-
1
-
-
77953361371
-
Limitations and prospects of natural photosynthesis for bioenergy production
-
Larkum AW (2010) Limitations and prospects of natural photosynthesis for bioenergy production. Curr Opin Biotechnol 21(3):271-276.
-
(2010)
Curr Opin Biotechnol
, vol.21
, Issue.3
, pp. 271-276
-
-
Larkum, A.W.1
-
2
-
-
84937127897
-
Redesigning photosynthesis to sustainably meet global food and bioenergy demand
-
Ort DR, et al. (2015) Redesigning photosynthesis to sustainably meet global food and bioenergy demand. Proc Natl Acad Sci USA 112(28):8529-8536.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.28
, pp. 8529-8536
-
-
Ort, D.R.1
-
3
-
-
84875643352
-
Energy and environment policy case for a global project on artificial photosynthesis
-
Faunce TA, et al. (2013) Energy and environment policy case for a global project on artificial photosynthesis. Energy Environ Sci 6(3):695-698.
-
(2013)
Energy Environ Sci
, vol.6
, Issue.3
, pp. 695-698
-
-
Faunce, T.A.1
-
4
-
-
79956054956
-
Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement
-
Blankenship RE, et al. (2011) Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement. Science 332(6031):805-809.
-
(2011)
Science
, vol.332
, Issue.6031
, pp. 805-809
-
-
Blankenship, R.E.1
-
5
-
-
85028138803
-
Artificial photosynthesis for sustainable fuel and chemical production
-
Kim D, Sakimoto KK, Hong D, Yang P (2015) Artificial photosynthesis for sustainable fuel and chemical production. Angew Chem Int Ed Engl 54(11):3259-3266.
-
(2015)
Angew Chem Int Ed Engl
, vol.54
, Issue.11
, pp. 3259-3266
-
-
Kim, D.1
Sakimoto, K.K.2
Hong, D.3
Yang, P.4
-
6
-
-
84883874249
-
Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation
-
Appel AM, et al. (2013) Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem Rev 113(8):6621-6658.
-
(2013)
Chem Rev
, vol.113
, Issue.8
, pp. 6621-6658
-
-
Appel, A.M.1
-
7
-
-
84929190956
-
Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals
-
Liu C, et al. (2015) Nanowire-bacteria hybrids for unassisted solar carbon dioxide fixation to value-added chemicals. Nano Lett 15(5):3634-3639.
-
(2015)
Nano Lett
, vol.15
, Issue.5
, pp. 3634-3639
-
-
Liu, C.1
-
8
-
-
84941662879
-
Hybrid bioinorganic approach to solar-to-chemical conversion
-
Nichols EM, et al. (2015) Hybrid bioinorganic approach to solar-to-chemical conversion. Proc Natl Acad Sci USA 112(37):11461-11466.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.37
, pp. 11461-11466
-
-
Nichols, E.M.1
-
9
-
-
84923676034
-
Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system
-
Torella JP, et al. (2015) Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system. Proc Natl Acad Sci USA 112(8):2337-2342.
-
(2015)
Proc Natl Acad Sci USA
, vol.112
, Issue.8
, pp. 2337-2342
-
-
Torella, J.P.1
-
10
-
-
84952939707
-
Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production
-
Sakimoto KK, Wong AB, Yang P (2016) Self-photosensitization of nonphotosynthetic bacteria for solar-to-chemical production. Science 351(6268):74-77.
-
(2016)
Science
, vol.351
, Issue.6268
, pp. 74-77
-
-
Sakimoto, K.K.1
Wong, A.B.2
Yang, P.3
-
11
-
-
77957359097
-
Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved?
-
Rosenbaum M, Aulenta F, Villano M, Angenent LT (2011) Cathodes as electron donors for microbial metabolism: Which extracellular electron transfer mechanisms are involved? Bioresour Technol 102(1):324-333.
-
(2011)
Bioresour Technol
, vol.102
, Issue.1
, pp. 324-333
-
-
Rosenbaum, M.1
Aulenta, F.2
Villano, M.3
Angenent, L.T.4
-
12
-
-
84907901522
-
An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces
-
Kuzume A, et al. (2014) An in situ surface electrochemistry approach towards whole-cell studies: The structure and reactivity of a Geobacter sulfurreducens submonolayer on electrified metal/electrolyte interfaces. Phys Chem Chem Phys 16(40):22229-22236.
-
(2014)
Phys Chem Chem Phys
, vol.16
, Issue.40
, pp. 22229-22236
-
-
Kuzume, A.1
-
13
-
-
84936993627
-
Microbial electron transport and energy conservation - The foundation for optimizing bioelectrochemical systems
-
Kracke F, Vassilev I, Krömer JO (2015) Microbial electron transport and energy conservation - the foundation for optimizing bioelectrochemical systems. Front Microbiol 6:575.
-
(2015)
Front Microbiol
, vol.6
, pp. 575
-
-
Kracke, F.1
Vassilev, I.2
Krömer, J.O.3
-
15
-
-
84928776576
-
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
-
Deutzmann JS, Sahin M, Spormann AM (2015) Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. MBio 6(2):e00496-e00415.
-
(2015)
MBio
, vol.6
, Issue.2
, pp. e00496-e001415
-
-
Deutzmann, J.S.1
Sahin, M.2
Spormann, A.M.3
-
16
-
-
51649124894
-
The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum)
-
Pierce E, et al. (2008) The complete genome sequence of Moorella thermoacetica (f. Clostridium thermoaceticum). Environ Microbiol 10(10):2550-2573.
-
(2008)
Environ Microbiol
, vol.10
, Issue.10
, pp. 2550-2573
-
-
Pierce, E.1
-
17
-
-
84911440829
-
Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria
-
Schuchmann K, Müller V (2014) Autotrophy at the thermodynamic limit of life: A model for energy conservation in acetogenic bacteria. Nat Rev Microbiol 12(12):809-821.
-
(2014)
Nat Rev Microbiol
, vol.12
, Issue.12
, pp. 809-821
-
-
Schuchmann, K.1
Müller, V.2
-
18
-
-
84863829103
-
Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies
-
Greene BL, Joseph CA, Maroney MJ, Dyer RB (2012) Direct evidence of active-site reduction and photodriven catalysis in sensitized hydrogenase assemblies. J Am Chem Soc 134(27):11108-11111.
-
(2012)
J Am Chem Soc
, vol.134
, Issue.27
, pp. 11108-11111
-
-
Greene, B.L.1
Joseph, C.A.2
Maroney, M.J.3
Dyer, R.B.4
-
19
-
-
84923366032
-
Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes
-
Utterback JK, et al. (2015) Competition between electron transfer, trapping, and recombination in CdS nanorod-hydrogenase complexes. Phys Chem Chem Phys 17(8):5538-5542.
-
(2015)
Phys Chem Chem Phys
, vol.17
, Issue.8
, pp. 5538-5542
-
-
Utterback, J.K.1
-
20
-
-
84896537184
-
2 generation
-
2 generation. J Am Chem Soc 136(11):4316-4324.
-
(2014)
J Am Chem Soc
, vol.136
, Issue.11
, pp. 4316-4324
-
-
Wilker, M.B.1
-
21
-
-
79955675417
-
Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms
-
Nevin KP, et al. (2011) Electrosynthesis of organic compounds from carbon dioxide is catalyzed by a diversity of acetogenic microorganisms. Appl Environ Microbiol 77(9):2882-2886.
-
(2011)
Appl Environ Microbiol
, vol.77
, Issue.9
, pp. 2882-2886
-
-
Nevin, K.P.1
-
22
-
-
0019932632
-
Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum
-
Drake HL (1982) Demonstration of hydrogenase in extracts of the homoacetate-fermenting bacterium Clostridium thermoaceticum. J Bacteriol 150(2):702-709.
-
(1982)
J Bacteriol
, vol.150
, Issue.2
, pp. 702-709
-
-
Drake, H.L.1
-
23
-
-
0025196087
-
Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui
-
Daniel SL, Hsu T, Dean SI, Drake HL (1990) Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui. J Bacteriol 172(8):4464-4471.
-
(1990)
J Bacteriol
, vol.172
, Issue.8
, pp. 4464-4471
-
-
Daniel, S.L.1
Hsu, T.2
Dean, S.I.3
Drake, H.L.4
-
24
-
-
84874917257
-
Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts
-
Tseng H-W, Wilker MB, Damrauer NH, Dukovic G (2013) Charge transfer dynamics between photoexcited CdS nanorods and mononuclear Ru water-oxidation catalysts. J Am Chem Soc 135(9):3383-3386.
-
(2013)
J Am Chem Soc
, vol.135
, Issue.9
, pp. 3383-3386
-
-
Tseng, H.-W.1
Wilker, M.B.2
Damrauer, N.H.3
Dukovic, G.4
-
25
-
-
0023827355
-
Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: A picosecond transient absorption study
-
Nosaka Y, Miyama H, Terauchi M, Kobayashi T (1988) Photoinduced electron transfer from colloidal cadmium sulfide to methylviologen: A picosecond transient absorption study. J Phys Chem 92(2):255-256.
-
(1988)
J Phys Chem
, vol.92
, Issue.2
, pp. 255-256
-
-
Nosaka, Y.1
Miyama, H.2
Terauchi, M.3
Kobayashi, T.4
-
26
-
-
84955118192
-
Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods
-
Ben-Shahar Y, et al. (2016) Optimal metal domain size for photocatalysis with hybrid semiconductor-metal nanorods. Nat Commun 7:10413.
-
(2016)
Nat Commun
, vol.7
, pp. 10413
-
-
Ben-Shahar, Y.1
-
27
-
-
78751545087
-
Unraveling the structure and dynamics of excitons in semiconductor quantum dots
-
Kambhampati P (2011) Unraveling the structure and dynamics of excitons in semiconductor quantum dots. Acc Chem Res 44(1):1-13.
-
(2011)
Acc Chem Res
, vol.44
, Issue.1
, pp. 1-13
-
-
Kambhampati, P.1
-
28
-
-
84884324723
-
Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion
-
King PW (2013) Designing interfaces of hydrogenase-nanomaterial hybrids for efficient solar conversion. Biochim Biophys Acta 1827(8-9):949-957.
-
(2013)
Biochim Biophys Acta
, vol.1827
, Issue.8-9
, pp. 949-957
-
-
King, P.W.1
-
31
-
-
80052917025
-
Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode
-
Morra S, et al. (2011) Direct electrochemistry of an [FeFe]-hydrogenase on a TiO2 electrode. Chem Commun (Camb) 47(38):10566-10568.
-
(2011)
Chem Commun (Camb)
, vol.47
, Issue.38
, pp. 10566-10568
-
-
Morra, S.1
-
32
-
-
84958162750
-
Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases
-
Flanagan LA, Parkin A (2016) Electrochemical insights into the mechanism of NiFe membrane-bound hydrogenases. Biochem Soc Trans 44(1):315-328.
-
(2016)
Biochem Soc Trans
, vol.44
, Issue.1
, pp. 315-328
-
-
Flanagan, L.A.1
Parkin, A.2
-
33
-
-
35748956722
-
Activation and inactivation of hydrogenase function and the catalytic cycle: Spectroelectrochemical studies
-
De Lacey AL, Fernandez VM, Rousset M, Cammack R (2007) Activation and inactivation of hydrogenase function and the catalytic cycle: spectroelectrochemical studies. Chem Rev 107(10):4304-4330.
-
(2007)
Chem Rev
, vol.107
, Issue.10
, pp. 4304-4330
-
-
De Lacey, A.L.1
Fernandez, V.M.2
Rousset, M.3
Cammack, R.4
-
34
-
-
34548094323
-
Fourier transform infrared spectroscopic analysis of protein secondary structures
-
Kong J, Yu S (2007) Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochim Biophys Sin (Shanghai) 39(8):549-559.
-
(2007)
Acta Biochim Biophys Sin (Shanghai)
, vol.39
, Issue.8
, pp. 549-559
-
-
Kong, J.1
Yu, S.2
-
35
-
-
0025613794
-
Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands
-
Venyaminov SYu, Kalnin NN (1990) Quantitative IR spectrophotometry of peptide compounds in water (H2O) solutions. I. Spectral parameters of amino acid residue absorption bands. Biopolymers 30(13-14):1243-1257.
-
(1990)
Biopolymers
, vol.30
, Issue.13-14
, pp. 1243-1257
-
-
Venyaminov, S.Yu.1
Kalnin, N.N.2
-
36
-
-
70449524335
-
Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: The Ni-SIr state and its light sensitivity
-
Pandelia M-E, Ogata H, Currell LJ, Flores M, Lubitz W (2009) Probing intermediates in the activation cycle of [NiFe] hydrogenase by infrared spectroscopy: The Ni-SIr state and its light sensitivity. J Biol Inorg Chem 14(8):1227-1241.
-
(2009)
J Biol Inorg Chem
, vol.14
, Issue.8
, pp. 1227-1241
-
-
Pandelia, M.-E.1
Ogata, H.2
Currell, L.J.3
Flores, M.4
Lubitz, W.5
-
37
-
-
0033524910
-
Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe (CN)2CO, Biology's way to activate H2
-
Pierik AJ, Roseboom W, Happe RP, Bagley KA, Albracht SP (1999) Carbon monoxide and cyanide as intrinsic ligands to iron in the active site of [NiFe]-hydrogenases. NiFe (CN)2CO, Biology's way to activate H2. J Biol Chem 274(6):3331-3337.
-
(1999)
J Biol Chem
, vol.274
, Issue.6
, pp. 3331-3337
-
-
Pierik, A.J.1
Roseboom, W.2
Happe, R.P.3
Bagley, K.A.4
Albracht, S.P.5
-
38
-
-
84960424709
-
Mutations to R. sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates
-
Flanagan ML, et al. (2016) Mutations to R. sphaeroides reaction center perturb energy levels and vibronic coupling but not observed energy transfer rates. J Phys Chem A 120(9):1479-1487.
-
(2016)
J Phys Chem A
, vol.120
, Issue.9
, pp. 1479-1487
-
-
Flanagan, M.L.1
-
39
-
-
77950192252
-
Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling
-
Srikun D, Albers AE, Nam CI, Iavarone AT, Chang CJ (2010) Organelle-targetable fluorescent probes for imaging hydrogen peroxide in living cells via SNAP-Tag protein labeling. J Am Chem Soc 132(12):4455-4465.
-
(2010)
J Am Chem Soc
, vol.132
, Issue.12
, pp. 4455-4465
-
-
Srikun, D.1
Albers, A.E.2
Nam, C.I.3
Iavarone, A.T.4
Chang, C.J.5
-
40
-
-
79952910616
-
Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways
-
Bond-Watts BB, Bellerose RJ, Chang MC (2011) Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nat Chem Biol 7(4):222-227.
-
(2011)
Nat Chem Biol
, vol.7
, Issue.4
, pp. 222-227
-
-
Bond-Watts, B.B.1
Bellerose, R.J.2
Chang, M.C.3
-
41
-
-
84861503211
-
3 in solution studied by ultrafast time-resolved IR spectroscopy
-
3 in solution studied by ultrafast time-resolved IR spectroscopy. Organometallics 31(10):3980-3984.
-
(2012)
Organometallics
, vol.31
, Issue.10
, pp. 3980-3984
-
-
Nguyen, S.C.1
|