-
1
-
-
42449096849
-
On exact solutions of a class of fractional Euler-Lagrange equations
-
Baleanu, D. and Trujillo, J.J. (2008), “On exact solutions of a class of fractional Euler-Lagrange equations”, Nonlinear Dynamics, Vol. 52 No. 4, pp. 331-5.
-
(2008)
Nonlinear Dynamics
, vol.52
, Issue.4
, pp. 331-335
-
-
Baleanu, D.1
Trujillo, J.J.2
-
4
-
-
40249087307
-
Phase synchronization in fractional differential chaotic systems
-
Erjaee, G.H. and Momani, S. (2008), “Phase synchronization in fractional differential chaotic systems”, Physics Letters A, Vol. 372 No. 14, pp. 2350-4.
-
(2008)
Physics Letters A
, vol.372
, Issue.14
, pp. 2350-2354
-
-
Erjaee, G.H.1
Momani, S.2
-
5
-
-
0003655699
-
-
Wiley, New York, NY.
-
Farina, L. and Rinaldi, S. (2000), Positive Linear Systems: Theory and Applications, Wiley, New York, NY.
-
(2000)
Positive Linear Systems: Theory and Applications
-
-
Farina, L.1
Rinaldi, S.2
-
6
-
-
0016990738
-
State-space realization theory of two-dimensional filters
-
Fornasini, E. and Marchesini, G. (1976), “State-space realization theory of two-dimensional filters”, IEEE Trans. Autom. Contr., Vol. AC-21, pp. 484-91.
-
(1976)
IEEE Trans. Autom. Contr.
, vol.AC-21
, pp. 484-491
-
-
Fornasini, E.1
Marchesini, G.2
-
7
-
-
34250287560
-
Double indexed dynamical systems
-
Fornasini, E. and Marchesini, G. (1978), “Double indexed dynamical systems”, Math. Sys. Theory, Vol. 12, pp. 59-72.
-
(1978)
Math. Sys. Theory
, vol.12
, pp. 59-72
-
-
Fornasini, E.1
Marchesini, G.2
-
8
-
-
0031078887
-
Elementary operation approach to state space realization of 2D systems
-
Gałkowski, K. (1977), “Elementary operation approach to state space realization of 2D systems”, IEEE Trans. on Circuit and Systems, Vol. 44, pp. 120-9.
-
(1977)
IEEE Trans. on Circuit and Systems
, vol.44
, pp. 120-129
-
-
Gałkowski, K.1
-
10
-
-
0008984939
-
Reachability and controllability of non-negative 2D Roesser type models
-
Kaczorek, T. (1966), “Reachability and controllability of non-negative 2D Roesser type models”, Bull. Acad. Pol. Sci. Ser. Sci. Techn., Vol. 44 No. 4, pp. 405-10.
-
(1966)
Bull. Acad. Pol. Sci. Ser. Sci. Techn.
, vol.44
, Issue.4
, pp. 405-410
-
-
Kaczorek, T.1
-
13
-
-
4143115539
-
Reachability index of the positive 2D general models
-
Kaczorek, T. (2004), “Reachability index of the positive 2D general models”, Bull. Pol. Acad. Tech., Vol. 52 No. 1, pp. 79-81.
-
(2004)
Bull. Pol. Acad. Tech.
, vol.52
, Issue.1
, pp. 79-81
-
-
Kaczorek, T.1
-
14
-
-
26044455472
-
Reachability and minimum energy control of positive 2D systems with delays
-
Kaczorek, T. (2005a), “Reachability and minimum energy control of positive 2D systems with delays”, Control and Cybernetics, Vol. 34 No. 2, pp. 411-23.
-
(2005)
Control and Cybernetics
, vol.34
, Issue.2
, pp. 411-423
-
-
Kaczorek, T.1
-
15
-
-
34548033534
-
Realization problem for a class of positive continuous-time systems with delays
-
Kaczorek, T. (2005b), “Realization problem for a class of positive continuous-time systems with delays”, Int. J. Appl. Math. Comp. Sci., Vol. 15 No. 4, pp. 101-7.
-
(2005)
Int. J. Appl. Math. Comp. Sci.
, vol.15
, Issue.4
, pp. 101-107
-
-
Kaczorek, T.1
-
16
-
-
84993015319
-
State variables diagram method for determination of positive realizations of 2D systems with delays
-
Kaczorek, T. (2007a), “State variables diagram method for determination of positive realizations of 2D systems with delays”, Journal of Automation, Mobile Robotics and Intelligent Systems, Vol. 1 No. 2, pp. 5-12.
-
(2007)
Journal of Automation, Mobile Robotics and Intelligent Systems
, vol.1
, Issue.2
, pp. 5-12
-
-
Kaczorek, T.1
-
17
-
-
43649083020
-
Reachabilty and controllability to zero of positive fractional discrete-time systems
-
Kaczorek, T. (2007b), “Reachabilty and controllability to zero of positive fractional discrete-time systems”, Machine Intelligence and Robotic Control, Vol. 6 No. 4.
-
(2007)
Machine Intelligence and Robotic Control
, vol.6
, Issue.4
-
-
Kaczorek, T.1
-
18
-
-
43649083973
-
Realization problem for fractional positive continuous-time linear systems
-
Kaczorek, T. (2007c), “Realization problem for fractional positive continuous-time linear systems”, Archives of Control Sciences, Vol. 17 No. 3, pp. 357-67.
-
(2007)
Archives of Control Sciences
, vol.17
, Issue.3
, pp. 357-367
-
-
Kaczorek, T.1
-
19
-
-
45849137105
-
Fractional positive continuous-time linear systems and their reachability
-
Kaczorek, T. (2008a), “Fractional positive continuous-time linear systems and their reachability”, Int. J. Appl. Math. Comput. Sci., Vol. 18 No. 2, pp. 1-6.
-
(2008)
Int. J. Appl. Math. Comput. Sci.
, vol.18
, Issue.2
, pp. 1-6
-
-
Kaczorek, T.1
-
20
-
-
84992997231
-
Fractional 2D linear systems. Automation
-
Kaczorek, T. (2008b), “Fractional 2D linear systems. Automation”, Mobile Robotics and Intelligent Systems, Vol. 2 No. 2, pp. 1-5.
-
(2008)
Mobile Robotics and Intelligent Systems
, vol.2
, Issue.2
, pp. 1-5
-
-
Kaczorek, T.1
-
21
-
-
26644471138
-
Minimal realization for positive multivariable linear systems with delay
-
Kaczorek, T. and Busłowicz, M. (2004), “Minimal realization for positive multivariable linear systems with delay”, Int. J. Appl. Math. Comput. Sci., Vol. 14 No. 2, pp. 181-7.
-
(2004)
Int. J. Appl. Math. Comput. Sci.
, vol.14
, Issue.2
, pp. 181-187
-
-
Kaczorek, T.1
Busłowicz, M.2
-
23
-
-
0022079959
-
The general state-space model for a two-dimensional linear digital systems
-
Kurek, J. (1985), “The general state-space model for a two-dimensional linear digital systems”, IEEE Trans. Autom. Contr., Vol. AC-30, pp. 600-2.
-
(1985)
IEEE Trans. Autom. Contr.
, vol.AC-30
, pp. 600-602
-
-
Kurek, J.1
-
24
-
-
0003492056
-
-
Wiley, New York, NY.
-
Miller, K.S. and Ross, B. (1993), An Introduction to the Fractional Calculus and Fractional Differential Equations, Wiley, New York, NY.
-
(1993)
An Introduction to the Fractional Calculus and Fractional Differential Equations
-
-
Miller, K.S.1
Ross, B.2
-
26
-
-
0004182814
-
-
Academic Press, New York, NY.
-
Oldham, K.B. and Spanier, J. (1974), The Fractional Calculus, Academic Press, New York, NY.
-
(1974)
The Fractional Calculus
-
-
Oldham, K.B.1
Spanier, J.2
-
27
-
-
0030696426
-
Fractional discrete-time linear systems
-
IEEE, New York, NY
-
Ortigueira, M.D. (1997), “Fractional discrete-time linear systems”, Proc. of the IEE-ICASSP 97, Munich, Germany, Vol. 3, IEEE, New York, NY, pp. 2241-4.
-
(1997)
Proc. of the IEE-ICASSP 97, Munich, Germany
, vol.3
, pp. 2241-2244
-
-
Ortigueira, M.D.1
-
28
-
-
0034588716
-
The non-integer difference of the discrete-time function and its application to the control system synthesis
-
Ostalczyk, P. (2000), “The non-integer difference of the discrete-time function and its application to the control system synthesis”, Int. J. Syst, Sci., Vol. 31 No. 12, pp. 1551-61.
-
(2000)
Int. J. Syst, Sci.
, vol.31
, Issue.12
, pp. 1551-1561
-
-
Ostalczyk, P.1
-
31
-
-
0242354999
-
Geometric and physical interpretation of fractional integration and fractional differentiation
-
Podlubny, I. (2002), “Geometric and physical interpretation of fractional integration and fractional differentiation”, Frac. Calc. Appl. Anal., Vol. 5 No. 4, pp. 367-86.
-
(2002)
Frac. Calc. Appl. Anal.
, vol.5
, Issue.4
, pp. 367-386
-
-
Podlubny, I.1
-
32
-
-
0031346847
-
On fractional derivatives, fractional order systems and Piλdμ – controllers
-
Podlubny, I., Dorcak, L. and Kostial, I. (1997), “On fractional derivatives, fractional order systems and Piλdμ – controllers”, Proc.36th IEEE Conf. Decision and Control, San Diego, CA, USA, pp. 4985-90.
-
(1997)
Proc.36th IEEE Conf. Decision and Control, San Diego, CA, USA
, pp. 4985-4990
-
-
Podlubny, I.1
Dorcak, L.2
Kostial, I.3
-
33
-
-
0016473439
-
A discrete state-space model for linear image processing
-
Roesser, R.P. (1975), “A discrete state-space model for linear image processing”, IEEE Trans. on Automatic Control, AC-, Vol. 1, pp. 1-10.
-
(1975)
IEEE Trans. on Automatic Control, AC-
, vol.1
, pp. 1-10
-
-
Roesser, R.P.1
-
35
-
-
41149152515
-
Conservation laws and Hamilton's equations for systems with long-range interaction and memory
-
Tarasov, V.E. and Zaslavsky, G.M. (2008), “Conservation laws and Hamilton's equations for systems with long-range interaction and memory”, Communications in Nonlinear Science and Numerical Simulation, Vol. 13 No. 9, pp. 1860-78.
-
(2008)
Communications in Nonlinear Science and Numerical Simulation
, vol.13
, Issue.9
, pp. 1860-1878
-
-
Tarasov, V.E.1
Zaslavsky, G.M.2
-
36
-
-
0031192020
-
On the initial stability and asymptotic behavior of 2D positive systems
-
Valcher, M.E. (1977), “On the initial stability and asymptotic behavior of 2D positive systems”, IEEE Trans. On Circuits and Systems – I, Vol. 44 No. 7, pp. 602-13.
-
(1977)
IEEE Trans. On Circuits and Systems – I
, vol.44
, Issue.7
, pp. 602-613
-
-
Valcher, M.E.1
|