-
1
-
-
84924528297
-
Towards greener and more sustainable batteries for electrical energy storage
-
Larcher D, Tarascon J-M. Towards greener and more sustainable batteries for electrical energy storage. Nat Chem. 2014;7:19–29. doi:10.1038/nchem.2085
-
(2014)
Nat Chem.
, vol.7
, pp. 19-29
-
-
Larcher, D.1
Tarascon, J.-M.2
-
2
-
-
84921816001
-
Nanostructured Mn-based oxides for electrochemical energy storage and conversion
-
Zhang K, Han XP, Hu Z, et al. Nanostructured Mn-based oxides for electrochemical energy storage and conversion. Chem Soc Rev. 2015;44:699–728. doi:10.1039/C4CS00218K
-
(2015)
Chem Soc Rev.
, vol.44
, pp. 699-728
-
-
Zhang, K.1
Han, X.P.2
Hu, Z.3
-
3
-
-
84877749635
-
Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation
-
Chen GZ. Understanding supercapacitors based on nano-hybrid materials with interfacial conjugation. Prog Nat Sci–Mater Int. 2013;23:245–255. doi:10.1016/j.pnsc.2013.04.001
-
(2013)
Prog Nat Sci–Mater Int.
, vol.23
, pp. 245-255
-
-
Chen, G.Z.1
-
4
-
-
84878230759
-
Capacitive energy storage in nanostructured carbon–electrolyte systems
-
Simon P, Gogotsi Y. Capacitive energy storage in nanostructured carbon–electrolyte systems. Acc Chem Res. 2013;46:1094–1103. doi:10.1021/ar200306b
-
(2013)
Acc Chem Res.
, vol.46
, pp. 1094-1103
-
-
Simon, P.1
Gogotsi, Y.2
-
5
-
-
84924368606
-
Redox electrolytes in supercapacitors
-
Akinwolemiwa B, Peng C, Chen GZ. Redox electrolytes in supercapacitors. J Electrochem Soc. 2015;162:A5054–A5059. doi:10.1149/2.0111505jes
-
(2015)
J Electrochem Soc.
, vol.162
, pp. A5054-A5059
-
-
Akinwolemiwa, B.1
Peng, C.2
Chen, G.Z.3
-
6
-
-
77955543253
-
Electrodeposition of nonconducting polymers: roles of carbon nanotubes in the process and products
-
Hu D, Peng C, Chen GZ. Electrodeposition of nonconducting polymers:roles of carbon nanotubes in the process and products. ACS Nano. 2010;4:4274–4282. doi:10.1021/nn100849d
-
(2010)
ACS Nano
, vol.4
, pp. 4274-4282
-
-
Hu, D.1
Peng, C.2
Chen, G.Z.3
-
7
-
-
84871046470
-
4 V class aqueous hybrid electrochemical capacitor with battery-like capacity
-
Makino S, Shinohara Y, Ban T, et al. 4 V class aqueous hybrid electrochemical capacitor with battery-like capacity. RSC Adv. 2012;2:12144–12147. doi:10.1039/c2ra22265e
-
(2012)
RSC Adv.
, vol.2
, pp. 12144-12147
-
-
Makino, S.1
Shinohara, Y.2
Ban, T.3
-
8
-
-
84878618145
-
2 positive and protected Li negative electrodes
-
2 positive and protected Li negative electrodes. J Power Sour. 2013;241:572–577. doi:10.1016/j.jpowsour.2013.05.003
-
(2013)
J Power Sour
, vol.241
, pp. 572-577
-
-
Shimizu, W.1
Makino, S.2
Takahashi, K.3
-
9
-
-
0040878245
-
On the use of ionically conducting membranes for the fabrication of laminated polymer-based redox capacitors
-
Panero S, Spila E, Scrosati B. On the use of ionically conducting membranes for the fabrication of laminated polymer-based redox capacitors. J Electroanal Chem. 1995;396:385–389. doi:10.1016/0022-0728(95)04163-I
-
(1995)
J Electroanal Chem.
, vol.396
, pp. 385-389
-
-
Panero, S.1
Spila, E.2
Scrosati, B.3
-
10
-
-
84908351048
-
Enhancement of energy density in organic redox capacitor by improvement of electric conduction network
-
Komatsu D, Tomai T, Honma I. Enhancement of energy density in organic redox capacitor by improvement of electric conduction network. J Power Sources. 2015;274:412–416. doi:10.1016/j.jpowsour.2014.10.069
-
(2015)
J Power Sources
, vol.274
, pp. 412-416
-
-
Komatsu, D.1
Tomai, T.2
Honma, I.3
-
11
-
-
84896481188
-
High energy density asymmetric pseudocapacitors fabricated by graphene/carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode
-
Hung CJ, Lin P, Tseng TY. High energy density asymmetric pseudocapacitors fabricated by graphene/carbon nanotube/MnO2 plus carbon nanotubes nanocomposites electrode. J Power Sour. 2014;259:145–153. doi:10.1016/j.jpowsour.2014.02.094
-
(2014)
J Power Sour
, vol.259
, pp. 145-153
-
-
Hung, C.J.1
Lin, P.2
Tseng, T.Y.3
-
12
-
-
0002746162
-
The role and utilization of pseudocapacitance for energy storage by supercapacitors
-
Conway BE, Birss V, Wojtowicz J. The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sour. 1997;66:1–14. doi:10.1016/S0378-7753(96)02474-3
-
(1997)
J Power Sour
, vol.66
, pp. 1-14
-
-
Conway, B.E.1
Birss, V.2
Wojtowicz, J.3
-
13
-
-
77049086515
-
Rate capability of graphite materials as negative electrodes in lithium-ion capacitors
-
Sivakkumar SR, Nerkar JY, Pandolfo AG. Rate capability of graphite materials as negative electrodes in lithium-ion capacitors. Electrochim Acta. 2010;55:3330–3335. doi:10.1016/j.electacta.2010.01.059
-
(2010)
Electrochim Acta
, vol.55
, pp. 3330-3335
-
-
Sivakkumar, S.R.1
Nerkar, J.Y.2
Pandolfo, A.G.3
-
14
-
-
84918555687
-
Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors
-
Shi ZQ, Zhang J, Wang J, et al. Effect of the capacity design of activated carbon cathode on the electrochemical performance of lithium-ion capacitors. Electrochim Acta. 2015;153:476–483. doi:10.1016/j.electacta.2014.12.018
-
(2015)
Electrochim Acta
, vol.153
, pp. 476-483
-
-
Shi, Z.Q.1
Zhang, J.2
Wang, J.3
-
16
-
-
84865519433
-
Rechargeable batteries: challenges old and new
-
Goodenough JB. Rechargeable batteries:challenges old and new. J Solid State Electrochem. 2012;16:2019–2029. doi:10.1007/s10008-012-1751-2
-
(2012)
J Solid State Electrochem.
, vol.16
, pp. 2019-2029
-
-
Goodenough, J.B.1
-
18
-
-
0034523233
-
The electrochemical oxidation of white phosphorus at a three-phase junction
-
Hermes M, Scholz F. The electrochemical oxidation of white phosphorus at a three-phase junction. Electrochem Commun. 2000;2:845–850. doi:10.1016/S1388-2481(00)00134-X
-
(2000)
Electrochem Commun.
, vol.2
, pp. 845-850
-
-
Hermes, M.1
Scholz, F.2
-
19
-
-
23844466908
-
Electrochemistry at conductor/insulator/electrolyte three-phase interlines: a thin layer model
-
Deng Y, Wang DH, Xiao W, et al. Electrochemistry at conductor/insulator/electrolyte three-phase interlines:a thin layer model. J Phys Chem B. 2005;109:14043–14051. doi:10.1021/jp044604r
-
(2005)
J Phys Chem B
, vol.109
, pp. 14043-14051
-
-
Deng, Y.1
Wang, D.H.2
Xiao, W.3
-
20
-
-
33846249613
-
Three-phase interlines electrochemically driven into insulator compounds: a penetration model and its verification by electroreduction of solid AgCl
-
Xiao W, Jin XB, Deng Y, et al. Three-phase interlines electrochemically driven into insulator compounds:a penetration model and its verification by electroreduction of solid AgCl. Chem Eur J. 2007;13:604–612. doi:10.1002/chem.200600172
-
(2007)
Chem Eur J.
, vol.13
, pp. 604-612
-
-
Xiao, W.1
Jin, X.B.2
Deng, Y.3
-
21
-
-
37049045007
-
Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage
-
Conway BE, Gileadi E. Kinetic theory of pseudo-capacitance and electrode reactions at appreciable surface coverage. Trans Farad Soc. 1962;58:2493–2509. doi:10.1039/tf9625802493
-
(1962)
Trans Farad Soc.
, vol.58
, pp. 2493-2509
-
-
Conway, B.E.1
Gileadi, E.2
-
22
-
-
24844464337
-
The interpretation of adsorption pseudocapacitance curves as measured by the potential-sweep method–I
-
Hale JM, Greef R. The interpretation of adsorption pseudocapacitance curves as measured by the potential-sweep method–I. Electrochim Acta. 1967;12:1409–1420. doi:10.1016/0013-4686(67)80054-9
-
(1967)
Electrochim Acta
, vol.12
, pp. 1409-1420
-
-
Hale, J.M.1
Greef, R.2
-
23
-
-
33744493626
-
Ruthenium dioxide: a new interesting electrode material. Solid state structure and electrochemical behaviour
-
Trasatti S, Buzzanca G. Ruthenium dioxide:a new interesting electrode material. Solid state structure and electrochemical behaviour. J Electroanal Chem Int Electrochem. 1971;29:A1–A5. doi:10.1016/S0022-0728(71)80111-0
-
(1971)
J Electroanal Chem Int Electrochem
, vol.29
, pp. A1-A5
-
-
Trasatti, S.1
Buzzanca, G.2
-
24
-
-
0023422724
-
The in situ ESR and electrochemical behavior of poly(aniline) electrode films
-
Glarum SH, Marshall JH. The in situ ESR and electrochemical behavior of poly(aniline) electrode films. J Electrochem Soc. 1987;134:2160–2165. doi:10.1149/1.2100843
-
(1987)
J Electrochem Soc.
, vol.134
, pp. 2160-2165
-
-
Glarum, S.H.1
Marshall, J.H.2
-
25
-
-
33747293620
-
Redox mechanism and electrochemical behaviour or polyaniline deposits
-
Genies EM, Tsintavis C. Redox mechanism and electrochemical behaviour or polyaniline deposits. J Electroanal Chem Int Electrochem. 1985;195:109–128. doi:10.1016/0022-0728(85)80009-7
-
(1985)
J Electroanal Chem Int Electrochem
, vol.195
, pp. 109-128
-
-
Genies, E.M.1
Tsintavis, C.2
-
26
-
-
0028271317
-
Conducting polymers as active materials in electrochemical capacitors
-
Rudge A, Davey J, Raistrick I, et al. Conducting polymers as active materials in electrochemical capacitors. J Power Sour. 1994;47:89–107. doi:10.1016/0378-7753(94)80053-7
-
(1994)
J Power Sour
, vol.47
, pp. 89-107
-
-
Rudge, A.1
Davey, J.2
Raistrick, I.3
-
27
-
-
84913261774
-
Organo-modified metal oxide electrode. I. studies of modified layer by capacitance measurements and ESCA
-
Fujihira M, Matsue T, Osa T. Organo-modified metal oxide electrode. I. studies of modified layer by capacitance measurements and ESCA. Chem Lett. 1976;5:875–880. doi:10.1246/cl.1976.875
-
(1976)
Chem Lett.
, vol.5
, pp. 875-880
-
-
Fujihira, M.1
Matsue, T.2
Osa, T.3
-
29
-
-
0002570699
-
Supercapacitor behavior with KCl electrolyte
-
Lee HY, Goodenough JB. Supercapacitor behavior with KCl electrolyte. J Solid State Chem. 1999;144:220–223. doi:10.1006/jssc.1998.8128
-
(1999)
J Solid State Chem.
, vol.144
, pp. 220-223
-
-
Lee, H.Y.1
Goodenough, J.B.2
-
30
-
-
0003090222
-
Ideal supercapacitor behavior of amorphous V2O5·nH2O in Potassium Chloride (KCl) aqueous solution
-
Lee HY, Goodenough JB. Ideal supercapacitor behavior of amorphous V2O5·nH2O in Potassium Chloride (KCl) aqueous solution. J Solid State Chem. 1999;148:81–84. doi:10.1006/jssc.1999.8367
-
(1999)
J Solid State Chem.
, vol.148
, pp. 81-84
-
-
Lee, H.Y.1
Goodenough, J.B.2
-
31
-
-
77249120090
-
Manganese oxide based materials for supercapacitors
-
Zhang SW, Chen GZ. Manganese oxide based materials for supercapacitors. Energy Mater. 2008;3:186–200. doi:10.1179/174892409X427940
-
(2008)
Energy Mater.
, vol.3
, pp. 186-200
-
-
Zhang, S.W.1
Chen, G.Z.2
-
32
-
-
0026168744
-
Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage
-
Conway BE. Transition from ‘supercapacitor’ to ‘battery’ behavior in electrochemical energy storage. J Electrochem Soc. 1991;138:1539–1548. doi:10.1149/1.2085829
-
(1991)
J Electrochem Soc.
, vol.138
, pp. 1539-1548
-
-
Conway, B.E.1
-
33
-
-
84890688451
-
-
Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance., Art. No. 2923
-
Mai L-Q, Minhas-Khan A, Tian XC, et al. Synergistic interaction between redox-active electrolyte and binder-free functionalized carbon for ultrahigh supercapacitor performance. Nat Commun. 2013;4, Art. No. 2923. doi:10.1038/ncomms3923
-
(2013)
Nat Commun.
, vol.4
-
-
Mai, L.-Q.1
Minhas-Khan, A.2
Tian, X.C.3
-
34
-
-
77952858859
-
2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials
-
2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J Am Chem Soc. 2010;132:7472–7477. doi:10.1021/ja102267j
-
(2010)
J Am Chem Soc.
, vol.132
, pp. 7472-7477
-
-
Wang, H.L.1
Casalongue, H.S.2
Liang, Y.Y.3
-
35
-
-
0029754614
-
Porous nickel oxide/nickel films for electrochemical capacitors
-
Liu KC, Anderson MA. Porous nickel oxide/nickel films for electrochemical capacitors. J Electrochem Soc 1996;143:124–130. doi:10.1149/1.1836396
-
(1996)
J Electrochem Soc
, vol.143
, pp. 124-130
-
-
Liu, K.C.1
Anderson, M.A.2
-
36
-
-
84898800941
-
Pseudocapacitive oxide materials for high-rate electrochemical energy storage
-
Augustyn V, Simon P, Dunn B. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci. 2014;7:1597–1614. doi:10.1039/c3ee44164d
-
(2014)
Energy Environ Sci.
, vol.7
, pp. 1597-1614
-
-
Augustyn, V.1
Simon, P.2
Dunn, B.3
-
37
-
-
84874997337
-
-
From electrochemical capacitors to supercapatteries
-
Chae JH, Zhou XH, Chen GZ. From electrochemical capacitors to supercapatteries. Green. 2012;2:41–54. doi:10.1515/green-2011-0007
-
(2012)
Green
, vol.2
, pp. 41-54
-
-
Chae, J.H.1
Zhou, X.H.2
Chen, G.Z.3
-
38
-
-
84870663531
-
1.9V aqueous carbon–carbon supercapacitors with unequal electrode capacitances
-
Chae JH, Chen GZ. 1.9V aqueous carbon–carbon supercapacitors with unequal electrode capacitances. Electrochim Acta. 2012;86:248–254. doi:10.1016/j.electacta.2012.07.033
-
(2012)
Electrochim Acta
, vol.86
, pp. 248-254
-
-
Chae, J.H.1
Chen, G.Z.2
-
39
-
-
79955045712
-
Theoretical specific capacitance based on charge storage mechanisms of conducting polymers: Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’
-
Peng C, Hu D, Chen GZ. Theoretical specific capacitance based on charge storage mechanisms of conducting polymers:Comment on ‘Vertically oriented arrays of polyaniline nanorods and their super electrochemical properties’. Chem Commun. 2011;47:4105–4107. doi:10.1039/c1cc10675a
-
(2011)
Chem Commun.
, vol.47
, pp. 4105-4107
-
-
Peng, C.1
Hu, D.2
Chen, G.Z.3
-
40
-
-
84924368459
-
To be or not to be pseudocapacitive?
-
Brousse T, Belanger D, Long JW. To be or not to be pseudocapacitive? J Electrochem Soc. 2015;162:A5185–A5189. doi:10.1149/2.0201505jes
-
(2015)
J Electrochem Soc.
, vol.162
, pp. A5185-A5189
-
-
Brousse, T.1
Belanger, D.2
Long, J.W.3
-
41
-
-
84938863676
-
Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors
-
Laheäär A, Przygocki P, Abbas Q, et al. Appropriate methods for evaluating the efficiency and capacitive behavior of different types of supercapacitors. Electrochem Commun. 2015;60:21–25. doi:10.1016/j.elecom.2015.07.022
-
(2015)
Electrochem Commun.
, vol.60
, pp. 21-25
-
-
Laheäär, A.1
Przygocki, P.2
Abbas, Q.3
-
42
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon P, Gogotsi Y. Materials for electrochemical capacitors. Nat Mater. 2008;7:845–854. doi:10.1038/nmat2297
-
(2008)
Nat Mater.
, vol.7
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
43
-
-
0029196633
-
A new charge storage mechanism for electrochemical capacitors
-
Zheng JP, Jow TR. A new charge storage mechanism for electrochemical capacitors. J Electrochem Soc. 1995;142:L6–L8. doi:10.1149/1.2043984
-
(1995)
J Electrochem Soc.
, vol.142
, pp. L6-L8
-
-
Zheng, J.P.1
Jow, T.R.2
-
44
-
-
1942470562
-
Redox deposition of manganese oxide on graphite for supercapacitors
-
Wu MQ, Snook GA, Chen GZ, et al. Redox deposition of manganese oxide on graphite for supercapacitors. Electrochem Commun. 2004;6:499–504. doi:10.1016/j.elecom.2004.03.011
-
(2004)
Electrochem Commun.
, vol.6
, pp. 499-504
-
-
Wu, M.Q.1
Snook, G.A.2
Chen, G.Z.3
-
45
-
-
82955199345
-
A review of electrode materials for electrochemical supercapacitors
-
Wang GP, Zhang L, Zhang JJ. A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev. 2012;41:797–828. doi:10.1039/C1CS15060J
-
(2012)
Chem Soc Rev.
, vol.41
, pp. 797-828
-
-
Wang, G.P.1
Zhang, L.2
Zhang, J.J.3
-
46
-
-
48049084548
-
Carbon nanotube and conducting polymer composites for supercapacitors
-
Peng C, Zhang SW, Jewell D, et al. Carbon nanotube and conducting polymer composites for supercapacitors. Prog Nat Sci. 2008;18:777–788. doi:10.1016/j.pnsc.2008.03.002
-
(2008)
Prog Nat Sci
, vol.18
, pp. 777-788
-
-
Peng, C.1
Zhang, S.W.2
Jewell, D.3
-
47
-
-
35148868256
-
A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes
-
Peng C, Jin J, Chen GZ. A comparative study on electrochemical co-deposition and capacitance of composite films of conducting polymers and carbon nanotubes. Electrochim Acta. 2007;53:525–537. doi:10.1016/j.electacta.2007.07.004
-
(2007)
Electrochim Acta
, vol.53
, pp. 525-537
-
-
Peng, C.1
Jin, J.2
Chen, G.Z.3
-
48
-
-
0016028187
-
Ruthenium dioxide: a new electrode material. I. Behaviour in acid solutions of inert electrolytes
-
Galizzioli D, Tantardini F, Trasatti S. Ruthenium dioxide:a new electrode material. I. Behaviour in acid solutions of inert electrolytes. J Appl Electrochem. 1974;4:57–67. doi:10.1007/BF00615906
-
(1974)
J Appl Electrochem.
, vol.4
, pp. 57-67
-
-
Galizzioli, D.1
Tantardini, F.2
Trasatti, S.3
-
49
-
-
1242264980
-
How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors
-
Hu CC, Chen W-C, Chang K-H. How to achieve maximum utilization of hydrous ruthenium oxide for supercapacitors. J Electrochem Soc. 2004;151:A281–A290. doi:10.1149/1.1639020
-
(2004)
J Electrochem Soc.
, vol.151
, pp. A281-A290
-
-
Hu, C.C.1
Chen, W.-C.2
Chang, K.-H.3
-
50
-
-
77956611662
-
Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks
-
Zhang SW, Peng C, Ng KC, et al. Nanocomposites of manganese oxides and carbon nanotubes for aqueous supercapacitor stacks. Electrochim Acta. 2010;55:7447–7453. doi:10.1016/j.electacta.2010.01.078
-
(2010)
Electrochim Acta
, vol.55
, pp. 7447-7453
-
-
Zhang, S.W.1
Peng, C.2
Ng, K.C.3
-
51
-
-
84855170039
-
Interfacial synthesis: amphiphilic monomers assisted ultrarefining of mesoporous manganese oxide nanoparticles and the electrochemical implications
-
Xiao W., Hu D., Peng C., et al. Interfacial synthesis:amphiphilic monomers assisted ultrarefining of mesoporous manganese oxide nanoparticles and the electrochemical implications. ACS Appl Mater Interfaces. 2011;3:3120–3129. doi:10.1021/am200625p
-
(2011)
ACS Appl Mater Interfaces
, vol.3
, pp. 3120-3129
-
-
Xiao, W.1
Hu, D.2
Peng, C.3
-
52
-
-
85013005532
-
-
(03/09/2015)
-
http://wiki.chemprime.chemeddl.org/index.php/CoreChem:Metallic_Bonding (03/09/2015)
-
-
-
-
53
-
-
30144443058
-
2 in alkaline electrolyte
-
2 in alkaline electrolyte. Electrochim Acta. 1975;20:221–225. doi:10.1016/0013-4686(75)85028-6
-
(1975)
Electrochim Acta
, vol.20
, pp. 221-225
-
-
McBreen, J.1
-
54
-
-
85012987465
-
-
2 Activated Carbon Hybrid Supercapacitors Using Alkaline Electrolyte
-
2 Activated Carbon Hybrid Supercapacitors Using Alkaline Electrolyte. J Shanghai Univ-Nat Sci Ed. 2006;12:624–679.
-
(2006)
J Shanghai Univ-Nat Sci Ed.
, vol.12
, pp. 624-679
-
-
Zhang, Q.-L.1
Yuan, A.-B.2
-
55
-
-
0000311311
-
Electrochemistry of the nickel-oxide electrode—VI. Surface oxidation of nickel anodes in alkaline solution
-
Sattar MA, Conway BE., Electrochemistry of the nickel-oxide electrode—VI. Surface oxidation of nickel anodes in alkaline solution. Electrochim Acta. 1969;14:695–710. doi:10.1016/0013-4686(69)80025-3
-
(1969)
Electrochim Acta
, vol.14
, pp. 695-710
-
-
Sattar, M.A.1
Conway, B.E.2
-
56
-
-
0033905201
-
Studies on the capacitance of Nickel Oxide films: effect of heating temperature and electrolyte concentration
-
Srinivasan V, Weidner JW. Studies on the capacitance of Nickel Oxide films:effect of heating temperature and electrolyte concentration. J Electrochem Soc. 2000;147:880–885. doi:10.1149/1.1393286
-
(2000)
J Electrochem Soc.
, vol.147
, pp. 880-885
-
-
Srinivasan, V.1
Weidner, J.W.2
-
57
-
-
34748819458
-
Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement
-
Weinert JX, Burke AF, Wei XZ. Lead-acid and lithium-ion batteries for the Chinese electric bike market and implications on future technology advancement. J Power Sour. 2007;172:938–945. doi:10.1016/j.jpowsour.2007.05.044
-
(2007)
J Power Sour
, vol.172
, pp. 938-945
-
-
Weinert, J.X.1
Burke, A.F.2
Wei, X.Z.3
-
58
-
-
85012999526
-
-
Alkaline-manganese dioxide. [cited 2015 Sep 12]
-
Duracell. Alkaline-manganese dioxide. [cited 2015 Sep 12]. http://ww2.duracell.com/media/en-US/pdf/gtcl/Technical_Bulletins/Alkaline%20Technical%20Bulletin.pdf.
-
-
-
-
59
-
-
84961289081
-
The lithium/air battery: still an emerging system or a practical reality?
-
Grande L, Paillard E, Hassoun J, et al. The lithium/air battery:still an emerging system or a practical reality? Adv Mater. 2015;27:784–800. doi:10.1002/adma.201403064
-
(2015)
Adv Mater.
, vol.27
, pp. 784-800
-
-
Grande, L.1
Paillard, E.2
Hassoun, J.3
-
60
-
-
60149107349
-
Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors
-
Hulicova-Jurcakova D, Seredych M, Lu GQ, et al. Combined effect of nitrogen- and oxygen-containing functional groups of microporous activated carbon on its electrochemical performance in supercapacitors. Adv Funct Mater. 2009;19:438–447. doi:10.1002/adfm.200801236
-
(2009)
Adv Funct Mater.
, vol.19
, pp. 438-447
-
-
Hulicova-Jurcakova, D.1
Seredych, M.2
Lu, G.Q.3
-
61
-
-
0036532384
-
Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics
-
Hsieh CT, Teng H. Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics. Carbon. 2002;40:667–674. doi:10.1016/S0008-6223(01)00182-8
-
(2002)
Carbon
, vol.40
, pp. 667-674
-
-
Hsieh, C.T.1
Teng, H.2
-
62
-
-
84940391822
-
Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers
-
Wu XZ, Zhou J, Xing W, et al. Insight into high areal capacitances of low apparent surface area carbons derived from nitrogen-rich polymers. Carbon. 2015;94:560–567. doi:10.1016/j.carbon.2015.07.038
-
(2015)
Carbon
, vol.94
, pp. 560-567
-
-
Wu, X.Z.1
Zhou, J.2
Xing, W.3
-
63
-
-
84938205607
-
In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors
-
Griffin JM, Forse AC, Tsai W-Y, et al. In situ NMR and electrochemical quartz crystal microbalance techniques reveal the structure of the electrical double layer in supercapacitors. Nat Mater. 2015;14:812–819. doi:10.1038/nmat4318
-
(2015)
Nat Mater.
, vol.14
, pp. 812-819
-
-
Griffin, J.M.1
Forse, A.C.2
Tsai, W.-Y.3
-
64
-
-
84946026921
-
2-based nanostructures for high-performance supercapacitors
-
2-based nanostructures for high-performance supercapacitors. J Mater Chem A. 2015;3:21380–21423. doi:10.1039/C5TA05523G
-
(2015)
J Mater Chem A.
, vol.3
, pp. 21380-21423
-
-
Huang, M.1
Li, F.2
Dong, F.3
-
65
-
-
69449083438
-
2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities
-
2 composites synthesized by microwave-assisted method for supercapacitors with high power and energy densities. J Power Sour. 2009;194:1202–1207. doi:10.1016/j.jpowsour.2009.06.006
-
(2009)
J Power Sour
, vol.194
, pp. 1202-1207
-
-
Yan, J.1
Fan, Z.J.2
Wei, T.3
-
66
-
-
0942288918
-
Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites
-
Lota K, Khomenko VK, Frackowiak E. Capacitance properties of poly(3,4-ethylenedioxythiophene)/carbon nanotubes composites. J Phys Chem Solid. 2004;65:295–301. doi:10.1016/j.jpcs.2003.10.051
-
(2004)
J Phys Chem Solid.
, vol.65
, pp. 295-301
-
-
Lota, K.1
Khomenko, V.K.2
Frackowiak, E.3
-
67
-
-
3543083880
-
2 electrode used in aqueous electrochemical capacitor
-
2 electrode used in aqueous electrochemical capacitor. Chem Mater. 2004;16:3184–3190. doi:10.1021/cm049649j
-
(2004)
Chem Mater.
, vol.16
, pp. 3184-3190
-
-
Toupin, M.1
Brousse, T.2
Belanger, D.3
-
68
-
-
84899584923
-
High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites
-
He SJ, Chen W. High performance supercapacitors based on three-dimensional ultralight flexible manganese oxide nanosheets/carbon foam composites. J Power Sour. 2014;262:391–400. doi:10.1016/j.jpowsour.2014.03.137
-
(2014)
J Power Sour
, vol.262
, pp. 391-400
-
-
He, S.J.1
Chen, W.2
-
69
-
-
79955683112
-
High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires
-
Jiang H, Yang L, Li C, et al. High–rate electrochemical capacitors from highly graphitic carbon–tipped manganese oxide/mesoporous carbon/manganese oxide hybrid nanowires. Energy Environ Sci. 2011;4:1813–1819. doi:10.1039/c1ee01032h
-
(2011)
Energy Environ Sci.
, vol.4
, pp. 1813-1819
-
-
Jiang, H.1
Yang, L.2
Li, C.3
-
70
-
-
38749129641
-
Performance of AC/graphite capacitors at high weight ratios of AC/graphite
-
Wang HY, Yoshio M. Performance of AC/graphite capacitors at high weight ratios of AC/graphite. J Power Sour. 2008;177:681–684. doi:10.1016/j.jpowsour.2007.11.066
-
(2008)
J Power Sour
, vol.177
, pp. 681-684
-
-
Wang, H.Y.1
Yoshio, M.2
-
71
-
-
84856616935
-
20 V stack of aqueous supercapacitors with carbon (−), titanium bipolar plates and CNT-polypyrrole composite (+)
-
Zhou XH, Peng C, Chen GZ., 20 V stack of aqueous supercapacitors with carbon (−), titanium bipolar plates and CNT-polypyrrole composite (+). AIChE J. 2012;58:974–983. doi:10.1002/aic.12632
-
(2012)
AIChE J.
, vol.58
, pp. 974-983
-
-
Zhou, X.H.1
Peng, C.2
Chen, G.Z.3
-
73
-
-
0033886254
-
Carbon nanotube and polypyrrole composites: coating and doping
-
Chen GZ., Shaffer MSP, Coleby D, et al. Carbon nanotube and polypyrrole composites:coating and doping. Adv Mater. 2000;12:522–526. doi:10.1002/(SICI)1521-4095(200004)12:7<522::AID-ADMA522>3.0.CO;2-S
-
(2000)
Adv Mater.
, vol.12
, pp. 522-526
-
-
Chen, G.Z.1
Shaffer, M.S.P.2
Coleby, D.3
-
74
-
-
34548731324
-
Nanoscale microelectrochemical cells on carbon nanotubes
-
Jin XB, Zhou W, Zhang SW, et al. Nanoscale microelectrochemical cells on carbon nanotubes. Small. 2007;3:1513–1517. doi:10.1002/smll.200700139
-
(2007)
Small
, vol.3
, pp. 1513-1517
-
-
Jin, X.B.1
Zhou, W.2
Zhang, S.W.3
-
75
-
-
84878236354
-
Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors
-
Sassin MB, Chervin CN, Rolison DR, et al. Redox deposition of nanoscale metal oxides on carbon for next-generation electrochemical capacitors. Acc Chem Res. 2013;46:1062–1074. doi:10.1021/ar2002717
-
(2013)
Acc Chem Res.
, vol.46
, pp. 1062-1074
-
-
Sassin, M.B.1
Chervin, C.N.2
Rolison, D.R.3
-
76
-
-
84903540984
-
Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes
-
Kim M, Kim J., Redox deposition of birnessite-type manganese oxide on silicon carbide microspheres for use as supercapacitor electrodes. ACS Appl Mater Interfaces. 2014;6:9036–9045. doi:10.1021/am406032y
-
(2014)
ACS Appl Mater Interfaces
, vol.6
, pp. 9036-9045
-
-
Kim, M.1
Kim, J.2
-
77
-
-
84893855365
-
2 deposition by the redox reaction between carbon and permanganate ions
-
2 deposition by the redox reaction between carbon and permanganate ions. J Phys Chem C. 2014;118:2834–2843. doi:10.1021/jp411176b
-
(2014)
J Phys Chem C
, vol.118
, pp. 2834-2843
-
-
Lee, S.-W.1
Bak, S.-M.2
Lee, C.-W.3
-
78
-
-
84965025751
-
Redox electrode materials for supercapatteries
-
Yu LP, Chen GZ., Redox electrode materials for supercapatteries. J Power Sour. 2016;326:604–612. doi:10.1016/j.jpowsour.2016.04.095
-
(2016)
J Power Sour
, vol.326
, pp. 604-612
-
-
Yu, L.P.1
Chen, G.Z.2
-
80
-
-
84880221420
-
Metal oxide and hydroxide nanoarrays: hydrothermal synthesis and applications as supercapacitors and nanocatalysts
-
Yang Q, Lu ZY, Liu JF, et al. Metal oxide and hydroxide nanoarrays:hydrothermal synthesis and applications as supercapacitors and nanocatalysts. Prog Nat Sci–Mater Int. 2013;23:351–366. doi:10.1016/j.pnsc.2013.06.015
-
(2013)
Prog Nat Sci–Mater Int.
, vol.23
, pp. 351-366
-
-
Yang, Q.1
Lu, Z.Y.2
Liu, J.F.3
-
81
-
-
84942531839
-
2 core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors
-
2 core–shell heterostructures with outstanding rate capability for asymmetric supercapacitors. Chem Commun. 2015;51:14840–14843. doi:10.1039/C5CC03976B
-
(2015)
Chem Commun.
, vol.51
, pp. 14840-14843
-
-
Zhu, S.J.1
Jia, J.Q.2
Wang, T.3
-
82
-
-
84951925268
-
3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes
-
3 composite nanospindles for enhanced visible light driven photocatalysts and supercapacitor electrodes. J Mater Chem A. 2015;3:15248–15258. doi:10.1039/C5TA02630J
-
(2015)
J Mater Chem A
, vol.3
, pp. 15248-15258
-
-
Arul, N.S.1
Mangalaraj, D.2
Ramachandran, R.3
-
84
-
-
84871787704
-
High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes
-
Cao JY, Wang YM, Zhou Y, et al. High voltage asymmetric supercapacitor based on MnO2 and graphene electrodes. J Electroanal Chem. 2013;689:201–206. doi:10.1016/j.jelechem.2012.10.024
-
(2013)
J Electroanal Chem.
, vol.689
, pp. 201-206
-
-
Cao, J.Y.1
Wang, Y.M.2
Zhou, Y.3
-
85
-
-
78649355898
-
Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors
-
Peng C, Zhang SW, Zhou XH, et al. Unequalisation of electrode capacitances for enhanced energy capacity in asymmetrical supercapacitors. Energy Environ Sci. 2010;3:1499–1502. doi:10.1039/c0ee00228c
-
(2010)
Energy Environ Sci.
, vol.3
, pp. 1499-1502
-
-
Peng, C.1
Zhang, S.W.2
Zhou, X.H.3
-
86
-
-
84928537937
-
-
Cell voltage versus electrode potential range in aqueous supercapacitors., Art. No. 9854
-
Dai ZX, Peng C, Chae JH, et al. Cell voltage versus electrode potential range in aqueous supercapacitors. Sci Rep. 2015;5, Art. No. 9854.
-
(2015)
Sci Rep.
, vol.5
-
-
Dai, Z.X.1
Peng, C.2
Chae, J.H.3
-
87
-
-
85012960941
-
-
[cited 2015 Sep 26]. (26/09/2015)
-
[cited 2015 Sep 26]. http://www.fhwa.dot.gov/publications/research/safety/95202/005.cfm (26/09/2015)
-
-
-
-
88
-
-
84934990016
-
Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures
-
Gao Y, Qin ZB, Guan L, et al. Organoaqueous calcium chloride electrolytes for capacitive charge storage in carbon nanotubes at sub-zero-temperatures. Chem Commun. 2015;51:10819–10822. doi:10.1039/C5CC03048J
-
(2015)
Chem Commun.
, vol.51
, pp. 10819-10822
-
-
Gao, Y.1
Qin, Z.B.2
Guan, L.3
-
89
-
-
85012960948
-
-
ISEE’Cap2015. 4th Intern. Symp. on Enhanced Electrochem. Capacitors, 2015 8–12 June, Montpellier, France
-
Ruan DB, Gu GS, Chen ZR, Yang B. ISEE’Cap2015. 4th Intern. Symp. on Enhanced Electrochem. Capacitors, 2015 8–12 June, Montpellier, France.
-
-
-
Ruan, D.B.1
Gu, G.S.2
Chen, Z.R.3
Yang, B.4
-
90
-
-
84884375736
-
-
Organic electrolytes for activated carbon-based supercapacitors with flexible package
-
Huang B, Sun X-Z, Zhang X, et al. Organic electrolytes for activated carbon-based supercapacitors with flexible package. Acta Phys Chim Sin. 2013;29:1998–2004.
-
(2013)
Acta Phys Chim Sin.
, vol.29
, pp. 1998-2004
-
-
Huang, B.1
Sun, X.-Z.2
Zhang, X.3
-
91
-
-
84907935971
-
Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes
-
Jäckel N, Weingarth D, Zeiger M, et al. Comparison of carbon onions and carbon blacks as conductive additives for carbon supercapacitors in organic electrolytes. J Power Sour. 2014;272:1122–1133. doi:10.1016/j.jpowsour.2014.08.090
-
(2014)
J Power Sour
, vol.272
, pp. 1122-1133
-
-
Jäckel, N.1
Weingarth, D.2
Zeiger, M.3
-
92
-
-
84940033599
-
Overcharge failure investigation of lithium-ion batteries
-
Yuan QF, Zhao FG, Wang WD, et al. Overcharge failure investigation of lithium-ion batteries. Electrochim Acta. 2015;178:682–688. doi:10.1016/j.electacta.2015.07.147
-
(2015)
Electrochim Acta
, vol.178
, pp. 682-688
-
-
Yuan, Q.F.1
Zhao, F.G.2
Wang, W.D.3
-
93
-
-
82755193668
-
A review of hazards associated with primary lithium and lithium-ion batteries
-
Lisbona DG, Snee T., A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf Environ Protect. 2011;89:434–442. doi:10.1016/j.psep.2011.06.022
-
(2011)
Process Saf Environ Protect.
, vol.89
, pp. 434-442
-
-
Lisbona, D.G.1
Snee, T.2
-
94
-
-
4544298283
-
-
Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review
-
Buzzeo MC, Evans RG, Compton RG., Non-haloaluminate room-temperature ionic liquids in electrochemistry - A review. Chem Phys Chem. 2004;5:1106–1120.
-
(2004)
Chem Phys Chem.
, vol.5
, pp. 1106-1120
-
-
Buzzeo, M.C.1
Evans, R.G.2
Compton, R.G.3
-
95
-
-
77951917440
-
-
Capacitance at the electrode/Ionic liquid interface., (in Chinese)
-
Zhao D, Huang Q, Jin XB, et al. Capacitance at the electrode/Ionic liquid interface. Acta Phys Chim Sin. 2010;26:1239–1248 (in Chinese).
-
(2010)
Acta Phys Chim Sin.
, vol.26
, pp. 1239-1248
-
-
Zhao, D.1
Huang, Q.2
Jin, X.B.3
-
96
-
-
84898009882
-
Carbons and electrolytes for advanced supercapacitors
-
Beguin F, Presser V, Balducci A, et al. Carbons and electrolytes for advanced supercapacitors. Adv Mater. 2014;26:2219–2251. doi:10.1002/adma.201304137
-
(2014)
Adv Mater.
, vol.26
, pp. 2219-2251
-
-
Beguin, F.1
Presser, V.2
Balducci, A.3
-
97
-
-
84940497081
-
Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors
-
Wilson BE, He SY, Buffington K, et al. Utilizing ionic liquids for controlled N-doping in hard-templated, mesoporous carbon electrodes for high-performance electrochemical double-layer capacitors. J Power Sour. 2015;298:193–202. doi:10.1016/j.jpowsour.2015.08.057
-
(2015)
J Power Sour
, vol.298
, pp. 193-202
-
-
Wilson, B.E.1
He, S.Y.2
Buffington, K.3
-
98
-
-
2942562656
-
Electrochemical properties of novel ionic liquids for electric double layer capacitor applications
-
Sato T, Masuda G, Takagi K., Electrochemical properties of novel ionic liquids for electric double layer capacitor applications. Electrochim Acta. 2004;49:3603–3611. doi:10.1016/j.electacta.2004.03.030
-
(2004)
Electrochim Acta
, vol.49
, pp. 3603-3611
-
-
Sato, T.1
Masuda, G.2
Takagi, K.3
-
99
-
-
84904420564
-
-
Recent progress in research on high-voltage electrolytes for lithium-ion batteries
-
Tan S, Ji YJ, Zhang ZR, et al. Recent progress in research on high-voltage electrolytes for lithium-ion batteries. Chem Phys Chem. 2014;15:1956–1969.
-
(2014)
Chem Phys Chem
, vol.15
, pp. 1956-1969
-
-
Tan, S.1
Ji, Y.J.2
Zhang, Z.R.3
-
100
-
-
78650085858
-
Graphene-based supercapacitor with an ultrahigh energy density
-
Liu CG, Yu ZN, Neff D, et al. Graphene-based supercapacitor with an ultrahigh energy density. Nano Lett. 2010;10:4863–4868. doi:10.1021/nl102661q
-
(2010)
Nano Lett.
, vol.10
, pp. 4863-4868
-
-
Liu, C.G.1
Yu, Z.N.2
Neff, D.3
-
101
-
-
34147170102
-
Direct carbon fuel cell: fundamentals and recent developments
-
Cao DX, Sun Y, Wang GL., Direct carbon fuel cell:fundamentals and recent developments. J Power Sour. 2007;167:250–257. doi:10.1016/j.jpowsour.2007.02.034
-
(2007)
J Power Sour
, vol.167
, pp. 250-257
-
-
Cao, D.X.1
Sun, Y.2
Wang, G.L.3
-
102
-
-
84945553004
-
Cycling Li-O2 batteries via LiOH formation and decomposition
-
Liu T, Leskes M, Yu WJ, et al. Cycling Li-O2 batteries via LiOH formation and decomposition. Science. 2015;350:530–533. doi:10.1126/science.aac7730
-
(2015)
Science
, vol.350
, pp. 530-533
-
-
Liu, T.1
Leskes, M.2
Yu, W.J.3
-
103
-
-
85013009654
-
-
Unpublished results, University of Nottingham
-
Zhou XH, Chen GZ. Unpublished results, University of Nottingham, 2012.
-
(2012)
-
-
Zhou, X.H.1
Chen, G.Z.2
-
104
-
-
84901650232
-
Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors
-
Yoon Y, Lee K, Kwon S, et al. Vertical alignments of graphene sheets spatially and densely piled for fast ion diffusion in compact supercapacitors. ACS Nano. 2014;8:4580–4590. doi:10.1021/nn500150j
-
(2014)
ACS Nano
, vol.8
, pp. 4580-4590
-
-
Yoon, Y.1
Lee, K.2
Kwon, S.3
-
105
-
-
84938593885
-
Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors
-
Deng X, Zhao BT, Zhu L, et al. Molten salt synthesis of nitrogen-doped carbon with hierarchical pore structures for use as high-performance electrodes in supercapacitors. Carbon. 2015;93:48–58. doi:10.1016/j.carbon.2015.05.031
-
(2015)
Carbon
, vol.93
, pp. 48-58
-
-
Deng, X.1
Zhao, B.T.2
Zhu, L.3
-
106
-
-
84962022056
-
3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability
-
3 microflower (3D)/nanorod (1D) hetero-architecture as a supercapattery electrode with excellent cyclic stability. J Mater Chem A. 2016;4:4820–4830. doi:10.1039/C5TA10407F
-
(2016)
J Mater Chem A
, vol.4
, pp. 4820-4830
-
-
Padmanathan, N.1
Shao, H.2
McNulty, D.3
|