메뉴 건너뛰기




Volumn 104, Issue , 2016, Pages 89-105

Classifiers consensus system approach for credit scoring

Author keywords

Classification; Classifier ensembles; Consensus approach; Credit scoring; Multiple classifier systems

Indexed keywords

ARTIFICIAL INTELLIGENCE; CLASSIFICATION (OF INFORMATION); COMPLEX NETWORKS; DECISION TREES; FINANCE; LOSSES;

EID: 84992292647     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.04.013     Document Type: Article
Times cited : (178)

References (70)
  • 1
    • 84891873347 scopus 로고    scopus 로고
    • Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring
    • J. Abellán, C.J. Mantas Improving experimental studies about ensembles of classifiers for bankruptcy prediction and credit scoring Expert Syst. Appl. 41 8 2014 3825 3830
    • (2014) Expert Syst. Appl. , vol.41 , Issue.8 , pp. 3825-3830
    • Abellán, J.1    Mantas, C.J.2
  • 2
    • 84980104458 scopus 로고
    • Financial ratios, discriminant analysis and the prediction of corporate bankruptcy
    • E.I. Altman Financial ratios, discriminant analysis and the prediction of corporate bankruptcy J. Finance 23 4 1968 589 609
    • (1968) J. Finance , vol.23 , Issue.4 , pp. 589-609
    • Altman, E.I.1
  • 3
    • 70449371605 scopus 로고    scopus 로고
    • Assessing naive Bayes as a method for screening credit applicants
    • A. Antonakis, M. Sfakianakis Assessing naive Bayes as a method for screening credit applicants J. Appl. Stat. 36 5 2009 537 545
    • (2009) J. Appl. Stat. , vol.36 , Issue.5 , pp. 537-545
    • Antonakis, A.1    Sfakianakis, M.2
  • 4
    • 85027389269 scopus 로고    scopus 로고
    • UCI Machine Learning Repository
    • Asuncion, A., & Newman, D. (2007). UCI Machine Learning Repository
    • (2007)
    • Asuncion, A.1    Newman, D.2
  • 5
    • 0034186923 scopus 로고    scopus 로고
    • New results on recurrent network training: Unifying the algorithms and accelerating convergence
    • A.F. Atiya, A.G. Parlos New results on recurrent network training: Unifying the algorithms and accelerating convergence IEEE Trans. Neural Netw. 11 3 2000 697 709
    • (2000) IEEE Trans. Neural Netw. , vol.11 , Issue.3 , pp. 697-709
    • Atiya, A.F.1    Parlos, A.G.2
  • 7
    • 0027886798 scopus 로고
    • New approach for aggregating multi-sensory data
    • O.A. Basir, H.C. Shen New approach for aggregating multi-sensory data J. Robot. Syst. 10 8 1993 1075 1093
    • (1993) J. Robot. Syst. , vol.10 , Issue.8 , pp. 1075-1093
    • Basir, O.A.1    Shen, H.C.2
  • 10
    • 3242737630 scopus 로고    scopus 로고
    • Using multiple adaptive regression splines to support decision making in code inspections
    • L.C. Briand, B. Freimut, F. Vollei Using multiple adaptive regression splines to support decision making in code inspections J. Syst. Softw. 73 2 2004 205 217
    • (2004) J. Syst. Softw. , vol.73 , Issue.2 , pp. 205-217
    • Briand, L.C.1    Freimut, B.2    Vollei, F.3
  • 11
    • 0035478854 scopus 로고    scopus 로고
    • Random forests
    • L. Breiman Random forests Mach.-learn. 45 1 2001 5 32
    • (2001) Mach.-learn. , vol.45 , Issue.1 , pp. 5-32
    • Breiman, L.1
  • 13
    • 33845506212 scopus 로고    scopus 로고
    • Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles
    • A.M. Canuto, M.C. Abreu, L. de Melo Oliveira, J.C. Xavier, A.d.M. Santos Investigating the influence of the choice of the ensemble members in accuracy and diversity of selection-based and fusion-based methods for ensembles Pattern Recognit. Lett. 28 4 2007 472 486
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.4 , pp. 472-486
    • Canuto, A.M.1    Abreu, M.C.2    De Melo Oliveira, L.3    Xavier, J.C.4    Santos, D.A.M.5
  • 14
    • 79958710628 scopus 로고    scopus 로고
    • Classifier combination and score level fusion: Concepts and practical aspects
    • S. Chitroub Classifier combination and score level fusion: Concepts and practical aspects Int J Image Data Fus. 1 2 2010 113 135
    • (2010) Int J Image Data Fus. , vol.1 , Issue.2 , pp. 113-135
    • Chitroub, S.1
  • 15
    • 34447100569 scopus 로고    scopus 로고
    • Recent developments in consumer credit risk assessment
    • J.N. Crook, D.B. Edelman, L.C. Thomas Recent developments in consumer credit risk assessment Eur. J. Oper. Res. 183 3 2007 1447 1465
    • (2007) Eur. J. Oper. Res. , vol.183 , Issue.3 , pp. 1447-1465
    • Crook, J.N.1    Edelman, D.B.2    Thomas, L.C.3
  • 16
    • 78049531014 scopus 로고    scopus 로고
    • Bankruptcy forecasting: A hybrid approach using fuzzy c-means clustering and multivariate adaptive regression splines (MARS)
    • J. De Andrés, P. Lorca, FranciscoJ. de Cos Juez, F. Sánchez-Lasheras Bankruptcy forecasting: A hybrid approach using fuzzy c-means clustering and multivariate adaptive regression splines (MARS) Expert Syst. Appl. 38 3 2011 1866 1875
    • (2011) Expert Syst. Appl. , vol.38 , Issue.3 , pp. 1866-1875
    • De Andrés, J.1    Lorca, P.2    DeFrancisco, C.J.3    Sánchez-Lasheras, F.4
  • 17
    • 84909522870 scopus 로고
    • Reaching a consensus
    • M.H. DeGroot Reaching a consensus J. Am. Stat. Assoc. 69 345 1974 118 121
    • (1974) J. Am. Stat. Assoc. , vol.69 , Issue.345 , pp. 118-121
    • DeGroot, M.H.1
  • 18
    • 29644438050 scopus 로고    scopus 로고
    • Statistical comparisons of classifiers over multiple data sets
    • J. Demšar Statistical comparisons of classifiers over multiple data sets J. Mach. Learn. Res. 7 2006 1 30
    • (2006) J. Mach. Learn. Res. , vol.7 , pp. 1-30
    • Demšar, J.1
  • 19
    • 0030291564 scopus 로고    scopus 로고
    • A comparison of neural networks and linear scoring models in the credit union environment
    • V.S. Desai, J.N. Crook, G.A. Overstreet A comparison of neural networks and linear scoring models in the credit union environment Eur. J. Oper. Res. 95 1 1996 24 37
    • (1996) Eur. J. Oper. Res. , vol.95 , Issue.1 , pp. 24-37
    • Desai, V.S.1    Crook, J.N.2    Overstreet, G.A.3
  • 20
    • 84943987463 scopus 로고
    • Multiple comparisons among means
    • O.J. Dunn Multiple comparisons among means J. Am. Stat. Assoc. 56 293 1961 52 64
    • (1961) J. Am. Stat. Assoc. , vol.56 , Issue.293 , pp. 52-64
    • Dunn, O.J.1
  • 21
    • 78650417769 scopus 로고    scopus 로고
    • Multiple classifier architectures and their application to credit risk assessment
    • S. Finlay Multiple classifier architectures and their application to credit risk assessment Eur. J. Oper. Res. 210 2 2011 368 378
    • (2011) Eur. J. Oper. Res. , vol.210 , Issue.2 , pp. 368-378
    • Finlay, S.1
  • 22
    • 0002432565 scopus 로고
    • Multivariate adaptive regression splines
    • J.H. Friedman Multivariate adaptive regression splines Ann. Stat. 1991 1 67
    • (1991) Ann. Stat. , pp. 1-67
    • Friedman, J.H.1
  • 23
    • 0001837148 scopus 로고
    • A comparison of alternative tests of significance for the problem of m rankings
    • M. Friedman A comparison of alternative tests of significance for the problem of m rankings Ann. Math. Stat. 11 1 1940 86 92
    • (1940) Ann. Math. Stat. , vol.11 , Issue.1 , pp. 86-92
    • Friedman, M.1
  • 24
    • 84925484561 scopus 로고    scopus 로고
    • An insight into the experimental design for credit risk and corporate bankruptcy prediction systems
    • V. García, A.I. Marqués, J.S. Sánchez An insight into the experimental design for credit risk and corporate bankruptcy prediction systems J. Intell. Inf. Syst. 44 1 2015 159 189
    • (2015) J. Intell. Inf. Syst. , vol.44 , Issue.1 , pp. 159-189
    • García, V.1    Marqués, A.I.2    Sánchez, J.S.3
  • 25
  • 26
    • 69549133517 scopus 로고    scopus 로고
    • Measuring classifier performance: A coherent alternative to the area under the ROC curve
    • D.J. Hand Measuring classifier performance: A coherent alternative to the area under the ROC curve Mach. Learn. 77 1 2009 103 123
    • (2009) Mach. Learn. , vol.77 , Issue.1 , pp. 103-123
    • Hand, D.J.1
  • 27
    • 85161148381 scopus 로고    scopus 로고
    • The elements of statistical learning: Data mining, inference and prediction
    • T. Hastie, R. Tibshirani, J. Friedman, J. Franklin The elements of statistical learning: Data mining, inference and prediction Math. Intell 27 2 2005 83 85
    • (2005) Math. Intell , vol.27 , Issue.2 , pp. 83-85
    • Hastie, T.1    Tibshirani, R.2    Friedman, J.3    Franklin, J.4
  • 29
    • 70349580621 scopus 로고    scopus 로고
    • A data driven ensemble classifier for credit scoring analysis
    • Hsieh N., Hung L. A data driven ensemble classifier for credit scoring analysis Expert Syst. Appl. 37 1 2010 534 545
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 534-545
    • Hsieh, N.1    Hung, L.2
  • 30
    • 0003081097 scopus 로고
    • Using neural networks for credit scoring
    • H.L. Jensen Using neural networks for credit scoring Manage. Finance 18 6 1992 15 26
    • (1992) Manage. Finance , vol.18 , Issue.6 , pp. 15-26
    • Jensen, H.L.1
  • 31
    • 84874596874 scopus 로고    scopus 로고
    • Using semi-supervised classifiers for credit scoring
    • K. Kennedy, B. Mac Namee, S.J. Delany Using semi-supervised classifiers for credit scoring J. Oper. Res. Soc. 64 4 2012 513 529
    • (2012) J. Oper. Res. Soc. , vol.64 , Issue.4 , pp. 513-529
    • Kennedy, K.1    Mac Namee, B.2    Delany, S.J.3
  • 32
    • 33846314346 scopus 로고    scopus 로고
    • Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review
    • P.R. Kumar, V. Ravi Bankruptcy prediction in banks and firms via statistical and intelligent techniques - A review Eur. J. Oper. Res. 180 1 2007 1 28
    • (2007) Eur. J. Oper. Res. , vol.180 , Issue.1 , pp. 1-28
    • Kumar, P.R.1    Ravi, V.2
  • 33
    • 33746773632 scopus 로고    scopus 로고
    • Credit risk evaluation with least square support vector machine
    • Springer Berlin Heidelberg
    • Lai K.K., Yu L., Zhou L., Wang S. Credit risk evaluation with least square support vector machine Rough sets and knowledge technology 2006 Springer Berlin Heidelberg 490 495
    • (2006) Rough Sets and Knowledge Technology , pp. 490-495
    • Lai, K.K.1    Yu, L.2    Zhou, L.3    Wang, S.4
  • 34
    • 84937523151 scopus 로고    scopus 로고
    • Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research
    • S. Lessmann, B. Baesens, H. Seow, L.C. Thomas Benchmarking state-of-the-art classification algorithms for credit scoring: An update of research Eur. J. Oper. Res. 247 1 2015 124 136
    • (2015) Eur. J. Oper. Res. , vol.247 , Issue.1 , pp. 124-136
    • Lessmann, S.1    Baesens, B.2    Seow, H.3    Thomas, L.C.4
  • 36
    • 84922766449 scopus 로고    scopus 로고
    • The effect of feature selection on financial distress prediction
    • Liang D., Tsai C.F., Wu H.T. The effect of feature selection on financial distress prediction Knowledge-Based Syst. 73 2015 289 297
    • (2015) Knowledge-Based Syst. , vol.73 , pp. 289-297
    • Liang, D.1    Tsai, C.F.2    Wu, H.T.3
  • 38
    • 0037397886 scopus 로고    scopus 로고
    • Evaluating consumer loans using neural networks
    • R. Malhotra, D. Malhotra Evaluating consumer loans using neural networks Omega 31 2 2003 83 96
    • (2003) Omega , vol.31 , Issue.2 , pp. 83-96
    • Malhotra, R.1    Malhotra, D.2
  • 39
    • 84861183555 scopus 로고    scopus 로고
    • Two-level classifier ensembles for credit risk assessment
    • A. Marqués, V. García, J.S. Sánchez Two-level classifier ensembles for credit risk assessment Expert Syst. Appl. 39 12 2012 10916 10922
    • (2012) Expert Syst. Appl. , vol.39 , Issue.12 , pp. 10916-10922
    • Marqués, A.1    García, V.2    Sánchez, J.S.3
  • 40
    • 56349112745 scopus 로고    scopus 로고
    • An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring
    • L. Nanni, A. Lumini An experimental comparison of ensemble of classifiers for bankruptcy prediction and credit scoring Expert Syst. Appl. 36 2 2009 3028 3033
    • (2009) Expert Syst. Appl. , vol.36 , Issue.2 , pp. 3028-3033
    • Nanni, L.1    Lumini, A.2
  • 42
    • 75149176174 scopus 로고    scopus 로고
    • Ensemble-based classifiers
    • L. Rokach Ensemble-based classifiers Artif. Intell. Rev. 33 1-2 2010 1 39
    • (2010) Artif. Intell. Rev. , vol.33 , Issue.1-2 , pp. 1-39
    • Rokach, L.1
  • 43
  • 44
    • 84857656368 scopus 로고    scopus 로고
    • A hybrid device for the solution of sampling bias problems in the forecasting of firms' bankruptcy
    • F. Sánchez-Lasheras, J. de Andrés, P. Lorca, FranciscoJ. de Cos Juez A hybrid device for the solution of sampling bias problems in the forecasting of firms' bankruptcy Expert Syst. Appl. 39 8 2012 7512 7523
    • (2012) Expert Syst. Appl. , vol.39 , Issue.8 , pp. 7512-7523
    • Sánchez-Lasheras, F.1    De Andrés, J.2    Lorca, P.3    DeFrancisco, C.J.4
  • 46
    • 84867045064 scopus 로고    scopus 로고
    • Multiple classifier combination methodologies for different output levels
    • Springer Berlin Heidelberg
    • Suen C.Y., Lam L. Multiple classifier combination methodologies for different output levels Multiple classifier systems 2000 Springer Berlin Heidelberg 52 66
    • (2000) Multiple Classifier Systems , pp. 52-66
    • Suen, C.Y.1    Lam, L.2
  • 47
    • 84894901583 scopus 로고    scopus 로고
    • Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches
    • Sun J., Li H., Huang Q.H., He K.Y. Predicting financial distress and corporate failure: A review from the state-of-the-art definitions, modeling, sampling, and featuring approaches Knowledge-Based Syst. 57 2014 41 56
    • (2014) Knowledge-Based Syst. , vol.57 , pp. 41-56
    • Sun, J.1    Li, H.2    Huang, Q.H.3    He, K.Y.4
  • 49
    • 78651547263 scopus 로고    scopus 로고
    • A cooperative network intrusion detection based on fuzzy SVMs
    • Teng S., Du H., Wu N., Zhang W., Su J. A cooperative network intrusion detection based on fuzzy SVMs J. Netw. 5 4 2010 475 483
    • (2010) J. Netw. , vol.5 , Issue.4 , pp. 475-483
    • Teng, S.1    Du, H.2    Wu, N.3    Zhang, W.4    Su, J.5
  • 50
    • 33750990220 scopus 로고    scopus 로고
    • Hyperbolic function networks for pattern classification
    • Springer Berlin Heidelberg
    • K. Toh, Q. Tran, D. Srinivasan Hyperbolic function networks for pattern classification Trends in neural computation 2007 Springer Berlin Heidelberg 1 33
    • (2007) Trends in Neural Computation , pp. 1-33
    • Toh, K.1    Tran, Q.2    Srinivasan, D.3
  • 51
    • 1842535230 scopus 로고    scopus 로고
    • Combination of hyperbolic functions for multimodal biometrics data fusion
    • K. Toh, Yau W. Combination of hyperbolic functions for multimodal biometrics data fusion IEEE Trans. Syst., Man, Cybern., Part B: Cybern., 34 2 2004 1196 1209
    • (2004) IEEE Trans. Syst., Man, Cybern., Part B: Cybern. , vol.34 , Issue.2 , pp. 1196-1209
    • Toh, K.1    Yau, W.2
  • 52
    • 84887039251 scopus 로고    scopus 로고
    • Combining cluster analysis with classifier ensembles to predict financial distress
    • Tsai C. Combining cluster analysis with classifier ensembles to predict financial distress Inf. Fus. 16 2014 46 58
    • (2014) Inf. Fus. , vol.16 , pp. 46-58
    • Tsai, C.1
  • 53
    • 38649113538 scopus 로고    scopus 로고
    • Using neural network ensembles for bankruptcy prediction and credit scoring
    • Tsai C., Wu J. Using neural network ensembles for bankruptcy prediction and credit scoring Expert Syst. Appl. 34 4 2008 2639 2649
    • (2008) Expert Syst. Appl. , vol.34 , Issue.4 , pp. 2639-2649
    • Tsai, C.1    Wu, J.2
  • 54
    • 77956619458 scopus 로고    scopus 로고
    • A comparative assessment of ensemble learning for credit scoring
    • Wang G., Hao J., J. Ma, Jiang H. A comparative assessment of ensemble learning for credit scoring Expert Syst. Appl. 38 1 2011 223 230
    • (2011) Expert Syst. Appl. , vol.38 , Issue.1 , pp. 223-230
    • Wang, G.1    Hao, J.2    Ma, J.3    Jiang, H.4
  • 55
    • 84855863614 scopus 로고    scopus 로고
    • A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine
    • Wang G., J. Ma A hybrid ensemble approach for enterprise credit risk assessment based on support vector machine Expert Syst. Appl. 39 5 2012 5325 5331
    • (2012) Expert Syst. Appl. , vol.39 , Issue.5 , pp. 5325-5331
    • Wang, G.1    Ma, J.2
  • 56
    • 84155181098 scopus 로고    scopus 로고
    • Two credit scoring models based on dual strategy ensemble trees
    • Wang G., Ma J., Huang L., Xu K. Two credit scoring models based on dual strategy ensemble trees Knowledge-Based Syst. 26 2012 61 68
    • (2012) Knowledge-Based Syst. , vol.26 , pp. 61-68
    • Wang, G.1    Ma, J.2    Huang, L.3    Xu, K.4
  • 57
    • 13544268431 scopus 로고    scopus 로고
    • Neural network ensemble strategies for financial decision applications
    • D. West, S. Dellana, Qian J. Neural network ensemble strategies for financial decision applications Comput. Oper. Res. 32 10 2005 2543 2559
    • (2005) Comput. Oper. Res. , vol.32 , Issue.10 , pp. 2543-2559
    • West, D.1    Dellana, S.2    Qian, J.3
  • 58
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L., A. Krzyzak, Suen C.Y. Methods of combining multiple classifiers and their applications to handwriting recognition IEEE Trans. Syst., Man Cybern., 22 3 1992 418 435
    • (1992) IEEE Trans. Syst., Man Cybern. , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 59
    • 36148959733 scopus 로고    scopus 로고
    • Credit risk assessment with a multistage neural network ensemble learning approach
    • Yu L., Wang S., Lai K.K. Credit risk assessment with a multistage neural network ensemble learning approach Expert Syst. Appl. 34 2 2008 1434 1444
    • (2008) Expert Syst. Appl. , vol.34 , Issue.2 , pp. 1434-1444
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 60
    • 56349095375 scopus 로고    scopus 로고
    • An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring
    • Yu L., Wang S., Lai K.K. An intelligent-agent-based fuzzy group decision making model for financial multicriteria decision support: The case of credit scoring Eur. J. Oper. Res. 195 3 2009 942 959
    • (2009) Eur. J. Oper. Res. , vol.195 , Issue.3 , pp. 942-959
    • Yu, L.1    Wang, S.2    Lai, K.K.3
  • 61
    • 71749114830 scopus 로고    scopus 로고
    • Support vector machine based multiagent ensemble learning for credit risk evaluation
    • Yu L., Yue W., Wang S., Lai K.K. Support vector machine based multiagent ensemble learning for credit risk evaluation Expert Syst. Appl. 37 2 2010 1351 1360
    • (2010) Expert Syst. Appl. , vol.37 , Issue.2 , pp. 1351-1360
    • Yu, L.1    Yue, W.2    Wang, S.3    Lai, K.K.4
  • 63
    • 77958064179 scopus 로고    scopus 로고
    • Mining data with random forests: A survey and results of new tests
    • A. Verikas, A. Gelzinis, M. Bacauskiene Mining data with random forests: A survey and results of new tests Pattern Recognit. 44 2 2011 330 349
    • (2011) Pattern Recognit. , vol.44 , Issue.2 , pp. 330-349
    • Verikas, A.1    Gelzinis, A.2    Bacauskiene, M.3
  • 64
    • 84942770326 scopus 로고    scopus 로고
    • Comparative study between incremental and ensemble learning on data streams: Case study
    • Zang W., Zhang P., Zhou C., Guo L. Comparative study between incremental and ensemble learning on data streams: Case study J. Big Data 1 1 2014 1 16
    • (2014) J. Big Data , vol.1 , Issue.1 , pp. 1-16
    • Zang, W.1    Zhang, P.2    Zhou, C.3    Guo, L.4
  • 65
    • 80052546565 scopus 로고    scopus 로고
    • An experimental study of one-and two-level classifier fusion for different sample sizes
    • Zhang C., R.P. Duin An experimental study of one-and two-level classifier fusion for different sample sizes Pattern Recognit. Lett. 32 14 2011 1756 1767
    • (2011) Pattern Recognit. Lett. , vol.32 , Issue.14 , pp. 1756-1767
    • Zhang, C.1    Duin, R.P.2
  • 66
    • 77957832237 scopus 로고    scopus 로고
    • Vertical bagging decision trees model for credit scoring
    • Zhang D., Zhou X., Leung S.C., Zheng J. Vertical bagging decision trees model for credit scoring Expert Syst. Appl. 37 12 2010 7838 7843
    • (2010) Expert Syst. Appl. , vol.37 , Issue.12 , pp. 7838-7843
    • Zhang, D.1    Zhou, X.2    Leung, S.C.3    Zheng, J.4
  • 67
    • 84873725663 scopus 로고    scopus 로고
    • Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods
    • Zhou L. Performance of corporate bankruptcy prediction models on imbalanced dataset: The effect of sampling methods Knowledge-Based Syst. 41 2013 16 25
    • (2013) Knowledge-Based Syst. , vol.41 , pp. 16-25
    • Zhou, L.1
  • 68
    • 70349437327 scopus 로고    scopus 로고
    • Least squares support vector machines ensemble models for credit scoring
    • Zhou L., Lai K.K., Yu L. Least squares support vector machines ensemble models for credit scoring Expert Syst. Appl. 37 1 2010 127 133
    • (2010) Expert Syst. Appl. , vol.37 , Issue.1 , pp. 127-133
    • Zhou, L.1    Lai, K.K.2    Yu, L.3
  • 69
    • 84937523591 scopus 로고    scopus 로고
    • The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches
    • Zhou L., Lu D., H. Fujita The performance of corporate financial distress prediction models with features selection guided by domain knowledge and data mining approaches Knowledge-Based Syst. 85 2015 52 61
    • (2015) Knowledge-Based Syst. , vol.85 , pp. 52-61
    • Zhou, L.1    Lu, D.2    Fujita, H.3
  • 70
    • 84945567357 scopus 로고    scopus 로고
    • Predicting the listing status of Chinese listed companies with multi-class classification models
    • Zhou L., K.P. Tam, H. Fujita Predicting the listing status of Chinese listed companies with multi-class classification models Inf. Sci. 328 2016 222 236
    • (2016) Inf. Sci. , vol.328 , pp. 222-236
    • Zhou, L.1    Tam, K.P.2    Fujita, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.