메뉴 건너뛰기




Volumn 113, Issue 42, 2016, Pages 11750-11755

Spectroscopic elucidation of energy transfer in hybrid inorganic-biological organisms for solar-to-chemical production

Author keywords

Biohybrid systems; Catalysis; CO2 reduction; Energy conversion; Spectroscopy

Indexed keywords

ACETIC ACID; HYDROGENASE;

EID: 84991729092     PISSN: 00278424     EISSN: 10916490     Source Type: Journal    
DOI: 10.1073/pnas.1610554113     Document Type: Article
Times cited : (160)

References (41)
  • 1
    • 77953361371 scopus 로고    scopus 로고
    • Limitations and prospects of natural photosynthesis for bioenergy production
    • Larkum AW (2010) Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 21(3):271-276.
    • (2010) Curr Opin Biotechnol , vol.21 , Issue.3 , pp. 271-276
    • Larkum, A.W.1
  • 2
    • 84937127897 scopus 로고    scopus 로고
    • Redesigning photosynthesis to sustainably meet global food and bioenergy demand
    • Ort DR, et al. (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112(28):8529-8536.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.28 , pp. 8529-8536
    • Ort, D.R.1
  • 3
    • 84875643352 scopus 로고    scopus 로고
    • Energy and environment policy case for a global project on artificial photosynthesis
    • Faunce TA, et al. (2013) Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ Sci 6(3):695-698.
    • (2013) Energy Environ Sci , vol.6 , Issue.3 , pp. 695-698
    • Faunce, T.A.1
  • 4
    • 79956054956 scopus 로고    scopus 로고
    • Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
    • Blankenship RE, et al. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805-809.
    • (2011) Science , vol.332 , Issue.6031 , pp. 805-809
    • Blankenship, R.E.1
  • 5
    • 85028138803 scopus 로고    scopus 로고
    • Artificial photosynthesis for sustainable fuel and chemical production
    • Kim D, Sakimoto KK, Hong D, Yang P (2015) Artificial photosynthesis for sustainable fuel and chemical production. Angew Chem Int Ed Engl 54(11):3259-3266.
    • (2015) Angew Chem Int Ed Engl , vol.54 , Issue.11 , pp. 3259-3266
    • Kim, D.1    Sakimoto, K.K.2    Hong, D.3    Yang, P.4
  • 6
    • 84883874249 scopus 로고    scopus 로고
    • Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation
    • Appel AM, et al. (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621-6658.
    • (2013) Chem Rev , vol.113 , Issue.8 , pp. 6621-6658
    • Appel, A.M.1
  • 7
    • 84929190956 scopus 로고    scopus 로고
    • Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
    • Liu C, et al. (2015) Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15(5):3634-3639.
    • (2015) Nano Lett , vol.15 , Issue.5 , pp. 3634-3639
    • Liu, C.1
  • 8
    • 84941662879 scopus 로고    scopus 로고
    • Hybrid bioinorganic approach to solar-to-chemical conversion
    • Nichols EM, et al. (2015) Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci USA 112(37):11461-11466.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.37 , pp. 11461-11466
    • Nichols, E.M.1
  • 9
    • 84923676034 scopus 로고    scopus 로고
    • Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
    • Torella JP, et al. (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci USA 112(8):2337-2342.
    • (2015) Proc Natl Acad Sci USA , vol.112 , Issue.8 , pp. 2337-2342
    • Torella, J.P.1
  • 10
    • 84952939707 scopus 로고    scopus 로고
    • Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
    • Sakimoto KK, Wong AB, Yang P (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351(6268):74-77.
    • (2016) Science , vol.351 , Issue.6268 , pp. 74-77
    • Sakimoto, K.K.1    Wong, A.B.2    Yang, P.3
  • 11
    • 77957359097 scopus 로고    scopus 로고
    • Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
    • Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324-333.
    • (2011) Bioresour Technol , vol.102 , Issue.1 , pp. 324-333
    • Rosenbaum, M.1    Aulenta, F.2    Villano, M.3    Angenent, L.T.4
  • 12
    • 84907901522 scopus 로고    scopus 로고
    • An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces
    • Kuzume A, et al. (2014) An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces. Phys Chem Chem Phys 16(40):22229-22236.
    • (2014) Phys Chem Chem Phys , vol.16 , Issue.40 , pp. 22229-22236
    • Kuzume, A.1
  • 13
    • 84936993627 scopus 로고    scopus 로고
    • Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems
    • Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575.
    • (2015) Front Microbiol , vol.6 , pp. 575
    • Kracke, F.1    Vassilev, I.2    Krömer, J.O.3
  • 15
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • Deutzmann JS, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6(2):e00496-e00415.
    • (2015) MBio , vol.6 , Issue.2 , pp. e00496-e001415
    • Deutzmann, J.S.1    Sahin, M.2    Spormann, A.M.3
  • 16
    • 51649124894 scopus 로고    scopus 로고
    • The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)
    • Pierce E, et al. (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10(10):2550-2573.
    • (2008) Environ Microbiol , vol.10 , Issue.10 , pp. 2550-2573
    • Pierce, E.1
  • 17
    • 84911440829 scopus 로고    scopus 로고
    • Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
    • Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809-821.
    • (2014) Nat Rev Microbiol , vol.12 , Issue.12 , pp. 809-821
    • Schuchmann, K.1    Müller, V.2
  • 18
    • 84863829103 scopus 로고    scopus 로고
    • Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies
    • Greene BL, Joseph CA, Maroney MJ, Dyer RB (2012) Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 134(27):11108-11111.
    • (2012) J Am Chem Soc , vol.134 , Issue.27 , pp. 11108-11111
    • Greene, B.L.1    Joseph, C.A.2    Maroney, M.J.3    Dyer, R.B.4
  • 19
    • 84923366032 scopus 로고    scopus 로고
    • Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes
    • Utterback JK, et al. (2015) Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes. Phys Chem Chem Phys 17(8):5538-5542.
    • (2015) Phys Chem Chem Phys , vol.17 , Issue.8 , pp. 5538-5542
    • Utterback, J.K.1
  • 20
    • 84896537184 scopus 로고    scopus 로고
    • 2 generation
    • 2 generation. J Am Chem Soc 136(11):4316-4324.
    • (2014) J Am Chem Soc , vol.136 , Issue.11 , pp. 4316-4324
    • Wilker, M.B.1
  • 21
    • 79955675417 scopus 로고    scopus 로고
    • Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
    • Nevin KP, et al. (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882-2886.
    • (2011) Appl Environ Microbiol , vol.77 , Issue.9 , pp. 2882-2886
    • Nevin, K.P.1
  • 22
    • 0019932632 scopus 로고
    • Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum
    • Drake HL (1982) Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150(2):702-709.
    • (1982) J Bacteriol , vol.150 , Issue.2 , pp. 702-709
    • Drake, H.L.1
  • 23
    • 0025196087 scopus 로고
    • Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui
    • Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172(8):4464-4471.
    • (1990) J Bacteriol , vol.172 , Issue.8 , pp. 4464-4471
    • Daniel, S.L.1    Hsu, T.2    Dean, S.I.3    Drake, H.L.4
  • 24
    • 84874917257 scopus 로고    scopus 로고
    • Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts
    • Tseng H-W, Wilker MB, Damrauer NH, Dukovic G (2013) Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. J Am Chem Soc 135(9):3383-3386.
    • (2013) J Am Chem Soc , vol.135 , Issue.9 , pp. 3383-3386
    • Tseng, H.-W.1    Wilker, M.B.2    Damrauer, N.H.3    Dukovic, G.4
  • 25
    • 0023827355 scopus 로고
    • Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: A picosecond transient absorption study
    • Nosaka Y, Miyama H, Terauchi M, Kobayashi T (1988) Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: A picosecond transient absorption study. J Phys Chem 92(2):255-256.
    • (1988) J Phys Chem , vol.92 , Issue.2 , pp. 255-256
    • Nosaka, Y.1    Miyama, H.2    Terauchi, M.3    Kobayashi, T.4
  • 26
    • 84955118192 scopus 로고    scopus 로고
    • Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods
    • Ben-Shahar Y, et al. (2016) Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat Commun 7:10413.
    • (2016) Nat Commun , vol.7 , pp. 10413
    • Ben-Shahar, Y.1
  • 27
    • 78751545087 scopus 로고    scopus 로고
    • Unraveling the structure and dynamics of excitons in semiconductor quantum dots
    • Kambhampati P (2011) Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc Chem Res 44(1):1-13.
    • (2011) Acc Chem Res , vol.44 , Issue.1 , pp. 1-13
    • Kambhampati, P.1
  • 28
    • 84884324723 scopus 로고    scopus 로고
    • Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion
    • King PW (2013) Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim Biophys Acta 1827(8-9):949-957.
    • (2013) Biochim Biophys Acta , vol.1827 , Issue.8-9 , pp. 949-957
    • King, P.W.1
  • 29
  • 30
    • 14844360343 scopus 로고    scopus 로고
    • Long-range electron transfer
    • Gray HB, Winkler JR (2005) Long-range electron transfer. Proc Natl Acad Sci USA 102(10):3534-3539.
    • (2005) Proc Natl Acad Sci USA , vol.102 , Issue.10 , pp. 3534-3539
    • Gray, H.B.1    Winkler, J.R.2
  • 31
    • 80052917025 scopus 로고    scopus 로고
    • Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode
    • Morra S, et al. (2011) Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode. Chem Commun (Camb) 47(38):10566-10568.
    • (2011) Chem Commun (Camb) , vol.47 , Issue.38 , pp. 10566-10568
    • Morra, S.1
  • 32
    • 84958162750 scopus 로고    scopus 로고
    • Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases
    • Flanagan LA, Parkin A (2016) Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases. Biochem Soc Trans 44(1):315-328.
    • (2016) Biochem Soc Trans , vol.44 , Issue.1 , pp. 315-328
    • Flanagan, L.A.1    Parkin, A.2
  • 33
    • 35748956722 scopus 로고    scopus 로고
    • Activation and inactivation of hydrogenase function and the catalytic cycle: Spectroelectrochemical studies
    • De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107(10):4304-4330.
    • (2007) Chem Rev , vol.107 , Issue.10 , pp. 4304-4330
    • De Lacey, A.L.1    Fernandez, V.M.2    Rousset, M.3    Cammack, R.4
  • 34
    • 34548094323 scopus 로고    scopus 로고
    • Fourier transform infrared spectroscopic analysis of protein secondary structures
    • Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 39(8):549-559.
    • (2007) Acta Biochim Biophys Sin (Shanghai) , vol.39 , Issue.8 , pp. 549-559
    • Kong, J.1    Yu, S.2
  • 35
    • 0025613794 scopus 로고
    • Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands
    • Venyaminov SYu, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30(13-14):1243-1257.
    • (1990) Biopolymers , vol.30 , Issue.13-14 , pp. 1243-1257
    • Venyaminov, S.Yu.1    Kalnin, N.N.2
  • 36
    • 70449524335 scopus 로고    scopus 로고
    • Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: The Ni-SIr state and its light sensitivity
    • Pandelia M-E, Ogata H, Currell LJ, Flores M, Lubitz W (2009) Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: The Ni-SIr state and its light sensitivity. J Biol Inorg Chem 14(8):1227-1241.
    • (2009) J Biol Inorg Chem , vol.14 , Issue.8 , pp. 1227-1241
    • Pandelia, M.-E.1    Ogata, H.2    Currell, L.J.3    Flores, M.4    Lubitz, W.5
  • 37
    • 0033524910 scopus 로고    scopus 로고
    • Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe (CN)2CO, Biology's way to activate H2
    • Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe (CN)2CO, Biology's way to activate H2. J Biol Chem 274(6):3331-3337.
    • (1999) J Biol Chem , vol.274 , Issue.6 , pp. 3331-3337
    • Pierik, A.J.1    Roseboom, W.2    Happe, R.P.3    Bagley, K.A.4    Albracht, S.P.5
  • 38
    • 84960424709 scopus 로고    scopus 로고
    • Mutations to R. sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates
    • Flanagan ML, et al. (2016) Mutations to R. sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates. J Phys Chem A 120(9):1479-1487.
    • (2016) J Phys Chem A , vol.120 , Issue.9 , pp. 1479-1487
    • Flanagan, M.L.1
  • 39
    • 77950192252 scopus 로고    scopus 로고
    • Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling
    • Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132(12):4455-4465.
    • (2010) J Am Chem Soc , vol.132 , Issue.12 , pp. 4455-4465
    • Srikun, D.1    Albers, A.E.2    Nam, C.I.3    Iavarone, A.T.4    Chang, C.J.5
  • 40
    • 79952910616 scopus 로고    scopus 로고
    • Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
    • Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222-227.
    • (2011) Nat Chem Biol , vol.7 , Issue.4 , pp. 222-227
    • Bond-Watts, B.B.1    Bellerose, R.J.2    Chang, M.C.3
  • 41
    • 84861503211 scopus 로고    scopus 로고
    • 3 in solution studied by ultrafast time-resolved IR spectroscopy
    • 3 in solution studied by ultrafast time-resolved IR spectroscopy. Organometallics 31(10):3980-3984.
    • (2012) Organometallics , vol.31 , Issue.10 , pp. 3980-3984
    • Nguyen, S.C.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.