
  • 171
    • 77954855829 scopus 로고    scopus 로고
    • Non-coding RNAs: Meet thy masters
    • F. F. Costa, Non-coding RNAs: Meet thy masters. Bioessays 32, 599–608 (2010).
    • (2010) Bioessays , vol.32 , pp. 599-608
    • Costa, F.F.1
  • 172
    • 81355142141 scopus 로고    scopus 로고
    • Non-coding RNAs in human disease
    • M. Esteller, Non-coding RNAs in human disease. Nat. Rev. Genet. 12, 861–874 (2011).
    • (2011) Nat. Rev. Genet. , vol.12 , pp. 861-874
    • Esteller, M.1
  • 173
    • 84923536034 scopus 로고    scopus 로고
    • Non-coding RNA in neural function, disease, and aging
    • K. Szafranski, K. J. Abraham, K. Mekhail, Non-coding RNA in neural function, disease, and aging. Front. Genet. 6, 87 (2015).
    • (2015) Front. Genet. , vol.6 , pp. 87
    • Szafranski, K.1    Abraham, K.J.2    Mekhail, K.3
  • 174
    • 84884594512 scopus 로고    scopus 로고
    • Cellular senescence in yeast is regulated by rDNA noncoding transcription
    • K. Saka, S. Ide, A. R. D. Ganley, T. Kobayashi, Cellular senescence in yeast is regulated by rDNA noncoding transcription. Curr. Biol. 23, 1794–1798 (2013).
    • (2013) Curr. Biol. , vol.23 , pp. 1794-1798
    • Saka, K.1    Ide, S.2    Ganley, A.R.D.3    Kobayashi, T.4
  • 177
    • 80053210307 scopus 로고    scopus 로고
    • Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. Elegans
    • M. Kato, X. Chen, S. Inukai, H. Zhao, F. J. Slack, Age-associated changes in expression of small, noncoding RNAs, including microRNAs, in C. elegans. RNA 17, 1804–1820 (2011).
    • (2011) RNA , vol.17 , pp. 1804-1820
    • Kato, M.1    Chen, X.2    Inukai, S.3    Zhao, H.4    Slack, F.J.5
  • 178
    • 29344467120 scopus 로고    scopus 로고
    • A developmental timing microRNA and its target regulate life span in C. Elegans
    • M. Boehm, F. Slack, A developmental timing microRNA and its target regulate life span in C. elegans. Science 310, 1954–1957 (2005).
    • (2005) Science , vol.310 , pp. 1954-1957
    • Boehm, M.1    Slack, F.2
  • 180
    • 80053446656 scopus 로고    scopus 로고
    • MicroRNA predictors of longevity in Caenorhabditis elegans
    • Z. Pincus, T. Smith-Vikos, F. J. Slack, MicroRNA predictors of longevity in Caenorhabditis elegans. PLOS Genet. 7, e1002306 (2011).
    • (2011) PLOS Genet. , vol.7 , pp. e1002306
    • Pincus, Z.1    Smith-Vikos, T.2    Slack, F.J.3
  • 181
    • 84867810635 scopus 로고    scopus 로고
    • MicroRNA in aging: From discovery to biology
    • H. J. Jung, Y. Suh, MicroRNA in aging: From discovery to biology. Curr. Genomics 13, 548–557 (2012).
    • (2012) Curr. Genomics , vol.13 , pp. 548-557
    • Jung, H.J.1    Suh, Y.2
  • 182
    • 79954592065 scopus 로고    scopus 로고
    • Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain
    • N. Li, D. J. Bates, J. An, D. A. Terry, E. Wang, Up-regulation of key microRNAs, and inverse down-regulation of their predicted oxidative phosphorylation target genes, during aging in mouse brain. Neurobiol. Aging 32, 944–955 (2011).
    • (2011) Neurobiol. Aging , vol.32 , pp. 944-955
    • Li, N.1    Bates, D.J.2    An, J.3    Terry, D.A.4    Wang, E.5
  • 186
    • 79451474371 scopus 로고    scopus 로고
    • Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: White matter versus gray matter
    • W.-X. Wang, Q. Huang, Y. Hu, A. J. Stromberg, P. T. Nelson, Patterns of microRNA expression in normal and early Alzheimer’s disease human temporal cortex: White matter versus gray matter. Acta Neuropathol. 121, 193–205 (2011).
    • (2011) Acta Neuropathol. , vol.121 , pp. 193-205
    • Wang, W.-X.1    Huang, Q.2    Hu, Y.3    Stromberg, A.J.4    Nelson, P.T.5
  • 187
    • 70349558133 scopus 로고    scopus 로고
    • MiR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation
    • X. Wang, P. Liu, H. Zhu, Y. Xu, C. Ma, X. Dai, L. Huang, Y. Liu, L. Zhang, C. Qin, miR-34a, a microRNA up-regulated in a double transgenic mouse model of Alzheimer’s disease, inhibits bcl2 translation. Brain Res. Bull. 80, 268–273 (2009).
    • (2009) Brain Res. Bull. , vol.80 , pp. 268-273
    • Wang, X.1    Liu, P.2    Zhu, H.3    Xu, Y.4    Ma, C.5    Dai, X.6    Huang, L.7    Liu, Y.8    Zhang, L.9    Qin, C.10
  • 188
    • 77951210885 scopus 로고    scopus 로고
    • A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition
    • J. Lee, A. Padhye, A. Sharma, G. Song, J. Miao, Y.-Y. Mo, L. Wang, J. K. Kemper, A pathway involving farnesoid X receptor and small heterodimer partner positively regulates hepatic sirtuin 1 levels via microRNA-34a inhibition. J. Biol. Chem. 285, 12604–12611 (2010).
    • (2010) J. Biol. Chem. , vol.285 , pp. 12604-12611
    • Lee, J.1    Padhye, A.2    Sharma, A.3    Song, G.4    Miao, J.5    Mo, Y.-Y.6    Wang, L.7    Kemper, J.K.8
  • 189
    • 77956827140 scopus 로고    scopus 로고
    • Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice
    • I. Meier, L. Fellini, M. Jakovcevski, M. Schachner, F. Morellini, Expression of the snoRNA host gene gas5 in the hippocampus is upregulated by age and psychogenic stress and correlates with reduced novelty-induced behavior in C57BL/6 mice. Hippocampus 20, 1027–1036 (2010).
    • (2010) Hippocampus , vol.20 , pp. 1027-1036
    • Meier, I.1    Fellini, L.2    Jakovcevski, M.3    Schachner, M.4    Morellini, F.5
  • 193
    • 84949941865 scopus 로고    scopus 로고
    • Long noncoding RNAs in aging and age-related diseases
    • S. Kour, P. C. Rath, Long noncoding RNAs in aging and age-related diseases. Ageing Res. Rev. 26, 1–21 (2015).
    • (2015) Ageing Res. Rev. , vol.26 , pp. 1-21
    • Kour, S.1    Rath, P.C.2
  • 194
    • 84862777038 scopus 로고    scopus 로고
    • Long non-coding RNAs in Huntington’s disease neurodegeneration
    • R. Johnson, Long non-coding RNAs in Huntington’s disease neurodegeneration. Neurobiol. Dis. 46, 245–254 (2012).
    • (2012) Neurobiol. Dis. , vol.46 , pp. 245-254
    • Johnson, R.1
  • 195
    • 84872056224 scopus 로고    scopus 로고
    • Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease
    • C. Soldati, A. Bithell, C. Johnston, K.-Y. Wong, L. W. Stanton, N. J. Buckley, Dysregulation of REST-regulated coding and non-coding RNAs in a cellular model of Huntington’s disease. J. Neurochem. 124, 418–430 (2013).
    • (2013) J. Neurochem. , vol.124 , pp. 418-430
    • Soldati, C.1    Bithell, A.2    Johnston, C.3    Wong, K.-Y.4    Stanton, L.W.5    Buckley, N.J.6
  • 196
    • 84872533627 scopus 로고    scopus 로고
    • RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond
    • S. E. Castel, R. A. Martienssen, RNA interference in the nucleus: Roles for small RNAs in transcription, epigenetics and beyond. Nat. Rev. Genet. 14, 100–112 (2013).
    • (2013) Nat. Rev. Genet. , vol.14 , pp. 100-112
    • Castel, S.E.1    Martienssen, R.A.2
  • 197
    • 85027939978 scopus 로고    scopus 로고
    • Noncoding RNAs and the borders of heterochromatin
    • A. L. Cohen, S. Jia, Noncoding RNAs and the borders of heterochromatin. Wiley Interdiscip. Rev. RNA 5, 835–847 (2014).
    • (2014) Wiley Interdiscip. Rev. RNA , vol.5 , pp. 835-847
    • Cohen, A.L.1    Jia, S.2
  • 199
    • 84875235105 scopus 로고    scopus 로고
    • Bridging the transgenerational gap with epigenetic memory
    • J. P. Lim, A. Brunet, Bridging the transgenerational gap with epigenetic memory. Trends Genet. 29, 176–186 (2013).
    • (2013) Trends Genet. , vol.29 , pp. 176-186
    • Lim, J.P.1    Brunet, A.2
  • 201
    • 80052037691 scopus 로고    scopus 로고
    • Epigenetic regulation of caloric restriction in aging
    • Y. Li, M. Daniel, T. O. Tollefsbol, Epigenetic regulation of caloric restriction in aging. BMC Med. 9, 98 (2011).
    • (2011) BMC Med. , vol.9 , pp. 98
    • Li, Y.1    Daniel, M.2    Tollefsbol, T.O.3
  • 202
    • 69249235740 scopus 로고    scopus 로고
    • Calorie restriction and the exercise of chromatin
    • A. Vaquero, D. Reinberg, Calorie restriction and the exercise of chromatin. Genes Dev. 23, 1849–1869 (2009).
    • (2009) Genes Dev. , vol.23 , pp. 1849-1869
    • Vaquero, A.1    Reinberg, D.2
  • 203
    • 84951844385 scopus 로고    scopus 로고
    • Transcriptome analysis in calorie-restricted rats implicates epigenetic and posttranslational mechanisms in neuroprotection and aging
    • S. H. Wood, S. van Dam, T. Craig, R. Tacutu, A. O’Toole, B. J. Merry, J. P. de Magalhães, Transcriptome analysis in calorie-restricted rats implicates epigenetic and posttranslational mechanisms in neuroprotection and aging. Genome Biol. 16, 28 (2015).
    • (2015) Genome Biol. , vol.16 , pp. 28
    • Wood, S.H.1    Van Dam, S.2    Craig, T.3    Tacutu, R.4    O’Toole, A.5    Merry, B.J.6    De Magalhães, J.P.7
  • 204
    • 77953149043 scopus 로고    scopus 로고
    • Calorie restriction: Decelerating mTOR-driven aging from cells to organisms (including humans)
    • M. V. Blagosklonny, Calorie restriction: Decelerating mTOR-driven aging from cells to organisms (including humans). Cell Cycle 9, 683–688 (2010).
    • (2010) Cell Cycle , vol.9 , pp. 683-688
    • Blagosklonny, M.V.1
  • 205
    • 84923349090 scopus 로고    scopus 로고
    • Calorie restriction mimetics: Can you have your cake and eat it, too?
    • D. K. Ingram, G. S. Roth, Calorie restriction mimetics: Can you have your cake and eat it, too? Ageing Res. Rev. 20, 46–62 (2015).
    • (2015) Ageing Res. Rev. , vol.20 , pp. 46-62
    • Ingram, D.K.1    Roth, G.S.2
  • 207
    • 84896739647 scopus 로고    scopus 로고
    • Small molecule SIRT1 activators for the treatment of aging and age-related diseases
    • B. P. Hubbard, D. A. Sinclair, Small molecule SIRT1 activators for the treatment of aging and age-related diseases. Trends Pharmacol. Sci. 35, 146–154 (2014).
    • (2014) Trends Pharmacol. Sci. , vol.35 , pp. 146-154
    • Hubbard, B.P.1    Sinclair, D.A.2
  • 210
    • 84933524839 scopus 로고    scopus 로고
    • Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol
    • D. Cao, M. Wang, X. Qiu, D. Liu, H. Jiang, N. Yang, R.-M. Xu, Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev. 29, 1316–1325 (2015).
    • (2015) Genes Dev. , vol.29 , pp. 1316-1325
    • Cao, D.1    Wang, M.2    Qiu, X.3    Liu, D.4    Jiang, H.5    Yang, N.6    Xu, R.-M.7
  • 214
    • 84877642979 scopus 로고    scopus 로고
    • Sirt1 activation by resveratrol is substrate sequence-selective
    • M. Lakshminarasimhan, D. Rauh, M. Schutkowski, C. Steegborn, Sirt1 activation by resveratrol is substrate sequence-selective. Aging 5, 151–154 (2013).
    • (2013) Aging , vol.5 , pp. 151-154
    • Lakshminarasimhan, M.1    Rauh, D.2    Schutkowski, M.3    Steegborn, C.4
  • 216
    • 84890331040 scopus 로고    scopus 로고
    • Metformin: Do we finally have an anti-aging drug?
    • V. N. Anisimov, Metformin: Do we finally have an anti-aging drug? Cell Cycle 12, 3483–3489 (2013).
    • (2013) Cell Cycle , vol.12 , pp. 3483-3489
    • Anisimov, V.N.1
  • 218
    • 77649311383 scopus 로고    scopus 로고
    • Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. Elegans healthspan via AMPK, LKB1, and SKN-1
    • B. Onken, M. Driscoll, Metformin induces a dietary restriction–like state and the oxidative stress response to extend C. elegans healthspan via AMPK, LKB1, and SKN-1. PLOS One 5, e8758 (2010).
    • (2010) PLOS One , vol.5 , pp. e8758
    • Onken, B.1    Driscoll, M.2
  • 220
    • 84914165449 scopus 로고    scopus 로고
    • Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea mono-therapy and matched, non-diabetic controls
    • C. A. Bannister, S. E. Holden, S. Jenkins-Jones, C. L. Morgan, J. P. Halcox, G. Schernthaner, J. Mukherjee, C. J. Currie, Can people with type 2 diabetes live longer than those without? A comparison of mortality in people initiated with metformin or sulphonylurea mono-therapy and matched, non-diabetic controls. Diabetes Obes. Metab. 16, 1165–1173 (2014).
    • (2014) Diabetes Obes. Metab. , vol.16 , pp. 1165-1173
    • Bannister, C.A.1    Holden, S.E.2    Jenkins-Jones, S.3    Morgan, C.L.4    Halcox, J.P.5    Schernthaner, G.6    Mukherjee, J.7    Currie, C.J.8
  • 225
    • 84883128633 scopus 로고    scopus 로고
    • Autophagy—An emerging anti-aging mechanism
    • pii: 006
    • S. Gelino, M. Hansen, Autophagy—An emerging anti-aging mechanism. J. Clin. Exp. Pathol. (Suppl. 4), pii: 006 (2012).
    • (2012) J. Clin. Exp. Pathol. (
    • Gelino, S.1    Hansen, M.2
  • 228
    • 84882935541 scopus 로고    scopus 로고
    • Sirtuins’ modulation of autophagy
    • F. Ng, B. L. Tang, Sirtuins’ modulation of autophagy. J. Cell. Physiol. 228, 2262–2270 (2013).
    • (2013) J. Cell. Physiol. , vol.228 , pp. 2262-2270
    • Ng, F.1    Tang, B.L.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.