메뉴 건너뛰기




Volumn 26, Issue 11, 2016, Pages 1273-1289

Novel pharmacological modulators of autophagy: an updated patent review (2012-2015)

Author keywords

AMPK mTORC1; Autophagy; autophagy modulators; Beclin 1; cancer; neurodegenerative diseases; PIK3C3 VPS34; ULK1

Indexed keywords

6 CHLORO 2 METHOXY N (4 (4 METHYLPIPERAZIN 1 YL)BUTYL)ACRIDIN 9 AMINE; ALKALOID DERIVATIVE; AUTOPHAGY INHIBITOR; BUTYLIDENEPHTHALIDE; ELLAGIC ACID; GANODERIC ACID; INDATRALINE; INDOLE DERIVATIVE; LUCANTHONE; NATURAL PRODUCT; OBLONGIFOLIN C; OXINDOLE; PHENYLBUTYRATE; RECEPTOR BLOCKING AGENT; RETINOIC ACID RECEPTOR ALPHA ANTAGONIST; UNCLASSIFIED DRUG; UROLITHIN DERIVATIVE;

EID: 84992046814     PISSN: 13543776     EISSN: 17447674     Source Type: Journal    
DOI: 10.1080/13543776.2016.1217996     Document Type: Review
Times cited : (35)

References (158)
  • 1
    • 84880376355 scopus 로고    scopus 로고
    • Emerging regulation and functions of autophagy
    • Jul
    • P.Boya, F.Reggiori, P.Codogno Emerging regulation and functions of autophagy. Nat Cell Biol. 2013 Jul;15(7):713–720.
    • (2013) Nat Cell Biol , vol.15 , Issue.7 , pp. 713-720
    • Boya, P.1    Reggiori, F.2    Codogno, P.3
  • 2
    • 82755161734 scopus 로고    scopus 로고
    • Autophagy and disease: always two sides to a problem
    • Jan
    • S.Sridhar, Y.Botbol, F.Macian, et al. Autophagy and disease:always two sides to a problem. J Pathol. 2012 Jan;226(2):255–273.• This review shows a number of studies demonstrating that autophagy has both beneficial and detrimental effects on the development and progression of human diseases.
    • (2012) J Pathol , vol.226 , Issue.2 , pp. 255-273
    • Sridhar, S.1    Botbol, Y.2    Macian, F.3
  • 3
    • 79955631150 scopus 로고    scopus 로고
    • Autophagy in the cellular energetic balance
    • May
    • R.Singh, A.M.Cuervo. Autophagy in the cellular energetic balance. Cell Metab. 2011 May 4;13(5):495–504.
    • (2011) Cell Metab , vol.13 , Issue.5 , pp. 495-504
    • Singh, R.1    Cuervo, A.M.2
  • 4
    • 67649607465 scopus 로고    scopus 로고
    • Autophagy, immunity, and microbial adaptations
    • Jun
    • V.Deretic, B.Levine. Autophagy, immunity, and microbial adaptations. Cell Host Microbe. 2009 Jun 18;5(6):527–549.
    • (2009) Cell Host Microbe , vol.5 , Issue.6 , pp. 527-549
    • Deretic, V.1    Levine, B.2
  • 5
    • 39849109338 scopus 로고    scopus 로고
    • Autophagy fights disease through cellular self-digestion
    • Feb
    • N.Mizushima, B.Levine, A.M.Cuervo, et al. Autophagy fights disease through cellular self-digestion. Nature. 2008 Feb 28;451(7182):1069–1075.
    • (2008) Nature , vol.451 , Issue.7182 , pp. 1069-1075
    • Mizushima, N.1    Levine, B.2    Cuervo, A.M.3
  • 6
    • 37649005234 scopus 로고    scopus 로고
    • Autophagy in the pathogenesis of disease
    • Jan
    • B.Levine, G.Kroemer. Autophagy in the pathogenesis of disease. Cell. 2008 Jan 11;132(1):27–42.
    • (2008) Cell , vol.132 , Issue.1 , pp. 27-42
    • Levine, B.1    Kroemer, G.2
  • 7
    • 84864318195 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy: a unique way to enter the lysosome world
    • Aug
    • S.Kaushik, A.M.Cuervo. Chaperone-mediated autophagy:a unique way to enter the lysosome world. Trends Cell Biol. 2012 Aug;22(8):407–417.
    • (2012) Trends Cell Biol , vol.22 , Issue.8 , pp. 407-417
    • Kaushik, S.1    Cuervo, A.M.2
  • 8
    • 79959371914 scopus 로고    scopus 로고
    • Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth
    • Jun
    • L.Lv, D.Li, D.Zhao, et al. Acetylation targets the M2 isoform of pyruvate kinase for degradation through chaperone-mediated autophagy and promotes tumor growth. Mol Cell. 2011 Jun 24;42(6):719–730.
    • (2011) Mol Cell , vol.42 , Issue.6 , pp. 719-730
    • Lv, L.1    Li, D.2    Zhao, D.3
  • 9
    • 72149124383 scopus 로고    scopus 로고
    • IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome
    • Dec
    • L.M.Thompson, C.T.Aiken, L.S.Kaltenbach, et al. IKK phosphorylates Huntingtin and targets it for degradation by the proteasome and lysosome. J Cell Biol. 2009 Dec 28;187(7):1083–1099.
    • (2009) J Cell Biol , vol.187 , Issue.7 , pp. 1083-1099
    • Thompson, L.M.1    Aiken, C.T.2    Kaltenbach, L.S.3
  • 10
    • 81455128769 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy is required for tumor growth
    • Nov
    • M.Kon, R.Kiffin, H.Koga, et al. Chaperone-mediated autophagy is required for tumor growth. Sci Transl Med. 2011 Nov 16;3(109):109ra17.
    • (2011) Sci Transl Med , vol.3 , Issue.109 , pp. 109ra17
    • Kon, M.1    Kiffin, R.2    Koga, H.3
  • 11
    • 84855645313 scopus 로고    scopus 로고
    • Mechanisms of autophagosome biogenesis
    • Jan
    • D.C.Rubinsztein, T.Shpilka, Z.Elazar. Mechanisms of autophagosome biogenesis. Curr Biol. 2012 Jan 10;22(1):R29–34.
    • (2012) Curr Biol , vol.22 , Issue.1 , pp. R29-R34
    • Rubinsztein, D.C.1    Shpilka, T.2    Elazar, Z.3
  • 12
    • 80054025654 scopus 로고    scopus 로고
    • The role of Atg proteins in autophagosome formation
    • N.Mizushima, T.Yoshimori, Y.Ohsumi. The role of Atg proteins in autophagosome formation. Annu Rev Cell Dev Biol. 2011;27:107–132.• This review describes the molecular mechanism of autophagosome formation with particular focus on the coordinated actions of autophagy machinery ATG proteins and the long-standing discussion regarding the origin of the autophagosome membrane.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 107-132
    • Mizushima, N.1    Yoshimori, T.2    Ohsumi, Y.3
  • 13
    • 84941941753 scopus 로고    scopus 로고
    • Post-translationally-modified structures in the autophagy machinery: an integrative perspective
    • Sep
    • H.Popelka, D.J.Klionsky. Post-translationally-modified structures in the autophagy machinery:an integrative perspective. Febs J. 2015 Sep;282(18):3474–3488.
    • (2015) Febs J , vol.282 , Issue.18 , pp. 3474-3488
    • Popelka, H.1    Klionsky, D.J.2
  • 14
    • 84856748733 scopus 로고    scopus 로고
    • Cell death by autophagy: facts and apparent artefacts
    • Jan
    • D.Denton, S.Nicolson, S.Kumar. Cell death by autophagy:facts and apparent artefacts. Cell Death Differ. 2012 Jan;19(1):87–95.• Although there is growing evidence of cell death by autophagy, autophagic cell death remains somewhat controversial. This review introduces growing number of studies supporting that autophagy play a clear role in cell death process and discusses the potential significance of cell death by autophagy.
    • (2012) Cell Death Differ , vol.19 , Issue.1 , pp. 87-95
    • Denton, D.1    Nicolson, S.2    Kumar, S.3
  • 15
    • 78650448754 scopus 로고    scopus 로고
    • Chemical modulators of autophagy as biological probes and potential therapeutics
    • Jan
    • A.Fleming, T.Noda, T.Yoshimori, et al. Chemical modulators of autophagy as biological probes and potential therapeutics. Nat Chem Biol. 2011 Jan;7(1):9–17.
    • (2011) Nat Chem Biol , vol.7 , Issue.1 , pp. 9-17
    • Fleming, A.1    Noda, T.2    Yoshimori, T.3
  • 16
    • 84865451717 scopus 로고    scopus 로고
    • Novel pharmacological modulators of autophagy and therapeutic prospects
    • Sep
    • P.Bischoff, E.Josset, F.J.Dumont. Novel pharmacological modulators of autophagy and therapeutic prospects. Expert Opin Ther Pat. 2012 Sep;22(9):1053–1079.• It is a review demonstrating the patent applications published from 2008 to mid-2012 that pertain to the pharmacological modulation of autophagy. This review also discussed their potential therapeutic utilities.
    • (2012) Expert Opin Ther Pat , vol.22 , Issue.9 , pp. 1053-1079
    • Bischoff, P.1    Josset, E.2    Dumont, F.J.3
  • 17
    • 78149475088 scopus 로고    scopus 로고
    • Regulation of mammalian autophagy in physiology and pathophysiology
    • Oct
    • B.Ravikumar, S.Sarkar, J.E.Davies, et al. Regulation of mammalian autophagy in physiology and pathophysiology. Physiol Rev. 2010 Oct;90(4):1383–1435.• It is a comprehensive review providing an overview of the autophagic machinery and its mechanisms of regulation under normal physiological conditions. It also introduces a number of studies showing malfunction (dysregulation) of autophagy is associated with a variety of human pathophysiological conditions.
    • (2010) Physiol Rev , vol.90 , Issue.4 , pp. 1383-1435
    • Ravikumar, B.1    Sarkar, S.2    Davies, J.E.3
  • 18
    • 84920400982 scopus 로고    scopus 로고
    • Autophagy: a druggable process that is deregulated in aging and human disease
    • Jan
    • G.Kroemer. Autophagy:a druggable process that is deregulated in aging and human disease. J Clin Invest. 2015 Jan;125(1):1–4.• This article summarizes numerous attempts to identify specific inducers or inhibitors of autophagy and to use them for the therapeutic correction of its dysregulation or malfunction. It also provides promising preclinical results and several clinical trials exploring autophagy as a therapeutic target.
    • (2015) J Clin Invest , vol.125 , Issue.1 , pp. 1-4
    • Kroemer, G.1
  • 19
    • 84866122688 scopus 로고    scopus 로고
    • Autophagy modulation as a potential therapeutic target for diverse diseases
    • Sep
    • D.C.Rubinsztein, P.Codogno, B.Levine. Autophagy modulation as a potential therapeutic target for diverse diseases. Nat Rev Drug Discov. 2012 Sep;11(9):709–730.
    • (2012) Nat Rev Drug Discov , vol.11 , Issue.9 , pp. 709-730
    • Rubinsztein, D.C.1    Codogno, P.2    Levine, B.3
  • 20
    • 80052303130 scopus 로고    scopus 로고
    • Autophagy and aging
    • Sep
    • D.C.Rubinsztein, G.Marino, G.Kroemer. Autophagy and aging. Cell. 2011 Sep 2;146(5):682–695.
    • (2011) Cell , vol.146 , Issue.5 , pp. 682-695
    • Rubinsztein, D.C.1    Marino, G.2    Kroemer, G.3
  • 21
    • 80052227050 scopus 로고    scopus 로고
    • Autophagy as a target for anticancer therapy
    • Sep
    • F.Janku, D.J.McConkey, D.S.Hong, et al. Autophagy as a target for anticancer therapy. Nat Rev Clin Oncol. 2011 Sep;8(9):528–539.•• It reviews the lines of evidence that autophagy can both suppress cancer development at an early stage and promote tumor progression by enabling cancer cells to survive in stressful cancer microenvironments. It also demonstrates the molecular connections between autophagy and cancer biology for the therapeutic purpose.
    • (2011) Nat Rev Clin Oncol , vol.8 , Issue.9 , pp. 528-539
    • Janku, F.1    McConkey, D.J.2    Hong, D.S.3
  • 22
    • 84923562561 scopus 로고    scopus 로고
    • Metabolic control of autophagy
    • Dec
    • L.Galluzzi, F.Pietrocola, B.Levine, et al. Metabolic control of autophagy. Cell. 2014 Dec 4;159(6):1263–1276.•• It is an excellent review providing comprehensive information about the physiological regulation of autophagy by metabolic circuitries as well as alterations of such control in diseases.
    • (2014) Cell , vol.159 , Issue.6 , pp. 1263-1276
    • Galluzzi, L.1    Pietrocola, F.2    Levine, B.3
  • 23
    • 84920463916 scopus 로고    scopus 로고
    • Autophagy in cellular metabolism and cancer
    • Jan
    • X.Jiang, M.Overholtzer, C.B.Thompson. Autophagy in cellular metabolism and cancer. J Clin Invest. 2015 Jan;125(1):47–54.•• In this review, the role of autophagy in both regular and disease conditions is discussed, especially at the level of ULK1 connecting the nutrient signaling pathways. Importantly, the role of autophagy in cancer and its potential as a cancer therapeutic target are considered.
    • (2015) J Clin Invest , vol.125 , Issue.1 , pp. 47-54
    • Jiang, X.1    Overholtzer, M.2    Thompson, C.B.3
  • 24
    • 84948569863 scopus 로고    scopus 로고
    • AMPK and autophagy in glucose/glycogen metabolism
    • Dec
    • J.Ha, K.L.Guan, J.Kim. AMPK and autophagy in glucose/glycogen metabolism. Mol Aspects Med. 2015 Dec;46:46–62.
    • (2015) Mol Aspects Med , vol.46 , pp. 46-62
    • Ha, J.1    Guan, K.L.2    Kim, J.3
  • 25
    • 21044455137 scopus 로고    scopus 로고
    • Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice
    • May
    • M.Komatsu, S.Waguri, T.Ueno, et al. Impairment of starvation-induced and constitutive autophagy in Atg7-deficient mice. J Cell Biol. 2005 May 9;169(3):425–434.
    • (2005) J Cell Biol , vol.169 , Issue.3 , pp. 425-434
    • Komatsu, M.1    Waguri, S.2    Ueno, T.3
  • 26
    • 11144245626 scopus 로고    scopus 로고
    • The role of autophagy during the early neonatal starvation period
    • Dec
    • A.Kuma, M.Hatano, M.Matsui, et al. The role of autophagy during the early neonatal starvation period. Nature. 2004 Dec 23;432(7020):1032–1036.
    • (2004) Nature , vol.432 , Issue.7020 , pp. 1032-1036
    • Kuma, A.1    Hatano, M.2    Matsui, M.3
  • 27
    • 65949095803 scopus 로고    scopus 로고
    • Autophagy regulates lipid metabolism
    • Apr
    • R.Singh, S.Kaushik, Y.Wang, et al. Autophagy regulates lipid metabolism. Nature. 2009 Apr 30;458(7242):1131–1135.
    • (2009) Nature , vol.458 , Issue.7242 , pp. 1131-1135
    • Singh, R.1    Kaushik, S.2    Wang, Y.3
  • 28
    • 52749094770 scopus 로고    scopus 로고
    • Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia
    • Oct
    • H.S.Jung, K.W.Chung, J.Won Kim, et al. Loss of autophagy diminishes pancreatic beta cell mass and function with resultant hyperglycemia. Cell Metab. 2008 Oct;8(4):318–324.
    • (2008) Cell Metab , vol.8 , Issue.4 , pp. 318-324
    • Jung, H.S.1    Chung, K.W.2    Won Kim, J.3
  • 29
    • 52749093177 scopus 로고    scopus 로고
    • Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet
    • Oct
    • C.Ebato, T.Uchida, M.Arakawa, et al. Autophagy is important in islet homeostasis and compensatory increase of beta cell mass in response to high-fat diet. Cell Metab. 2008 Oct;8(4):325–332.
    • (2008) Cell Metab , vol.8 , Issue.4 , pp. 325-332
    • Ebato, C.1    Uchida, T.2    Arakawa, M.3
  • 30
    • 77956400005 scopus 로고    scopus 로고
    • Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance
    • Jun
    • L.Yang, P.Li, S.Fu, et al. Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 2010 Jun 9;11(6):467–478.
    • (2010) Cell Metab , vol.11 , Issue.6 , pp. 467-478
    • Yang, L.1    Li, P.2    Fu, S.3
  • 31
    • 61649124031 scopus 로고    scopus 로고
    • The role of autophagy in pancreatic beta-cell and diabetes
    • Feb
    • Y.Fujitani, R.Kawamori, H.Watada. The role of autophagy in pancreatic beta-cell and diabetes. Autophagy. 2009 Feb;5(2):280–282.
    • (2009) Autophagy , vol.5 , Issue.2 , pp. 280-282
    • Fujitani, Y.1    Kawamori, R.2    Watada, H.3
  • 32
    • 77951649035 scopus 로고    scopus 로고
    • The role of autophagy in tumour development and cancer therapy
    • M.T.Rosenfeldt, K.M.Ryan. The role of autophagy in tumour development and cancer therapy. Expert Rev Mol Med. 2009;11:e36.• This review provides the lines of evidence showing that oncogenes and tumor suppressor genes regulate autophagy. Also, the potential of autophagy as a therapeutic target is discussed in light of the functions of autophagy at different stages of tumor progression and in normal tissues.
    • (2009) Expert Rev Mol Med , vol.11 , pp. e36
    • Rosenfeldt, M.T.1    Ryan, K.M.2
  • 33
    • 79956224883 scopus 로고    scopus 로고
    • Targeting autophagy during cancer therapy to improve clinical outcomes
    • Jul
    • J.M.Levy, A.Thorburn. Targeting autophagy during cancer therapy to improve clinical outcomes. Pharmacol Ther. 2011 Jul;131(1):130–141.
    • (2011) Pharmacol Ther , vol.131 , Issue.1 , pp. 130-141
    • Levy, J.M.1    Thorburn, A.2
  • 34
    • 0000906170 scopus 로고    scopus 로고
    • Induction of autophagy and inhibition of tumorigenesis by beclin 1
    • Dec
    • X.H.Liang, S.Jackson, M.Seaman, et al. Induction of autophagy and inhibition of tumorigenesis by beclin 1. Nature. 1999 Dec 9;402(6762):672–676.• It is a first report demonstrating that the autophagy machinery, Beclin-1, can function as tumor suppressor. This study showed that Beclin-1 expression was frequently decreased in several human cancer cell lines and tissue. These findings provided important information that autophagy can contribute to the development or progression of tumors and other human malignancies.
    • (1999) Nature , vol.402 , Issue.6762 , pp. 672-676
    • Liang, X.H.1    Jackson, S.2    Seaman, M.3
  • 35
    • 9144240441 scopus 로고    scopus 로고
    • Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene
    • Dec
    • X.Qu, J.Yu, G.Bhagat, et al. Promotion of tumorigenesis by heterozygous disruption of the beclin 1 autophagy gene. J Clin Invest. 2003 Dec;112(12):1809–1820.
    • (2003) J Clin Invest , vol.112 , Issue.12 , pp. 1809-1820
    • Qu, X.1    Yu, J.2    Bhagat, G.3
  • 36
    • 64549101639 scopus 로고    scopus 로고
    • Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability
    • Apr
    • M.R.Kang, M.S.Kim, J.E.Oh, et al. Frameshift mutations of autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and colorectal cancers with microsatellite instability. J Pathol. 2009 Apr;217(5):702–706.
    • (2009) J Pathol , vol.217 , Issue.5 , pp. 702-706
    • Kang, M.R.1    Kim, M.S.2    Oh, J.E.3
  • 37
    • 78449273851 scopus 로고    scopus 로고
    • UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy
    • Oct
    • H.Knaevelsrud, T.Ahlquist, M.A.Merok, et al. UVRAG mutations associated with microsatellite unstable colon cancer do not affect autophagy. Autophagy. 2010 Oct;6(7):863–870.
    • (2010) Autophagy , vol.6 , Issue.7 , pp. 863-870
    • Knaevelsrud, H.1    Ahlquist, T.2    Merok, M.A.3
  • 38
    • 34848899280 scopus 로고    scopus 로고
    • Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis
    • Oct
    • Y.Takahashi, D.Coppola, N.Matsushita, et al. Bif-1 interacts with Beclin 1 through UVRAG and regulates autophagy and tumorigenesis. Nat Cell Biol. 2007 Oct;9(10):1142–1151.
    • (2007) Nat Cell Biol , vol.9 , Issue.10 , pp. 1142-1151
    • Takahashi, Y.1    Coppola, D.2    Matsushita, N.3
  • 39
    • 84902177842 scopus 로고    scopus 로고
    • Mutational landscape of the essential autophagy gene BECN1 in human cancers
    • Apr
    • S.V.Laddha, S.Ganesan, C.S.Chan, et al. Mutational landscape of the essential autophagy gene BECN1 in human cancers. Mol Cancer Res. 2014 Apr;12(4):485–490.
    • (2014) Mol Cancer Res , vol.12 , Issue.4 , pp. 485-490
    • Laddha, S.V.1    Ganesan, S.2    Chan, C.S.3
  • 40
    • 34347404887 scopus 로고    scopus 로고
    • Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis
    • Jul
    • V.Karantza-Wadsworth, S.Patel, O.Kravchuk, et al. Autophagy mitigates metabolic stress and genome damage in mammary tumorigenesis. Genes Dev. 2007 Jul 1;21(13):1621–1635.
    • (2007) Genes Dev , vol.21 , Issue.13 , pp. 1621-1635
    • Karantza-Wadsworth, V.1    Patel, S.2    Kravchuk, O.3
  • 41
    • 34249863298 scopus 로고    scopus 로고
    • Autophagy suppresses tumor progression by limiting chromosomal instability
    • Jun
    • R.Mathew, S.Kongara, B.Beaudoin, et al. Autophagy suppresses tumor progression by limiting chromosomal instability. Genes Dev. 2007 Jun 1;21(11):1367–1381.
    • (2007) Genes Dev , vol.21 , Issue.11 , pp. 1367-1381
    • Mathew, R.1    Kongara, S.2    Beaudoin, B.3
  • 42
    • 66449114033 scopus 로고    scopus 로고
    • p62 at the crossroads of autophagy, apoptosis, and cancer
    • Jun
    • J.Moscat, M.T.Diaz-Meco. p62 at the crossroads of autophagy, apoptosis, and cancer. Cell. 2009 Jun 12;137(6):1001–1004.
    • (2009) Cell , vol.137 , Issue.6 , pp. 1001-1004
    • Moscat, J.1    Diaz-Meco, M.T.2
  • 43
    • 79955377420 scopus 로고    scopus 로고
    • Autophagy-deficient mice develop multiple liver tumors
    • Apr
    • A.Takamura, M.Komatsu, T.Hara, et al. Autophagy-deficient mice develop multiple liver tumors. Genes Dev. 2011 Apr 15;25(8):795–800.
    • (2011) Genes Dev , vol.25 , Issue.8 , pp. 795-800
    • Takamura, A.1    Komatsu, M.2    Hara, T.3
  • 44
    • 41249084239 scopus 로고    scopus 로고
    • The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis
    • Apr
    • A.Duran, J.F.Linares, A.S.Galvez, et al. The signaling adaptor p62 is an important NF-kappaB mediator in tumorigenesis. Cancer Cell. 2008 Apr;13(4):343–354.
    • (2008) Cancer Cell , vol.13 , Issue.4 , pp. 343-354
    • Duran, A.1    Linares, J.F.2    Galvez, A.S.3
  • 45
    • 79955492012 scopus 로고    scopus 로고
    • Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells
    • Apr
    • Y.Inami, S.Waguri, A.Sakamoto, et al. Persistent activation of Nrf2 through p62 in hepatocellular carcinoma cells. J Cell Biol. 2011 Apr 18;193(2):275–284.
    • (2011) J Cell Biol , vol.193 , Issue.2 , pp. 275-284
    • Inami, Y.1    Waguri, S.2    Sakamoto, A.3
  • 46
    • 80054046029 scopus 로고    scopus 로고
    • Aerobic glycolysis: meeting the metabolic requirements of cell proliferation
    • S.Y.Lunt, M.G.Vander Heiden. Aerobic glycolysis:meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 2011;27:441–464.
    • (2011) Annu Rev Cell Dev Biol , vol.27 , pp. 441-464
    • Lunt, S.Y.1    Vander Heiden, M.G.2
  • 47
    • 76049100577 scopus 로고    scopus 로고
    • HIF-1: upstream and downstream of cancer metabolism
    • Feb
    • G.L.Semenza. HIF-1:upstream and downstream of cancer metabolism. Curr Opin Genet Dev. 2010 Feb;20(1):51–56.
    • (2010) Curr Opin Genet Dev , vol.20 , Issue.1 , pp. 51-56
    • Semenza, G.L.1
  • 48
    • 80052426012 scopus 로고    scopus 로고
    • Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival
    • C.Frezza, L.Zheng, D.A.Tennant, et al. Metabolic profiling of hypoxic cells revealed a catabolic signature required for cell survival. PLoS One. 2011;6(9):e24411.
    • (2011) PLoS One , vol.6 , Issue.9 , pp. e24411
    • Frezza, C.1    Zheng, L.2    Tennant, D.A.3
  • 49
    • 84055225365 scopus 로고    scopus 로고
    • Warburg meets autophagy: cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis
    • Jun
    • S.Pavlides, I.Vera, R.Gandara, et al. Warburg meets autophagy:cancer-associated fibroblasts accelerate tumor growth and metastasis via oxidative stress, mitophagy, and aerobic glycolysis. Antioxid Redox Signal. 2012 Jun 1;16(11):1264–1284.
    • (2012) Antioxid Redox Signal , vol.16 , Issue.11 , pp. 1264-1284
    • Pavlides, S.1    Vera, I.2    Gandara, R.3
  • 50
    • 84862886876 scopus 로고    scopus 로고
    • Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production
    • Jun
    • C.Capparelli, C.Guido, D.Whitaker-Menezes, et al. Autophagy and senescence in cancer-associated fibroblasts metabolically supports tumor growth and metastasis via glycolysis and ketone production. Cell Cycle. 2012 Jun 15;11(12):2285–2302.
    • (2012) Cell Cycle , vol.11 , Issue.12 , pp. 2285-2302
    • Capparelli, C.1    Guido, C.2    Whitaker-Menezes, D.3
  • 51
    • 78751511180 scopus 로고    scopus 로고
    • Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation
    • Jan
    • R.Lock, S.Roy, C.M.Kenific, et al. Autophagy facilitates glycolysis during Ras-mediated oncogenic transformation. Mol Biol Cell. 2011 Jan 15;22(2):165–178.
    • (2011) Mol Biol Cell , vol.22 , Issue.2 , pp. 165-178
    • Lock, R.1    Roy, S.2    Kenific, C.M.3
  • 52
    • 79952228407 scopus 로고    scopus 로고
    • Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis
    • Mar
    • J.Y.Guo, H.Y.Chen, R.Mathew, et al. Activated Ras requires autophagy to maintain oxidative metabolism and tumorigenesis. Genes Dev. 2011 Mar 1;25(5):460–470.•• This study showed “autophagy addiction” of cancer cells. In the cells harboring activated RAS mutations, autophagy was upregulated to maintain the pool of functional mitochondria supporting Ras-driven tumor growth. As cancers with RAS mutations have a poor prognosis, this “autophagy addiction” suggests that targeting autophagy and mitochondrial metabolism are valuable new approaches to treat these aggressive cancers.
    • (2011) Genes Dev , vol.25 , Issue.5 , pp. 460-470
    • Guo, J.Y.1    Chen, H.Y.2    Mathew, R.3
  • 53
    • 79952229430 scopus 로고    scopus 로고
    • Pancreatic cancers require autophagy for tumor growth
    • Apr
    • S.Yang, X.Wang, G.Contino, et al. Pancreatic cancers require autophagy for tumor growth. Genes Dev. 2011 Apr 1;25(7):717–729.
    • (2011) Genes Dev , vol.25 , Issue.7 , pp. 717-729
    • Yang, S.1    Wang, X.2    Contino, G.3
  • 54
    • 84879777723 scopus 로고    scopus 로고
    • Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis
    • Jul
    • J.Y.Guo, G.Karsli-Uzunbas, R.Mathew, et al. Autophagy suppresses progression of K-ras-induced lung tumors to oncocytomas and maintains lipid homeostasis. Genes Dev. 2013 Jul 1;27(13):1447–1461.• Along with [69], this study also demonstrates that Ras-driven tumors require autophagy for mitochondrial function and lipid catabolism. It suggests that autophagy is required for carcinoma fate, and autophagy defects may be a molecular basis for the occurrence of oncocytomas.
    • (2013) Genes Dev , vol.27 , Issue.13 , pp. 1447-1461
    • Guo, J.Y.1    Karsli-Uzunbas, G.2    Mathew, R.3
  • 55
    • 33646800306 scopus 로고    scopus 로고
    • Loss of autophagy in the central nervous system causes neurodegeneration in mice
    • Jun
    • M.Komatsu, S.Waguri, T.Chiba, et al. Loss of autophagy in the central nervous system causes neurodegeneration in mice. Nature. 2006 Jun 15;441(7095):880–884.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 880-884
    • Komatsu, M.1    Waguri, S.2    Chiba, T.3
  • 56
    • 33745192802 scopus 로고    scopus 로고
    • Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice
    • Jun
    • T.Hara, K.Nakamura, M.Matsui, et al. Suppression of basal autophagy in neural cells causes neurodegenerative disease in mice. Nature. 2006 Jun 15;441(7095):885–889.
    • (2006) Nature , vol.441 , Issue.7095 , pp. 885-889
    • Hara, T.1    Nakamura, K.2    Matsui, M.3
  • 57
    • 33847652900 scopus 로고    scopus 로고
    • Autophagy and neurodegeneration: when the cleaning crew goes on strike
    • Apr
    • M.Martinez-Vicente, A.M.Cuervo. Autophagy and neurodegeneration:when the cleaning crew goes on strike. Lancet Neurol. 2007 Apr;6(4):352–361.
    • (2007) Lancet Neurol , vol.6 , Issue.4 , pp. 352-361
    • Martinez-Vicente, M.1    Cuervo, A.M.2
  • 58
    • 33750363298 scopus 로고    scopus 로고
    • The roles of intracellular protein-degradation pathways in neurodegeneration
    • Oct
    • D.C.Rubinsztein. The roles of intracellular protein-degradation pathways in neurodegeneration. Nature. 2006 Oct 19;443(7113):780–786.
    • (2006) Nature , vol.443 , Issue.7113 , pp. 780-786
    • Rubinsztein, D.C.1
  • 59
    • 4344659685 scopus 로고    scopus 로고
    • Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy
    • Aug
    • A.M.Cuervo, L.Stefanis, R.Fredenburg, et al. Impaired degradation of mutant alpha-synuclein by chaperone-mediated autophagy. Science. 2004 Aug 27;305(5688):1292–1295.
    • (2004) Science , vol.305 , Issue.5688 , pp. 1292-1295
    • Cuervo, A.M.1    Stefanis, L.2    Fredenburg, R.3
  • 60
    • 27944504351 scopus 로고    scopus 로고
    • p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death
    • Nov
    • G.Bjorkoy, T.Lamark, A.Brech, et al. p62/SQSTM1 forms protein aggregates degraded by autophagy and has a protective effect on huntingtin-induced cell death. J Cell Biol. 2005 Nov 21;171(4):603–614.
    • (2005) J Cell Biol , vol.171 , Issue.4 , pp. 603-614
    • Bjorkoy, G.1    Lamark, T.2    Brech, A.3
  • 61
    • 36849089101 scopus 로고    scopus 로고
    • Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice
    • Dec
    • M.Komatsu, S.Waguri, M.Koike, et al. Homeostatic levels of p62 control cytoplasmic inclusion body formation in autophagy-deficient mice. Cell. 2007 Dec 14;131(6):1149–1163.
    • (2007) Cell , vol.131 , Issue.6 , pp. 1149-1163
    • Komatsu, M.1    Waguri, S.2    Koike, M.3
  • 62
    • 26444587508 scopus 로고    scopus 로고
    • Macroautophagy – a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease
    • Oct
    • W.H.Yu, A.M.Cuervo, A.Kumar, et al. Macroautophagy – a novel beta-amyloid peptide-generating pathway activated in Alzheimer’s disease. J Cell Biol. 2005 Oct 10;171(1):87–98.
    • (2005) J Cell Biol , vol.171 , Issue.1 , pp. 87-98
    • Yu, W.H.1    Cuervo, A.M.2    Kumar, A.3
  • 63
    • 84961944001 scopus 로고    scopus 로고
    • Digesting the expanding mechanisms of autophagy
    • N.T.Ktistakis, S.A.Tooze. Digesting the expanding mechanisms of autophagy. Trends Cell Biol. 2016 Aug;26(8):624–635.•• It is an up-to-date review demonstrating how autophagy machinery proteins coordinately work for autophagosome/autolysosome biogenesis. This review also deals with the recent advances on the understanding of the origin of autophagosome membrane and novel regulators. Moreover, it introduces a number of studies showing the functions of noncanonical autophagy and the role of autophagy proteins in these non-autophagy pathways.
    • (2016) Trends Cell Biol
    • Ktistakis, N.T.1    Tooze, S.A.2
  • 64
    • 84958120581 scopus 로고    scopus 로고
    • AMPK: an energy-sensing pathway with multiple inputs and outputs
    • Mar
    • D.G.Hardie, B.E.Schaffer, A.Brunet. AMPK:an energy-sensing pathway with multiple inputs and outputs. Trends Cell Biol. 2016 Mar;26(3):190–201.
    • (2016) Trends Cell Biol , vol.26 , Issue.3 , pp. 190-201
    • Hardie, D.G.1    Schaffer, B.E.2    Brunet, A.3
  • 65
    • 84865592978 scopus 로고    scopus 로고
    • Amino acids and mTORC1: from lysosomes to disease
    • Sep
    • A.Efeyan, R.Zoncu, D.M.Sabatini. Amino acids and mTORC1:from lysosomes to disease. Trends Mol Med. 2012 Sep;18(9):524–533.
    • (2012) Trends Mol Med , vol.18 , Issue.9 , pp. 524-533
    • Efeyan, A.1    Zoncu, R.2    Sabatini, D.M.3
  • 66
    • 80555143078 scopus 로고    scopus 로고
    • mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase
    • Nov
    • R.Zoncu, L.Bar-Peled, A.Efeyan, et al. mTORC1 senses lysosomal amino acids through an inside-out mechanism that requires the vacuolar H(+)-ATPase. Science. 2011 Nov 4;334(6056):678–683.
    • (2011) Science , vol.334 , Issue.6056 , pp. 678-683
    • Zoncu, R.1    Bar-Peled, L.2    Efeyan, A.3
  • 67
    • 84907519033 scopus 로고    scopus 로고
    • The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism
    • Sep
    • C.S.Zhang, B.Jiang, M.Li, et al. The lysosomal v-ATPase-Ragulator complex is a common activator for AMPK and mTORC1, acting as a switch between catabolism and anabolism. Cell Metab. 2014 Sep 2;20(3):526–540.
    • (2014) Cell Metab , vol.20 , Issue.3 , pp. 526-540
    • Zhang, C.S.1    Jiang, B.2    Li, M.3
  • 68
    • 0034683568 scopus 로고    scopus 로고
    • Tor-mediated induction of autophagy via an Apg1 protein kinase complex
    • Sep
    • Y.Kamada, T.Funakoshi, T.Shintani, et al. Tor-mediated induction of autophagy via an Apg1 protein kinase complex. J Cell Biol. 2000 Sep 18;150(6):1507–1513.
    • (2000) J Cell Biol , vol.150 , Issue.6 , pp. 1507-1513
    • Kamada, Y.1    Funakoshi, T.2    Shintani, T.3
  • 69
    • 65249119430 scopus 로고    scopus 로고
    • Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy
    • Apr
    • N.Hosokawa, T.Hara, T.Kaizuka, et al. Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 2009 Apr;20(7):1981–1991.
    • (2009) Mol Biol Cell , vol.20 , Issue.7 , pp. 1981-1991
    • Hosokawa, N.1    Hara, T.2    Kaizuka, T.3
  • 70
    • 65249176304 scopus 로고    scopus 로고
    • ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery
    • Apr
    • C.H.Jung, C.B.Jun, S.H.Ro, et al. ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 2009 Apr;20(7):1992–2003.
    • (2009) Mol Biol Cell , vol.20 , Issue.7 , pp. 1992-2003
    • Jung, C.H.1    Jun, C.B.2    Ro, S.H.3
  • 71
    • 84876488191 scopus 로고    scopus 로고
    • mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6
    • Apr
    • F.Nazio, F.Strappazzon, M.Antonioli, et al. mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 2013 Apr;15(4):406–416.
    • (2013) Nat Cell Biol , vol.15 , Issue.4 , pp. 406-416
    • Nazio, F.1    Strappazzon, F.2    Antonioli, M.3
  • 72
    • 79551598347 scopus 로고    scopus 로고
    • AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1
    • Feb
    • J.Kim, M.Kundu, B.Viollet, et al. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011 Feb;13(2):132–141.• This study provided the first evidence underlying AMPK–mTORC1–ULK1 triad, in which AMPK and mTORC1 cooperatively regulate ULK1 activity in response to glucose starvation.
    • (2011) Nat Cell Biol , vol.13 , Issue.2 , pp. 132-141
    • Kim, J.1    Kundu, M.2    Viollet, B.3
  • 73
    • 79251587803 scopus 로고    scopus 로고
    • Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy
    • Jan
    • D.F.Egan, D.B.Shackelford, M.M.Mihaylova, et al. Phosphorylation of ULK1 (hATG1) by AMP-activated protein kinase connects energy sensing to mitophagy. Science. 2011 Jan 28;331(6016):456–461.
    • (2011) Science , vol.331 , Issue.6016 , pp. 456-461
    • Egan, D.F.1    Shackelford, D.B.2    Mihaylova, M.M.3
  • 74
    • 79960014848 scopus 로고    scopus 로고
    • ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding
    • Jul
    • E.A.Dunlop, D.K.Hunt, H.A.Acosta-Jaquez, et al. ULK1 inhibits mTORC1 signaling, promotes multisite Raptor phosphorylation and hinders substrate binding. Autophagy. 2011 Jul;7(7):737–747.
    • (2011) Autophagy , vol.7 , Issue.7 , pp. 737-747
    • Dunlop, E.A.1    Hunt, D.K.2    Acosta-Jaquez, H.A.3
  • 75
    • 79959963047 scopus 로고    scopus 로고
    • Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop
    • Jul
    • A.S.Loffler, S.Alers, A.M.Dieterle, et al. Ulk1-mediated phosphorylation of AMPK constitutes a negative regulatory feedback loop. Autophagy. 2011 Jul;7(7):696–706.
    • (2011) Autophagy , vol.7 , Issue.7 , pp. 696-706
    • Loffler, A.S.1    Alers, S.2    Dieterle, A.M.3
  • 76
    • 84880541343 scopus 로고    scopus 로고
    • The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis
    • Aug
    • E.A.Dunlop, A.R.Tee. The kinase triad, AMPK, mTORC1 and ULK1, maintains energy and nutrient homoeostasis. Biochem Soc Trans. 2013 Aug;41(4):939–943.
    • (2013) Biochem Soc Trans , vol.41 , Issue.4 , pp. 939-943
    • Dunlop, E.A.1    Tee, A.R.2
  • 77
    • 84872586081 scopus 로고    scopus 로고
    • Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy
    • Jan
    • J.Kim, Y.C.Kim, C.Fang, et al. Differential regulation of distinct Vps34 complexes by AMPK in nutrient stress and autophagy. Cell. 2013 Jan 17;152(1–2):290–303.• It demonstrates that AMPK oppositely regulates non- and pro-autophagy PIK3C3/VPS34 complexes by directly phosphorylating Vps34 and Beclin-1 subunits. Most importantly, this study shows that an autophagy-specific subunit, ATG14L, on pro-autophagy PIK3C3/VPS34 complex dictates the differential regulation (either inhibition or activation) of PIK3C3/VPS34 complexes mediated by AMPK.
    • (2013) Cell , vol.152 , Issue.1-2 , pp. 290-303
    • Kim, J.1    Kim, Y.C.2    Fang, C.3
  • 78
    • 84880331368 scopus 로고    scopus 로고
    • ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase
    • Jul
    • R.C.Russell, Y.Tian, H.Yuan, et al. ULK1 induces autophagy by phosphorylating Beclin-1 and activating VPS34 lipid kinase. Nat Cell Biol. 2013 Jul;15(7):741–750.
    • (2013) Nat Cell Biol , vol.15 , Issue.7 , pp. 741-750
    • Russell, R.C.1    Tian, Y.2    Yuan, H.3
  • 79
    • 84890848742 scopus 로고    scopus 로고
    • Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy
    • Dec
    • H.X.Yuan, R.C.Russell, K.L.Guan. Regulation of PIK3C3/VPS34 complexes by MTOR in nutrient stress-induced autophagy. Autophagy. 2013 Dec;9(12):1983–1995.
    • (2013) Autophagy , vol.9 , Issue.12 , pp. 1983-1995
    • Yuan, H.X.1    Russell, R.C.2    Guan, K.L.3
  • 80
    • 84920504512 scopus 로고    scopus 로고
    • mTOR: a pharmacologic target for autophagy regulation
    • Jan
    • Y.C.Kim, K.L.Guan. mTOR:a pharmacologic target for autophagy regulation. J Clin Invest. 2015 Jan;125(1):25–32.
    • (2015) J Clin Invest , vol.125 , Issue.1 , pp. 25-32
    • Kim, Y.C.1    Guan, K.L.2
  • 81
    • 84921417671 scopus 로고    scopus 로고
    • Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors
    • Jan
    • M.B.Lazarus, C.J.Novotny, K.M.Shokat. Structure of the human autophagy initiating kinase ULK1 in complex with potent inhibitors. ACS Chem Biol. 2015 Jan 16;10(1):257–261.
    • (2015) ACS Chem Biol , vol.10 , Issue.1 , pp. 257-261
    • Lazarus, M.B.1    Novotny, C.J.2    Shokat, K.M.3
  • 82
    • 84946500909 scopus 로고    scopus 로고
    • Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1
    • Sep
    • M.B.Lazarus, K.M.Shokat. Discovery and structure of a new inhibitor scaffold of the autophagy initiating kinase ULK1. Bioorg Med Chem. 2015 Sep 1;23(17):5483–5488.
    • (2015) Bioorg Med Chem , vol.23 , Issue.17 , pp. 5483-5488
    • Lazarus, M.B.1    Shokat, K.M.2
  • 83
    • 84928806944 scopus 로고    scopus 로고
    • Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy
    • May
    • K.J.Petherick, O.J.Conway, C.Mpamhanga, et al. Pharmacological inhibition of ULK1 kinase blocks mammalian target of rapamycin (mTOR)-dependent autophagy. J Biol Chem. 2015 May 1;290(18):11376–11383.
    • (2015) J Biol Chem , vol.290 , Issue.18 , pp. 11376-11383
    • Petherick, K.J.1    Conway, O.J.2    Mpamhanga, C.3
  • 84
    • 84937523899 scopus 로고    scopus 로고
    • Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates
    • Jul
    • D.F.Egan, M.G.Chun, M.Vamos, et al. Small molecule inhibition of the autophagy kinase ULK1 and identification of ULK1 substrates. Mol Cell. 2015 Jul 16;59(2):285–297.
    • (2015) Mol Cell , vol.59 , Issue.2 , pp. 285-297
    • Egan, D.F.1    Chun, M.G.2    Vamos, M.3
  • 85
    • 77950212231 scopus 로고    scopus 로고
    • Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34
    • Mar
    • S.Miller, B.Tavshanjian, A.Oleksy, et al. Shaping development of autophagy inhibitors with the structure of the lipid kinase Vps34. Science. 2010 Mar 26;327(5973):1638–1642.• This study shows three-dimensional structure Vps34, a catalytic subunit of PIK3C3/VPS34 complex, at 2.9 angstrom resolution. It provides the molecular background to design novel and potent PIK3C3/VPS34-specific inhibitors.
    • (2010) Science , vol.327 , Issue.5973 , pp. 1638-1642
    • Miller, S.1    Tavshanjian, B.2    Oleksy, A.3
  • 86
    • 84911906578 scopus 로고    scopus 로고
    • A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy
    • Dec
    • B.Ronan, O.Flamand, L.Vescovi, et al. A highly potent and selective Vps34 inhibitor alters vesicle trafficking and autophagy. Nat Chem Biol. 2014 Dec;10(12):1013–1019.
    • (2014) Nat Chem Biol , vol.10 , Issue.12 , pp. 1013-1019
    • Ronan, B.1    Flamand, O.2    Vescovi, L.3
  • 87
    • 84920842452 scopus 로고    scopus 로고
    • Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one: a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors
    • Jan
    • B.Pasquier, Y.El-Ahmad, B.Filoche-Romme, et al. Discovery of (2S)-8-[(3R)-3-methylmorpholin-4-yl]-1-(3-methyl-2-oxobutyl)-2-(trifluoromethyl)- 3,4-dihydro-2H-pyrimido[1,2-a]pyrimidin-6-one:a novel potent and selective inhibitor of Vps34 for the treatment of solid tumors. J Med Chem. 2015 Jan 8;58(1):376–400.
    • (2015) J Med Chem , vol.58 , Issue.1 , pp. 376-400
    • Pasquier, B.1    El-Ahmad, Y.2    Filoche-Romme, B.3
  • 88
    • 84907835041 scopus 로고    scopus 로고
    • Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase
    • Nov
    • R.Bago, N.Malik, M.J.Munson, et al. Characterization of VPS34-IN1, a selective inhibitor of Vps34, reveals that the phosphatidylinositol 3-phosphate-binding SGK3 protein kinase is a downstream target of class III phosphoinositide 3-kinase. Biochem J. 2014 Nov 1;463(3):413–427.
    • (2014) Biochem J , vol.463 , Issue.3 , pp. 413-427
    • Bago, R.1    Malik, N.2    Munson, M.J.3
  • 89
    • 84908466248 scopus 로고    scopus 로고
    • Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo
    • Nov
    • W.E.Dowdle, B.Nyfeler, J.Nagel, et al. Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 2014 Nov;16(11):1069–1079.
    • (2014) Nat Cell Biol , vol.16 , Issue.11 , pp. 1069-1079
    • Dowdle, W.E.1    Nyfeler, B.2    Nagel, J.3
  • 90
    • 39749141485 scopus 로고    scopus 로고
    • The regulation and function of Class III PI3Ks: novel roles for Vps34
    • Feb
    • J.M.Backer. The regulation and function of Class III PI3Ks:novel roles for Vps34. Biochem J. 2008 Feb 15;410(1):1–17.
    • (2008) Biochem J , vol.410 , Issue.1 , pp. 1-17
    • Backer, J.M.1
  • 91
    • 80053501671 scopus 로고    scopus 로고
    • Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13
    • Sep
    • J.Liu, H.Xia, M.Kim, et al. Beclin1 controls the levels of p53 by regulating the deubiquitination activity of USP10 and USP13. Cell. 2011 Sep 30;147(1):223–234.• It is an important article that describes the discovery and biological characterization of Spautin-1, a novel type of small-molecule inhibitor of autophagy promoting the proteosomal Beclin-1 degradation, as an anticancer agent.
    • (2011) Cell , vol.147 , Issue.1 , pp. 223-234
    • Liu, J.1    Xia, H.2    Kim, M.3
  • 92
    • 84899091326 scopus 로고    scopus 로고
    • Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia
    • May
    • S.Shao, S.Li, Y.Qin, et al. Spautin-1, a novel autophagy inhibitor, enhances imatinib-induced apoptosis in chronic myeloid leukemia. Int J Oncol. 2014 May;44(5):1661–1668.
    • (2014) Int J Oncol , vol.44 , Issue.5 , pp. 1661-1668
    • Shao, S.1    Li, S.2    Qin, Y.3
  • 93
    • 84954289990 scopus 로고    scopus 로고
    • Chronic myeloid leukemia: first-line drug of choice
    • Jan
    • E.Jabbour. Chronic myeloid leukemia:first-line drug of choice. Am J Hematol. 2016 Jan;91(1):59–66.
    • (2016) Am J Hematol , vol.91 , Issue.1 , pp. 59-66
    • Jabbour, E.1
  • 94
    • 84873709314 scopus 로고    scopus 로고
    • Identification of a candidate therapeutic autophagy-inducing peptide
    • Feb
    • S.Shoji-Kawata, R.Sumpter, M.Leveno, et al. Identification of a candidate therapeutic autophagy-inducing peptide. Nature. 2013 Feb 14;494(7436):201–206.
    • (2013) Nature , vol.494 , Issue.7436 , pp. 201-206
    • Shoji-Kawata, S.1    Sumpter, R.2    Leveno, M.3
  • 95
    • 84892161646 scopus 로고    scopus 로고
    • The Atg8 family: multifunctional ubiquitin-like key regulators of autophagy
    • M.R.Slobodkin, Z.Elazar. The Atg8 family:multifunctional ubiquitin-like key regulators of autophagy. Essays Biochem. 2013;55:51–64.
    • (2013) Essays Biochem , vol.55 , pp. 51-64
    • Slobodkin, M.R.1    Elazar, Z.2
  • 96
    • 84919770275 scopus 로고    scopus 로고
    • A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors
    • D.Akin, S.K.Wang, P.Habibzadegah-Tari, et al. A novel ATG4B antagonist inhibits autophagy and has a negative impact on osteosarcoma tumors. Autophagy. 2014;10(11):2021–2035.
    • (2014) Autophagy , vol.10 , Issue.11 , pp. 2021-2035
    • Akin, D.1    Wang, S.K.2    Habibzadegah-Tari, P.3
  • 97
    • 84988901535 scopus 로고    scopus 로고
    • Identification of new ATG4B inhibitors based on a novel high-throughput screening platform
    • Mar
    • D.Xu, Z.Xu, L.Han, et al. Identification of new ATG4B inhibitors based on a novel high-throughput screening platform. J Biomol Screen. 2016 Mar 18. pii:1087057116639202. [Epub ahead of print].
    • (2016) J Biomol Screen
    • Xu, D.1    Xu, Z.2    Han, L.3
  • 98
    • 70449529788 scopus 로고    scopus 로고
    • FLIP-mediated autophagy regulation in cell death control
    • Nov
    • J.S.Lee, Q.Li, J.Y.Lee, et al. FLIP-mediated autophagy regulation in cell death control. Nat Cell Biol. 2009 Nov;11(11):1355–1362.
    • (2009) Nat Cell Biol , vol.11 , Issue.11 , pp. 1355-1362
    • Lee, J.S.1    Li, Q.2    Lee, J.Y.3
  • 99
    • 84907170731 scopus 로고    scopus 로고
    • Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules
    • Sep
    • P.Garcia-Valtanen, M.Ortega-Villaizan Mdel, A.Martinez-Lopez, et al. Autophagy-inducing peptides from mammalian VSV and fish VHSV rhabdoviral G glycoproteins (G) as models for the development of new therapeutic molecules. Autophagy. 2014 Sep;10(9):1666–1680.
    • (2014) Autophagy , vol.10 , Issue.9 , pp. 1666-1680
    • Garcia-Valtanen, P.1    Ortega-Villaizan Mdel, M.2    Martinez-Lopez, A.3
  • 109
    • 84992070348 scopus 로고    scopus 로고
    • Board of Regents, The University of Texas System, US. Autophagy-inducing peptide.WO2013119377A1. 2013.
    • (2013) Autophagy-inducing peptide
  • 111
    • 84904719739 scopus 로고    scopus 로고
    • Anti-tumor activities of matrine and oxymatrine: literature review
    • Jun
    • Y.Liu, Y.Xu, W.Ji, et al. Anti-tumor activities of matrine and oxymatrine:literature review. Tumour Biol. 2014 Jun;35(6):5111–5119.
    • (2014) Tumour Biol , vol.35 , Issue.6 , pp. 5111-5119
    • Liu, Y.1    Xu, Y.2    Ji, W.3
  • 112
    • 78649775152 scopus 로고    scopus 로고
    • Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells: the cellular mechanism
    • Dec
    • N.Wang, Y.Feng, M.Zhu, et al. Berberine induces autophagic cell death and mitochondrial apoptosis in liver cancer cells:the cellular mechanism. J Cell Biochem. 2010 Dec 15;111(6):1426–1436.
    • (2010) J Cell Biochem , vol.111 , Issue.6 , pp. 1426-1436
    • Wang, N.1    Feng, Y.2    Zhu, M.3
  • 113
    • 84863012020 scopus 로고    scopus 로고
    • Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy
    • Jan
    • J.H.Lu, J.Q.Tan, S.S.Durairajan, et al. Isorhynchophylline, a natural alkaloid, promotes the degradation of alpha-synuclein in neuronal cells via inducing autophagy. Autophagy. 2012 Jan;8(1):98–108.
    • (2012) Autophagy , vol.8 , Issue.1 , pp. 98-108
    • Lu, J.H.1    Tan, J.Q.2    Durairajan, S.S.3
  • 114
    • 77349115762 scopus 로고    scopus 로고
    • Berberine: a plant alkaloid with therapeutic potential for central nervous system disorders
    • Mar
    • S.K.Kulkarni, A.Dhir. Berberine:a plant alkaloid with therapeutic potential for central nervous system disorders. Phytother Res. 2010 Mar;24(3):317–324.
    • (2010) Phytother Res , vol.24 , Issue.3 , pp. 317-324
    • Kulkarni, S.K.1    Dhir, A.2
  • 115
    • 84887944204 scopus 로고    scopus 로고
    • Mitochondria: a promising target for anticancer alkaloids
    • Sep
    • F.A.Urra, M.Cordova-Delgado, H.Pessoa-Mahana, et al. Mitochondria:a promising target for anticancer alkaloids. Curr Top Med Chem. 2013 Sep;13(17):2171–2183.
    • (2013) Curr Top Med Chem , vol.13 , Issue.17 , pp. 2171-2183
    • Urra, F.A.1    Cordova-Delgado, M.2    Pessoa-Mahana, H.3
  • 116
    • 84939000739 scopus 로고    scopus 로고
    • Chaperone-mediated autophagy and neurodegeneration: connections, mechanisms, and therapeutic implications
    • Aug
    • X.Liu, S.Huang, X.Wang, et al. Chaperone-mediated autophagy and neurodegeneration:connections, mechanisms, and therapeutic implications. Neurosci Bull. 2015 Aug;31(4):407–415.
    • (2015) Neurosci Bull , vol.31 , Issue.4 , pp. 407-415
    • Liu, X.1    Huang, S.2    Wang, X.3
  • 117
    • 84978144234 scopus 로고    scopus 로고
    • Role of chaperone-mediated autophagy in metabolism
    • Jul
    • I.Tasset, A.M.Cuervo. Role of chaperone-mediated autophagy in metabolism. FEBS J. 2016 Jul;283(13):2403–2413.
    • (2016) FEBS J
    • Tasset, I.1    Cuervo, A.M.2
  • 118
    • 78649668597 scopus 로고    scopus 로고
    • Retinoids, retinoic acid receptors, and cancer
    • X.H.Tang, L.J.Gudas. Retinoids, retinoic acid receptors, and cancer. Annu Rev Pathol-Mech. 2011;6:345–364.
    • (2011) Annu Rev Pathol-Mech , vol.6 , pp. 345-364
    • Tang, X.H.1    Gudas, L.J.2
  • 119
    • 84891014899 scopus 로고    scopus 로고
    • The return of the nucleus: transcriptional and epigenetic control of autophagy
    • Jan
    • J.Füllgrabe, D.J.Klionsky, B.Joseph. The return of the nucleus:transcriptional and epigenetic control of autophagy. Nat Rev Mol Cell Biol. 2014 Jan;15(1):65–74.
    • (2014) Nat Rev Mol Cell Biol , vol.15 , Issue.1 , pp. 65-74
    • Füllgrabe, J.1    Klionsky, D.J.2    Joseph, B.3
  • 120
    • 79956119740 scopus 로고    scopus 로고
    • Retinoic acid induces autophagosome maturation through redistribution of the cation-independent mannose-6-phosphate receptor
    • Jun
    • Y.Rajawat, Z.Hilioti, I.Bossis. Retinoic acid induces autophagosome maturation through redistribution of the cation-independent mannose-6-phosphate receptor. Antioxid Redox Signal. 2011 Jun;14(11):2165–2177.
    • (2011) Antioxid Redox Signal , vol.14 , Issue.11 , pp. 2165-2177
    • Rajawat, Y.1    Hilioti, Z.2    Bossis, I.3
  • 121
    • 85027938990 scopus 로고    scopus 로고
    • Sporadic inclusion body myositis: A review of recent clinical advances and current approaches to diagnosis and treatment
    • Mar
    • M.Needham, F.L.Mastaglia. Sporadic inclusion body myositis:A review of recent clinical advances and current approaches to diagnosis and treatment. Clin Neurophysiol:off J Int Fed Clin Neurophysiol. 2016 Mar;127(3):1764–1773.
    • (2016) Clin Neurophysiol: off J Int Fed Clin Neurophysiol , vol.127 , Issue.3 , pp. 1764-1773
    • Needham, M.1    Mastaglia, F.L.2
  • 122
    • 84922324292 scopus 로고    scopus 로고
    • Sporadic inclusion-body myositis: A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy
    • Apr
    • V.Askanas, W.K.Engel, A.Nogalska. Sporadic inclusion-body myositis:A degenerative muscle disease associated with aging, impaired muscle protein homeostasis and abnormal mitophagy. Biochim Biophys Acta. 2015 Apr;1852(4):633–643.
    • (2015) Biochim Biophys Acta , vol.1852 , Issue.4 , pp. 633-643
    • Askanas, V.1    Engel, W.K.2    Nogalska, A.3
  • 123
    • 79953792495 scopus 로고    scopus 로고
    • Sporadic inclusion-body myositis: conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-beta42 oligomers and phosphorylated tau
    • Apr
    • V.Askanas, W.K.Engel. Sporadic inclusion-body myositis:conformational multifactorial ageing-related degenerative muscle disease associated with proteasomal and lysosomal inhibition, endoplasmic reticulum stress, and accumulation of amyloid-beta42 oligomers and phosphorylated tau. Presse Medicale. 2011 Apr;40(4 Pt 2):e219–235.
    • (2011) Presse Medicale , vol.40 , Issue.4 , pp. e219-e235
    • Askanas, V.1    Engel, W.K.2
  • 124
    • 84929455627 scopus 로고    scopus 로고
    • Phenylbutyric acid: simple structure – multiple effects
    • M.Kusaczuk, M.Bartoszewicz, M.Cechowska-Pasko. Phenylbutyric acid:simple structure – multiple effects. Curr Pharm Des. 2015;21(16):2147–2166.
    • (2015) Curr Pharm Des , vol.21 , Issue.16 , pp. 2147-2166
    • Kusaczuk, M.1    Bartoszewicz, M.2    Cechowska-Pasko, M.3
  • 125
    • 80052712639 scopus 로고    scopus 로고
    • Clinical and experimental applications of sodium phenylbutyrate
    • Sep
    • T.Iannitti, B.Palmieri. Clinical and experimental applications of sodium phenylbutyrate. Drugs in R&D. 2011 Sep 1;11(3):227–249.
    • (2011) Drugs in R&D , vol.11 , Issue.3 , pp. 227-249
    • Iannitti, T.1    Palmieri, B.2
  • 126
    • 84863620242 scopus 로고    scopus 로고
    • Activating mitochondrial regulator PGC-1alpha expression by astrocytic NGF is a therapeutic strategy for Huntington’s disease
    • Sep
    • L.W.Chen, L.Y.Horng, C.L.Wu, et al. Activating mitochondrial regulator PGC-1alpha expression by astrocytic NGF is a therapeutic strategy for Huntington’s disease. Neuropharmacology. 2012 Sep;63(4):719–732.
    • (2012) Neuropharmacology , vol.63 , Issue.4 , pp. 719-732
    • Chen, L.W.1    Horng, L.Y.2    Wu, C.L.3
  • 127
    • 84955616469 scopus 로고    scopus 로고
    • Orchestrating the network of molecular pathways affecting aging: role of nonselective autophagy and mitophagy
    • Jan
    • L.Knuppertz, H.D.Osiewacz. Orchestrating the network of molecular pathways affecting aging:role of nonselective autophagy and mitophagy. Mech Ageing Dev. 2016 Jan;153:30–40.
    • (2016) Mech Ageing Dev , vol.153 , pp. 30-40
    • Knuppertz, L.1    Osiewacz, H.D.2
  • 128
    • 78649629489 scopus 로고    scopus 로고
    • Ellagitannins, ellagic acid and vascular health
    • Dec
    • M.Larrosa, M.T.García-Conesa, J.C.Espín, et al. Ellagitannins, ellagic acid and vascular health. Mol Aspects Med. 2010 Dec;31(6):513–539.
    • (2010) Mol Aspects Med , vol.31 , Issue.6 , pp. 513-539
    • Larrosa, M.1    García-Conesa, M.T.2    Espín, J.C.3
  • 129
    • 0021843333 scopus 로고
    • Neurochemical profile of Lu 19-005, a potent inhibitor of uptake of dopamine, noradrenaline, and serotonin
    • May
    • J.Hyttel, J.J.Larsen. Neurochemical profile of Lu 19-005, a potent inhibitor of uptake of dopamine, noradrenaline, and serotonin. J Neurochem. 1985 May;44(5):1615–1622.
    • (1985) J Neurochem , vol.44 , Issue.5 , pp. 1615-1622
    • Hyttel, J.1    Larsen, J.J.2
  • 130
    • 84892431106 scopus 로고    scopus 로고
    • Indatraline inhibits Rho- and calcium-mediated glioblastoma cell motility and angiogenesis
    • Jan
    • J.C.Heo, T.H.Jung, D.Y.Jung, et al. Indatraline inhibits Rho- and calcium-mediated glioblastoma cell motility and angiogenesis. Biochem Biophys Res Commun. 2014 Jan 10;443(2):749–755.
    • (2014) Biochem Biophys Res Commun , vol.443 , Issue.2 , pp. 749-755
    • Heo, J.C.1    Jung, T.H.2    Jung, D.Y.3
  • 132
    • 84992044277 scopus 로고    scopus 로고
    • Translational Genomics Research Institute, Pheonix, AZ, US, Van Andel Research Institute, Grand Rapids, MI, US. Autophagy inhibitors.US20140148451A1. 2014.
    • (2014) Autophagy inhibitors
  • 136
    • 0032839674 scopus 로고    scopus 로고
    • Stimulation of topoisomerase II-mediated DNA cleavage by an indazole analogue of lucanthone
    • Oct
    • L.Dassonneville, C.Bailly. Stimulation of topoisomerase II-mediated DNA cleavage by an indazole analogue of lucanthone. Biochem Pharmacol. 1999 Oct 15;58(8):1307–1312.
    • (1999) Biochem Pharmacol , vol.58 , Issue.8 , pp. 1307-1312
    • Dassonneville, L.1    Bailly, C.2
  • 137
    • 4444336712 scopus 로고    scopus 로고
    • Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone
    • Jul-Aug
    • M.Luo, M.R.Kelley. Inhibition of the human apurinic/apyrimidinic endonuclease (APE1) repair activity and sensitization of breast cancer cells to DNA alkylating agents with lucanthone. Anticancer Res. 2004 Jul-Aug;24(4):2127–2134.
    • (2004) Anticancer Res , vol.24 , Issue.4 , pp. 2127-2134
    • Luo, M.1    Kelley, M.R.2
  • 138
    • 84952862051 scopus 로고    scopus 로고
    • Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis
    • Feb
    • S.J.Kaur, S.R.McKeown, S.Rashid. Mutant SOD1 mediated pathogenesis of amyotrophic lateral sclerosis. Gene. 2016 Feb 15;577(2):109–118.
    • (2016) Gene , vol.577 , Issue.2 , pp. 109-118
    • Kaur, S.J.1    McKeown, S.R.2    Rashid, S.3
  • 139
    • 84902550621 scopus 로고    scopus 로고
    • Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS
    • Jun
    • T.An, P.Shi, W.Duan, et al. Oxidative stress and autophagic alteration in brainstem of SOD1-G93A mouse model of ALS. Mol Neurobiol. 2014 Jun;49(3):1435–1448.
    • (2014) Mol Neurobiol , vol.49 , Issue.3 , pp. 1435-1448
    • An, T.1    Shi, P.2    Duan, W.3
  • 140
    • 84868582385 scopus 로고    scopus 로고
    • Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death
    • Nov
    • G.C.Higgins, R.J.Devenish, P.M.Beart, et al. Transitory phases of autophagic death and programmed necrosis during superoxide-induced neuronal cell death. Free Radic Biol Med. 2012 Nov 15;53(10):1960–1967.
    • (2012) Free Radic Biol Med , vol.53 , Issue.10 , pp. 1960-1967
    • Higgins, G.C.1    Devenish, R.J.2    Beart, P.M.3
  • 141
    • 84881339109 scopus 로고    scopus 로고
    • Design of glycogen synthase kinase-3 inhibitors: an overview on recent advancements
    • M.Arfeen, P.V.Bharatam. Design of glycogen synthase kinase-3 inhibitors:an overview on recent advancements. Curr Pharm Des. 2013;19(26):4755–4775.
    • (2013) Curr Pharm Des , vol.19 , Issue.26 , pp. 4755-4775
    • Arfeen, M.1    Bharatam, P.V.2
  • 144
    • 85013763791 scopus 로고    scopus 로고
    • Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition)
    • Jan
    • D.J.Klionsky, K.Abdelmohsen, A.Abe, et al. Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy. 2016 Jan 2;12(1):1–222.•• It is an excellent guideline for use and interpretation of autophagy assays in vitro and in vivo.
    • (2016) Autophagy , vol.12 , Issue.1 , pp. 1-222
    • Klionsky, D.J.1    Abdelmohsen, K.2    Abe, A.3
  • 145
    • 77956274584 scopus 로고    scopus 로고
    • Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease
    • Aug
    • M.M.Lipinski, B.Zheng, T.Lu, et al. Genome-wide analysis reveals mechanisms modulating autophagy in normal brain aging and in Alzheimer’s disease. Proc Natl Acad Sci U S A. 2010 Aug 10;107(32):14164–14169.• This study provides the biochemical evidence showing that autophagy is upregulated in Alzheimer’s disease, whereas autophagy in brain is normally decreased upon aging. Since autophagy contributes to amyloid-β formation and, simultaneously, it is required for the clearance of this toxic protein aggregate, this study suggests that inhibiting autophagy at an early stage and/or enhancing autolysosome formation may be desirable to treat Alzheimer’s disease.
    • (2010) Proc Natl Acad Sci U S A , vol.107 , Issue.32 , pp. 14164-14169
    • Lipinski, M.M.1    Zheng, B.2    Lu, T.3
  • 146
    • 79959415069 scopus 로고    scopus 로고
    • Biogenesis and cargo selectivity of autophagosomes
    • H.Weidberg, E.Shvets, Z.Elazar. Biogenesis and cargo selectivity of autophagosomes. Annu Rev Biochem. 2011;80:125–156.
    • (2011) Annu Rev Biochem , vol.80 , pp. 125-156
    • Weidberg, H.1    Shvets, E.2    Elazar, Z.3
  • 147
    • 77649337122 scopus 로고    scopus 로고
    • HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy
    • Mar
    • J.Y.Lee, H.Koga, Y.Kawaguchi, et al. HDAC6 controls autophagosome maturation essential for ubiquitin-selective quality-control autophagy. EMBO J. 2010 Mar 3;29(5):969–980.
    • (2010) EMBO J , vol.29 , Issue.5 , pp. 969-980
    • Lee, J.Y.1    Koga, H.2    Kawaguchi, Y.3
  • 148
    • 84864805916 scopus 로고    scopus 로고
    • Autophagy and cancer – issues we need to digest
    • May
    • E.Y.Liu, K.M.Ryan. Autophagy and cancer – issues we need to digest. J Cell Sci. 2012 May 15;125(Pt 10):2349–2358.
    • (2012) J Cell Sci , vol.125 , pp. 2349-2358
    • Liu, E.Y.1    Ryan, K.M.2
  • 149
    • 77954556955 scopus 로고    scopus 로고
    • Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells
    • K.Sasaki, N.H.Tsuno, E.Sunami, et al. Chloroquine potentiates the anti-cancer effect of 5-fluorouracil on colon cancer cells. BMC Cancer. 2010;10:370.
    • (2010) BMC Cancer , vol.10 , pp. 370
    • Sasaki, K.1    Tsuno, N.H.2    Sunami, E.3
  • 150
    • 33847685719 scopus 로고    scopus 로고
    • Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme
    • Apr
    • E.Briceño, A.Calderon, J.Sotelo. Institutional experience with chloroquine as an adjuvant to the therapy for glioblastoma multiforme. Surg Neurol. 2007 Apr;67(4):388–391.
    • (2007) Surg Neurol , vol.67 , Issue.4 , pp. 388-391
    • Briceño, E.1    Calderon, A.2    Sotelo, J.3
  • 151
    • 84904062323 scopus 로고    scopus 로고
    • Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma
    • Aug
    • R.Rangwala, R.Leone, Y.C.Chang, et al. Phase I trial of hydroxychloroquine with dose-intense temozolomide in patients with advanced solid tumors and melanoma. Autophagy. 2014 Aug;10(8):1369–1379.
    • (2014) Autophagy , vol.10 , Issue.8 , pp. 1369-1379
    • Rangwala, R.1    Leone, R.2    Chang, Y.C.3
  • 152
    • 84905826525 scopus 로고    scopus 로고
    • Combined MTOR and autophagy inhibition: phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma
    • Aug
    • R.Rangwala, Y.C.Chang, J.Hu, et al. Combined MTOR and autophagy inhibition:phase I trial of hydroxychloroquine and temsirolimus in patients with advanced solid tumors and melanoma. Autophagy. 2014 Aug;10(8):1391–1402.
    • (2014) Autophagy , vol.10 , Issue.8 , pp. 1391-1402
    • Rangwala, R.1    Chang, Y.C.2    Hu, J.3
  • 155
    • 77957663027 scopus 로고    scopus 로고
    • Autophagy in pancreatic cancer: an emerging mechanism of cell death
    • Oct
    • N.Mujumdar, A.K.Saluja. Autophagy in pancreatic cancer:an emerging mechanism of cell death. Autophagy. 2010 Oct;6(7):997–998.
    • (2010) Autophagy , vol.6 , Issue.7 , pp. 997-998
    • Mujumdar, N.1    Saluja, A.K.2
  • 156
    • 17144427728 scopus 로고    scopus 로고
    • Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors
    • Apr
    • H.Takeuchi, Y.Kondo, K.Fujiwara, et al. Synergistic augmentation of rapamycin-induced autophagy in malignant glioma cells by phosphatidylinositol 3-kinase/protein kinase B inhibitors. Cancer Res. 2005 Apr 15;65(8):3336–3346.
    • (2005) Cancer Res , vol.65 , Issue.8 , pp. 3336-3346
    • Takeuchi, H.1    Kondo, Y.2    Fujiwara, K.3
  • 157
    • 33947495259 scopus 로고    scopus 로고
    • Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells
    • Mar
    • A.Iwamaru, Y.Kondo, E.Iwado, et al. Silencing mammalian target of rapamycin signaling by small interfering RNA enhances rapamycin-induced autophagy in malignant glioma cells. Oncogene. 2007 Mar 22;26(13):1840–1851.
    • (2007) Oncogene , vol.26 , Issue.13 , pp. 1840-1851
    • Iwamaru, A.1    Kondo, Y.2    Iwado, E.3
  • 158
    • 33750565745 scopus 로고    scopus 로고
    • Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells
    • Oct
    • C.Cao, T.Subhawong, J.M.Albert, et al. Inhibition of mammalian target of rapamycin or apoptotic pathway induces autophagy and radiosensitizes PTEN null prostate cancer cells. Cancer Res. 2006 Oct 15;66(20):10040–10047.
    • (2006) Cancer Res , vol.66 , Issue.20 , pp. 10040-10047
    • Cao, C.1    Subhawong, T.2    Albert, J.M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.