메뉴 건너뛰기




Volumn 28, Issue 11, 2016, Pages 3098-3112

Scalable Daily Human Behavioral Pattern Mining from Multivariate Temporal Data

Author keywords

Frequent pattern mining; human centric data; multivariate temporal data; temporal granularity

Indexed keywords

DATA MINING; HUMAN COMPUTER INTERACTION; SCALABILITY;

EID: 84992109415     PISSN: 10414347     EISSN: None     Source Type: Journal    
DOI: 10.1109/TKDE.2016.2592527     Document Type: Article
Times cited : (92)

References (45)
  • 2
  • 3
    • 84863534277 scopus 로고    scopus 로고
    • From smart to cognitive phones
    • Jul.
    • A. Campbell and T. Choudhury, "From smart to cognitive phones," IEEE Pervasive Comput., vol. 11, no. 3, pp. 7-11, Jul. 2012.
    • (2012) IEEE Pervasive Comput. , vol.11 , Issue.3 , pp. 7-11
    • Campbell, A.1    Choudhury, T.2
  • 5
    • 84920157943 scopus 로고    scopus 로고
    • Wearables: Has the age of smartwatches finally arrived?
    • R. Rawassizadeh, B. A. Price, and M. Petre, "Wearables: Has the age of smartwatches finally arrived?" Commun. ACM, vol. 58, no. 1, pp. 45-47, 2015.
    • (2015) Commun. ACM , vol.58 , Issue.1 , pp. 45-47
    • Rawassizadeh, R.1    Price, B.A.2    Petre, M.3
  • 7
    • 33645311516 scopus 로고    scopus 로고
    • Reality mining: Sensing complex social systems
    • N. Eagle and A. Pentland, "Reality mining: Sensing complex social systems," Pers. Ubiquitous Comput., vol. 10, no. 4, pp. 255-268, 2006.
    • (2006) Pers. Ubiquitous Comput. , vol.10 , Issue.4 , pp. 255-268
    • Eagle, N.1    Pentland, A.2
  • 9
    • 84864330137 scopus 로고    scopus 로고
    • ACE: Exploiting correlation for energy-efficient and continuous context sensing
    • S. Nath, "ACE: Exploiting correlation for energy-efficient and continuous context sensing," in Proc. 10th Int. Conf. Mobile Syst. Appl. Serv., 2012, pp. 29-42.
    • (2012) Proc. 10th Int. Conf. Mobile Syst. Appl. Serv. , pp. 29-42
    • Nath, S.1
  • 11
    • 84879685193 scopus 로고    scopus 로고
    • Ubiqlog: A generic mobile phone-based life-log framework
    • R. Rawassizadeh, M. Tomitsch, K. Wac, and A. M. Tjoa, "Ubiqlog: A generic mobile phone-based life-log framework," Personal Ubiquitous Comput., vol. 17, no. 4, pp. 621-637, 2013.
    • (2013) Personal Ubiquitous Comput. , vol.17 , Issue.4 , pp. 621-637
    • Rawassizadeh, R.1    Tomitsch, M.2    Wac, K.3    Tjoa, A.M.4
  • 12
    • 84902484319 scopus 로고    scopus 로고
    • Device analyzer: Largescale mobile data collection
    • D. Wagner, A. Rice, and A. R. Beresford, "Device analyzer: Largescale mobile data collection," SIGMETRICS Perform. Eval. Rev., vol. 41, no. 4, pp. 53-56, 2014.
    • (2014) SIGMETRICS Perform. Eval. Rev. , vol.41 , Issue.4 , pp. 53-56
    • Wagner, D.1    Rice, A.2    Beresford, A.R.3
  • 14
    • 84978724927 scopus 로고    scopus 로고
    • Lesson learned from collecting quantified self information via mobile and wearable devices
    • R. Rawassizadeh, E. Momeni, C. Dobbins, P. Mirza-Babaei, and R. Rahnamoun, "Lesson learned from collecting quantified self information via mobile and wearable devices," J. Sens. Actuator Netw., vol. 4, no. 4, pp. 315-335, 2015.
    • (2015) J. Sens. Actuator Netw. , vol.4 , Issue.4 , pp. 315-335
    • Rawassizadeh, R.1    Momeni, E.2    Dobbins, C.3    Mirza-Babaei, P.4    Rahnamoun, R.5
  • 16
    • 84891885958 scopus 로고    scopus 로고
    • A probabilistic approach to mining mobile phone data sequences
    • K. Farrahi and D. Gatica-Perez, "A probabilistic approach to mining mobile phone data sequences," Pers. Ubiquitous Comput., vol. 18, no. 1, pp. 223-238, 2014.
    • (2014) Pers. Ubiquitous Comput. , vol.18 , Issue.1 , pp. 223-238
    • Farrahi, K.1    Gatica-Perez, D.2
  • 17
    • 84867439746 scopus 로고    scopus 로고
    • An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data
    • J. Zheng and L. Ni, "An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data," in Proc. ACM Conf. Ubiquitous Comput., 2012, pp. 153-162.
    • (2012) Proc. ACM Conf. Ubiquitous Comput. , pp. 153-162
    • Zheng, J.1    Ni, L.2
  • 18
    • 85027952224 scopus 로고    scopus 로고
    • Automatically recognizing places of interest from unreliable GPS data using spatio-temporal density estimation and line intersections
    • T. Bhattacharya, L. Kulik, and J. Bailey, "Automatically recognizing places of interest from unreliable GPS data using spatio-temporal density estimation and line intersections," Pervasive Mobile Comput., vol. 19, pp. 86-107, 2015.
    • (2015) Pervasive Mobile Comput. , vol.19 , pp. 86-107
    • Bhattacharya, T.1    Kulik, L.2    Bailey, J.3
  • 22
    • 84894642241 scopus 로고    scopus 로고
    • Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain databases
    • Y. Li, J. Bailey, L. Kulik, and J. Pei, "Mining probabilistic frequent spatio-temporal sequential patterns with gap constraints from uncertain databases," in Proc. IEEE 13th Int. Conf. Data Mining, 2013, pp. 448-457.
    • (2013) Proc. IEEE 13th Int. Conf. Data Mining , pp. 448-457
    • Li, Y.1    Bailey, J.2    Kulik, L.3    Pei, J.4
  • 25
    • 79958822299 scopus 로고    scopus 로고
    • Identifying important places in peoples lives from cellular network data
    • S. Isaacman, et al., "Identifying important places in peoples lives from cellular network data," in Proc. 9th Int. Conf. Pervasive Comput., 2011, pp. 133-151.
    • (2011) Proc. 9th Int. Conf. Pervasive Comput. , pp. 133-151
    • Isaacman, S.1
  • 31
    • 46749099518 scopus 로고    scopus 로고
    • Mining top-K frequent patterns in the presence of the memory constraint
    • K. Chuang, J.-L. Huang, and M.-S. Chen, "Mining top-K frequent patterns in the presence of the memory constraint," Proc. 20th Int. Conf. Very Large Data Bases J., vol. 17, no. 5, pp. 1321-1344, 2008.
    • (2008) Proc. 20th Int. Conf. Very Large Data Bases J. , vol.17 , Issue.5 , pp. 1321-1344
    • Chuang, K.1    Huang, J.-L.2    Chen, M.-S.3
  • 32
    • 84901833382 scopus 로고    scopus 로고
    • CP-tree: An adaptive synopsis structure for compressing frequent itemsets over online data streams
    • S. Shin, D. S. Lee, and W. S. Lee, "CP-tree: An adaptive synopsis structure for compressing frequent itemsets over online data streams," Inf. Sci., vol. 278, pp. 559-576, 2014.
    • (2014) Inf. Sci. , vol.278 , pp. 559-576
    • Shin, S.1    Lee, D.S.2    Lee, W.S.3
  • 36
    • 24944533365 scopus 로고
    • Nonmetric multidimensional scaling: A numerical method
    • J. Kruskal, "Nonmetric multidimensional scaling: A numerical method," Psychometrika, vol. 29, no. 2, pp. 115-129, 1964.
    • (1964) Psychometrika , vol.29 , Issue.2 , pp. 115-129
    • Kruskal, J.1
  • 37
    • 84912150169 scopus 로고    scopus 로고
    • Using unlabeled data in a sparse-coding framework for human activity recognition
    • S. Bhattacharya, P. Nurmia, N. Hammerlab, and T. Plötzb, "Using unlabeled data in a sparse-coding framework for human activity recognition," Pervasive Mobile Comput., vol. 15, pp. 242-262, 2014.
    • (2014) Pervasive Mobile Comput. , vol.15 , pp. 242-262
    • Bhattacharya, S.1    Nurmia, P.2    Hammerlab, N.3    Plötzb, T.4
  • 38
    • 84878102799 scopus 로고    scopus 로고
    • A review and taxonomy of activity recognition on mobile phones
    • O. Incel, M. Kose, and C. Ersoy, "A review and taxonomy of activity recognition on mobile phones," BioNano Science, vol. 3, no. 2, pp. 145-171, 2013.
    • (2013) BioNano Science , vol.3 , Issue.2 , pp. 145-171
    • Incel, O.1    Kose, M.2    Ersoy, C.3
  • 40
    • 0020849266 scopus 로고
    • Maintaining knowledge about temporal intervals
    • J. Allen, "Maintaining knowledge about temporal intervals," Commun. ACM, vol. 26, no. 11, pp. 832-843, 1983.
    • (1983) Commun. ACM , vol.26 , Issue.11 , pp. 832-843
    • Allen, J.1
  • 41
    • 0042711018 scopus 로고    scopus 로고
    • On the need for time series data mining benchmarks: A survey and empirical demonstration
    • E. Keogh and S. Kasetty, "On the need for time series data mining benchmarks: A survey and empirical demonstration," Data Min. Knowl. Discovery, vol. 7, no. 4, pp. 349-371, 2003.
    • (2003) Data Min. Knowl. Discovery , vol.7 , Issue.4 , pp. 349-371
    • Keogh, E.1    Kasetty, S.2
  • 42
    • 34548085733 scopus 로고    scopus 로고
    • Efficient mining of understandable patterns from multivariate interval time series
    • F. Mörchen and A. Ultsch, "Efficient mining of understandable patterns from multivariate interval time series," Data Min. Knowl. Discovery, vol. 15, no. 2, pp. 181-215, 2007.
    • (2007) Data Min. Knowl. Discovery , vol.15 , Issue.2 , pp. 181-215
    • Mörchen, F.1    Ultsch, A.2
  • 43
    • 31344457479 scopus 로고    scopus 로고
    • Fast and memory efficient mining of frequent closed itemsets
    • Jan.
    • C. Lucchese, S. Orlando, and R. Perego, "Fast and memory efficient mining of frequent closed itemsets," IEEE Trans. Knowl. Data Eng., vol. 18, no. 1, pp. 21-36, Jan. 2006.
    • (2006) IEEE Trans. Knowl. Data Eng. , vol.18 , Issue.1 , pp. 21-36
    • Lucchese, C.1    Orlando, S.2    Perego, R.3
  • 44
    • 78650573200 scopus 로고    scopus 로고
    • Mining group movement patterns for tracking moving objects efficiently
    • Feb.
    • H. Tsai, D.-N. Yang, and M.-S. Chen, "Mining group movement patterns for tracking moving objects efficiently," IEEE Trans. Knowl. Data Eng., vol. 23, no. 2, pp. 266-281, Feb. 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.2 , pp. 266-281
    • Tsai, H.1    Yang, D.-N.2    Chen, M.-S.3
  • 45
    • 79953173566 scopus 로고    scopus 로고
    • Mining discriminative patterns for classifying trajectories on road networks
    • May
    • J. Lee, J. Han, X. Li, and H. Cheng, "Mining discriminative patterns for classifying trajectories on road networks," IEEE Trans. Knowl. Data Eng., vol. 23, no. 5, pp. 713-726, May 2011.
    • (2011) IEEE Trans. Knowl. Data Eng. , vol.23 , Issue.5 , pp. 713-726
    • Lee, J.1    Han, J.2    Li, X.3    Cheng, H.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.