-
1
-
-
84859934163
-
Validating the CANRISK prognostic model for assessing diabetes risk in Canada's multi-ethnic population
-
C. A. R., G.A. and K., N. Dec. 2011
-
C. A. R., G.A. and K., N. 2011. Validating the CANRISK prognostic model for assessing diabetes risk in Canada's multi-ethnic population. Chronic diseases and injuries in Canada. 32, 1(Dec. 2011).
-
(2011)
Chronic Diseases and Injuries in Canada
, vol.32
, pp. 1
-
-
-
2
-
-
81755187659
-
The impact of diabetes mellitus on healthcare costs in Italy
-
Dec. 2011
-
Carlo, B G., Valeria, M. and Jesús, D.C. 2011. The impact of diabetes mellitus on healthcare costs in Italy. Expert review of pharmacoeconomics & outcomes research. 11, (Dec. 2011),709-19.
-
(2011)
Expert Review of Pharmacoeconomics & Outcomes Research
, vol.11
, pp. 709-719
-
-
Carlo, B.G.1
Valeria, M.2
Jesús, D.C.3
-
5
-
-
81855192726
-
Evaluation of a risk factor scoring model in screening for undiagnosed diabetes in China population
-
Oct.
-
Jian-jun, D., Neng-jun, L., Jia-jun, Z., Zhong-wen, Z., Lu-lu, Q., Ying, Z. and Lin, L. Evaluation of a risk factor scoring model in screening for undiagnosed diabetes in China population. Journal of Zhejiang University Science B. 12, 1 (Oct. 2011), 846-852.
-
(2011)
Journal of Zhejiang University Science B.
, vol.12
, Issue.1
, pp. 846-852
-
-
Jian-Jun, D.1
Neng-Jun, L.2
Jia-Jun, Z.3
Zhong-Wen, Z.4
Lu-Lu, Q.5
Ying, Z.6
Lin, L.7
-
6
-
-
84938594891
-
Performance Analysis of Classifier Models to Predict Diabetes Mellitus
-
Kandhasamy, J.P., and S. B. Performance Analysis of Classifier Models to Predict Diabetes Mellitus. Procedia Computer Science. 47, (2015), 45-51.
-
(2015)
Procedia Computer Science.
, vol.47
, pp. 45-51
-
-
Kandhasamy, J.P.S.B.1
-
7
-
-
84925157232
-
Evaluating the Performance of the Framingham Diabetes Risk Scoring Model in Canadian Electronic Medical Records
-
April. 2015
-
Morteza, M., Franklyn, P., Bharat, S., Linying, D., Karim, K. and Aziz G. 2015. Evaluating the Performance of the Framingham Diabetes Risk Scoring Model in Canadian Electronic Medical Records. Canadian journal of diabetes 39, 30(April. 2015), 152-156.
-
(2015)
Canadian Journal of Diabetes
, vol.39
, Issue.30
, pp. 152-156
-
-
Morteza, M.1
Franklyn, P.2
Bharat, S.3
Linying, D.4
Karim, K.5
Aziz, G.6
-
8
-
-
77954597013
-
Intelligible support vector machines for diagnosis of diabetes mellitus
-
July 2010
-
Nahla B., Andrew, P.B. and M., N.B. 2010. Intelligible support vector machines for diagnosis of diabetes mellitus. Information Technology in Biomedicine, IEEE Transactions. 14, (July. 2010), 1114-20.
-
(2010)
Information Technology in Biomedicine, IEEE Transactions
, vol.14
, pp. 1114-1120
-
-
Nahla, B.1
Andrew, P.B.M.N.B.2
-
9
-
-
81755173510
-
-
R., D.C. School of Information Systems & Management, Carnegie Mellon University, Australia. 5(Aug. 2009)
-
R., D.C. 2009. Data mining in healthcare: Current applications and issues. School of Information Systems & Management, Carnegie Mellon University, Australia. 5(Aug. 2009).
-
(2009)
Data Mining in Healthcare: Current Applications and Issues
-
-
-
10
-
-
84994353215
-
The Early Detection of Diabetes Mellitus (DM) Using Fuzzy Hierarchical Model
-
Dec. 2015
-
Rian, B.L. and E, I. 2015. The Early Detection of Diabetes Mellitus (DM) Using Fuzzy Hierarchical Model. Procedia Computer Science. 59, 31(Dec. 2015), 12-9.
-
(2015)
Procedia Computer Science.
, vol.59
, Issue.31
, pp. 12-19
-
-
Rian, B.L.E.I.1
-
11
-
-
84923233733
-
An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction
-
jun. 2015
-
Seokho, K., Pilsung, K., Taehoon, K., Sungzoon, C., Su-jin, R., and Kyung-Sang, Y. 2015. An efficient and effective ensemble of support vector machines for anti-diabetic drug failure prediction. Expert Systems with Applications. 42, 1 (jun. 2015), 4265-4273.
-
(2015)
Expert Systems with Applications
, vol.42
, Issue.1
, pp. 4265-4273
-
-
Seokho, K.1
Pilsung, K.2
Taehoon, K.3
Sungzoon, C.4
Su-Jin, R.5
Kyung-Sang, Y.6
-
12
-
-
0002900451
-
Ensemble methods in machine learning
-
Springer Berlin Heidelberg (June. 2000)
-
Thomas G. D. 2000. Ensemble methods in machine learning. In Multiple classifier systems. Springer Berlin Heidelberg. 21(June. 2000), 1-15.
-
(2000)
Multiple Classifier Systems
, vol.21
, pp. 1-15
-
-
Thomas, G.D.1
-
14
-
-
84901199106
-
Classification of Diabetes Disease Using Support Vector Machine
-
V., A.K. and R., C. (April. 2013)
-
V., A.K. and R., C. 2013. Classification of Diabetes Disease Using Support Vector Machine. International Journal of Engineering Research and Applications. 3, (April. 2013), 1797-1801.
-
(2013)
International Journal of Engineering Research and Applications
, vol.3
, pp. 1797-1801
-
-
-
15
-
-
0002978642
-
Experiments with a new boosting algorithm
-
(July. 1996)
-
Yoav, F. and Robert, E.S. Experiments with a new boosting algorithm. InICML. 96, 3(July. 1996), 148-156.
-
InICML.
, vol.96
, Issue.3
, pp. 148-156
-
-
Yoav, F.1
Robert, E.S.2
-
16
-
-
63649124233
-
Tools for predicting the risk of type 2 diabetes in daily practice
-
J., L., J.L., and J., T. (Feb. 2009)
-
Schwarz, P.E., J., L., J.L., and J., T. 2009. Tools for predicting the risk of type 2 diabetes in daily practice. Hormone and metabolic research= Hormon-und Stoffwechselforschung= Hormones et métabolisme.41, (Feb. 2009), 86-97.
-
(2009)
Hormone and Metabolic Research= Hormon-und Stoffwechselforschung= Hormones et Métabolisme
, vol.41
, pp. 86-97
-
-
Schwarz, P.E.1
-
17
-
-
84924355452
-
Screening for prediabetes using machine learning models
-
Choi, S.B., Kim, W.J., Yoo, T.K., Park, J.S., Chung, J.W., Lee, Y.H.,. & Kim, D.W. 2014. Screening for prediabetes using machine learning models. Computational and mathematical methods in medicine, 2014.
-
(2014)
Computational and Mathematical Methods in Medicine, 2014
-
-
Choi, S.B.1
Kim, W.J.2
Yoo, T.K.3
Park, J.S.4
Chung, J.W.5
Lee, Y.H.6
Kim, D.W.7
|