-
1
-
-
37549003336
-
MapReduce: Simplified data processing on large clusters
-
Dean J, Ghemawat S. MapReduce: Simplified data processing on large clusters. Communications of the ACM 51, 1. 2008, pp. 107-113.
-
(2008)
Communications of the ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
2
-
-
82555195664
-
Rethinking the recommender research ecosystem: Reproducibility openness and LensKit
-
ACM, New York
-
Ekstrand MD, Ludwig M, Konstan JA, Riedl JT. Rethinking the recommender research ecosystem: Reproducibility, openness, and LensKit. Proceedings of the fifth ACM conference on Recommender systems (RecSys ¢11). ACM, New York: 2011, pp.133-140.
-
(2011)
Proceedings of the Fifth ACM Conference on Recommender Systems (RecSys ¢11
, pp. 133-140
-
-
Ekstrand, M.D.1
Ludwig, M.2
Konstan, J.A.3
Riedl, J.T.4
-
3
-
-
80052795836
-
Adapting scientific computing problems to clouds using MapReduce
-
Srirama SN, Jakovits P, Vainikko E. Adapting scientific computing problems to clouds using MapReduce. Future Gener Comput Syst 2012; 28: 184-192.
-
(2012)
Future Gener Comput Syst
, vol.28
, pp. 184-192
-
-
Srirama, S.N.1
Jakovits, P.2
Vainikko, E.3
-
5
-
-
85088775823
-
Using R for iterative and incremental processing
-
Berkeley CA: USENIX Association
-
Venkataraman S, Roy I, Young AA, Schreiber RS. Using R for iterative, and incremental processing. Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing (HotCloud 12). Berkeley, CA: USENIX Association, 2012, p. 11.
-
(2012)
Proceedings of the 4th USENIX Conference on Hot Topics in Cloud Computing (HotCloud 12
, pp. 11
-
-
Venkataraman, S.1
Roy, I.2
Young, A.A.3
Schreiber, R.S.4
-
6
-
-
85085251984
-
Spark: Cluster computing with working sets
-
Berkeley CA: USENIX Association
-
Zaharia M, Chowdhury M, Franklin MJ, et al. Spark: cluster computing with working sets. Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud 10). Berkeley, CA: USENIX Association, 2010, p. 10.
-
(2010)
Proceedings of the 2nd USENIX Conference on Hot Topics in Cloud Computing (HotCloud 10
, pp. 10
-
-
Zaharia, M.1
Chowdhury, M.2
Franklin, M.J.3
-
9
-
-
79952420862
-
HAMA: An efficient matrix computation with the MapReduce framework
-
Washington, DC IEEE Computer Society
-
Seo S, Yoon EJ, Kim J, et al. HAMA: An efficient matrix computation with the MapReduce framework. Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology, and Science (CLOUDCOM 10). Washington, DC: IEEE Computer Society, 2010, pp. 721-726.
-
(2010)
Proceedings of the 2010 IEEE Second International Conference on Cloud Computing Technology, and Science (CLOUDCOM 10
, pp. 721-726
-
-
Seo, S.1
Yoon, E.J.2
Kim, J.3
-
11
-
-
85076882757
-
DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language
-
Berkeley CA: USENIX Association
-
Yu Y, Isard M, Fetterly D, et al. DryadLINQ: A system for general-purpose distributed data-parallel computing using a high-level language. Proceedings of the 8th USENIX Conference on Operating Systems Design, and Implementation (OSDI-08). Berkeley, CA: USENIX Association, 2008, pp. 1-14.
-
(2008)
Proceedings of the 8th USENIX Conference on Operating Systems Design and Implementation (OSDI-08
, pp. 1-14
-
-
Yu, Y.1
Isard, M.2
Fetterly, D.3
-
12
-
-
84863735533
-
Distributed GraphLab: A framework for machine learning, and data mining in the cloud
-
Low Y, Bickson D, Gonzalez J, et al. Distributed GraphLab: A framework for machine learning, and data mining in the cloud. Proceedings of the VLDB Endowment 2012; 5: 716-727.
-
(2012)
Proceedings of the VLDB Endowment
, vol.5
, pp. 716-727
-
-
Low, Y.1
Bickson, D.2
Gonzalez, J.3
-
13
-
-
84862272108
-
Parallel gibbs sampling: From colored fields to thin junction trees
-
Gonzalez J, Low Y, Gretton A, Guestrin C. Parallel gibbs sampling: From colored fields to thin junction trees. AISTATS 2011; 15: 324-332.
-
(2011)
AISTATS
, vol.15
, pp. 324-332
-
-
Gonzalez, J.1
Low, Y.2
Gretton, A.3
Guestrin, C.4
-
14
-
-
85072980230
-
PowerGraph: Distributed graph-parallel computation on natural graphs
-
Berkeley CA: USENIX Association
-
Gonzalez JE, Low Y, Gu H, et al. PowerGraph: Distributed graph-parallel computation on natural graphs. Proceedings of the 10th USENIX Symposium on Operating Systems Design, and Implementation (OSDI 12). Berkeley, CA: USENIX Association, 2012, pp. 17-30.
-
(2012)
Proceedings of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12
, pp. 17-30
-
-
Gonzalez, J.E.1
Low, Y.2
Gu, H.3
|