메뉴 건너뛰기




Volumn 159, Issue , 2017, Pages 1-7

Determining influences of SiO2 encapsulation on thermal energy storage properties of different phase change materials

Author keywords

Paraffin; Phase change materials; SiO2 nanocapsules; Stearic acid; Thermal energy storage

Indexed keywords

BIOCOMPATIBILITY; BIOLOGICAL MATERIALS; COST EFFECTIVENESS; EMULSIFICATION; ENERGY STORAGE; HEAT STORAGE; INTERFACIAL POLYCONDENSATION; NANOCAPSULES; PARAFFINS; STEARIC ACID; STORAGE (MATERIALS); THERMAL ENERGY;

EID: 84991383380     PISSN: 09270248     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.solmat.2016.08.030     Document Type: Article
Times cited : (117)

References (39)
  • 1
    • 77956269049 scopus 로고    scopus 로고
    • 2 shell as thermal energy storage materials
    • 2 shell as thermal energy storage materials. Chem. Eng. J. 163 (2010), 154–159.
    • (2010) Chem. Eng. J. , vol.163 , pp. 154-159
    • Fang, G.1    Chen, Z.2    Li, H.3
  • 2
    • 59049088108 scopus 로고    scopus 로고
    • Utilization of phase change materials in solar domestic hot water systems
    • [2] Mazman, M., Cabeza, L.F., Mehling, H., Nogues, M., Evliya, H., Paksoy, H.Ö., Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 34 (2009), 1639–1643.
    • (2009) Renew. Energy , vol.34 , pp. 1639-1643
    • Mazman, M.1    Cabeza, L.F.2    Mehling, H.3    Nogues, M.4    Evliya, H.5    Paksoy, H.Ö.6
  • 3
    • 71549118554 scopus 로고    scopus 로고
    • Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating
    • [3] Benli, H., Durmuş, A., Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol. Energy 83 (2009), 2109–2119.
    • (2009) Sol. Energy , vol.83 , pp. 2109-2119
    • Benli, H.1    Durmuş, A.2
  • 4
    • 0242573522 scopus 로고    scopus 로고
    • Cooling of mobile electronic devices using phase change materials
    • [4] Tan, F., Tso, C., Cooling of mobile electronic devices using phase change materials. Appl. Therm. Eng. 24 (2004), 159–169.
    • (2004) Appl. Therm. Eng. , vol.24 , pp. 159-169
    • Tan, F.1    Tso, C.2
  • 5
    • 79952456804 scopus 로고    scopus 로고
    • Synthesis and thermal properties of poly (n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics
    • [5] Alay, S., Göde, F., Alkan, C., Synthesis and thermal properties of poly (n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics. J. Appl. Polym. Sci. 120 (2011), 2821–2829.
    • (2011) J. Appl. Polym. Sci. , vol.120 , pp. 2821-2829
    • Alay, S.1    Göde, F.2    Alkan, C.3
  • 6
    • 84873333591 scopus 로고    scopus 로고
    • Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
    • [6] Soares, N., Costa, J., Gaspar, A., Santos, P., Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 59 (2013), 82–103.
    • (2013) Energy Build. , vol.59 , pp. 82-103
    • Soares, N.1    Costa, J.2    Gaspar, A.3    Santos, P.4
  • 7
    • 84899416965 scopus 로고    scopus 로고
    • Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration
    • [7] Gil, A., Oró, E., Miró, L., Peiro, G., Ruiz, Á., Salmerón, J.M., Cabeza, L.F., Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int. J. Refrig. 39 (2014), 95–103.
    • (2014) Int. J. Refrig. , vol.39 , pp. 95-103
    • Gil, A.1    Oró, E.2    Miró, L.3    Peiro, G.4    Ruiz, Á.5    Salmerón, J.M.6    Cabeza, L.F.7
  • 8
    • 84939808538 scopus 로고    scopus 로고
    • An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications
    • [8] Wang, X., Dennis, M., An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chem. Eng. Sci. 137 (2015), 938–946.
    • (2015) Chem. Eng. Sci. , vol.137 , pp. 938-946
    • Wang, X.1    Dennis, M.2
  • 9
    • 38649096923 scopus 로고    scopus 로고
    • Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging
    • [9] Johnston, J.H., Grindrod, J.E., Dodds, M., Schimitschek, K., Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Curr. Appl. Phys. 8 (2008), 508–511.
    • (2008) Curr. Appl. Phys. , vol.8 , pp. 508-511
    • Johnston, J.H.1    Grindrod, J.E.2    Dodds, M.3    Schimitschek, K.4
  • 10
    • 84860722979 scopus 로고    scopus 로고
    • Developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6 °C
    • [10] Ohkawara, H., Kitagawa, T., Fukushima, N., Ito, T., Sawa, Y., Yoshimine, T., Newly, A., Developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6 °C. Transplant. Proc., 2012, 855–858.
    • (2012) Transplant. Proc. , pp. 855-858
    • Ohkawara, H.1    Kitagawa, T.2    Fukushima, N.3    Ito, T.4    Sawa, Y.5    Yoshimine, T.6    Newly, A.7
  • 11
    • 84991394909 scopus 로고    scopus 로고
    • Heating or cooling pad or glove with phase change material, in, Google Patents
    • [11] C. Lachenbruch, R. Barnett, Heating or cooling pad or glove with phase change material, in, Google Patents, 2001.
    • (2001)
    • Lachenbruch, C.1    Barnett, R.2
  • 12
    • 84956579469 scopus 로고    scopus 로고
    • The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material
    • [12] Şahan, N., Fois, M., Paksoy, H., The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int. J. Energy Res. 40 (2016), 198–206.
    • (2016) Int. J. Energy Res. , vol.40 , pp. 198-206
    • Şahan, N.1    Fois, M.2    Paksoy, H.3
  • 13
    • 84899444262 scopus 로고    scopus 로고
    • Phase change materials for thermal energy storage
    • [13] Pielichowska, K., Pielichowski, K., Phase change materials for thermal energy storage. Prog. Mater. Sci. 65 (2014), 67–123.
    • (2014) Prog. Mater. Sci. , vol.65 , pp. 67-123
    • Pielichowska, K.1    Pielichowski, K.2
  • 14
    • 0037729275 scopus 로고    scopus 로고
    • Latent heat characteristics of fatty acid derivatives pursuant phase change material applications
    • [14] Suppes, G., Goff, M., Lopes, S., Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58 (2003), 1751–1763.
    • (2003) Chem. Eng. Sci. , vol.58 , pp. 1751-1763
    • Suppes, G.1    Goff, M.2    Lopes, S.3
  • 15
    • 33846639140 scopus 로고    scopus 로고
    • Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material
    • [15] Sarı, A., Karaipekli, A., Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27 (2007), 1271–1277.
    • (2007) Appl. Therm. Eng. , vol.27 , pp. 1271-1277
    • Sarı, A.1    Karaipekli, A.2
  • 19
    • 84961145726 scopus 로고    scopus 로고
    • Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials
    • [19] Sarı, A., Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers. Manag. 117 (2016), 132–141.
    • (2016) Energy Convers. Manag. , vol.117 , pp. 132-141
    • Sarı, A.1
  • 20
    • 33749989085 scopus 로고    scopus 로고
    • Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage
    • [20] Cao, Q., Liu, P., Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur. Polym. J. 42 (2006), 2931–2939.
    • (2006) Eur. Polym. J. , vol.42 , pp. 2931-2939
    • Cao, Q.1    Liu, P.2
  • 21
    • 34147190489 scopus 로고    scopus 로고
    • Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material
    • [21] Li, W.-D., Ding, E.-Y., Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol. Energy Mater. Sol. Cells 91 (2007), 764–768.
    • (2007) Sol. Energy Mater. Sol. Cells , vol.91 , pp. 764-768
    • Li, W.-D.1    Ding, E.-Y.2
  • 22
    • 80053588037 scopus 로고    scopus 로고
    • Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials
    • [22] Sarı, A., Alkan, C., Biçer, A., Karaipekli, A., Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 95 (2011), 3195–3201.
    • (2011) Sol. Energy Mater. Sol. Cells , vol.95 , pp. 3195-3201
    • Sarı, A.1    Alkan, C.2    Biçer, A.3    Karaipekli, A.4
  • 23
    • 84937973707 scopus 로고    scopus 로고
    • Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement
    • [23] Liu, C., Rao, Z., Zhao, J., Huo, Y., Li, Y., Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement. Nano Energy 13 (2015), 814–826.
    • (2015) Nano Energy , vol.13 , pp. 814-826
    • Liu, C.1    Rao, Z.2    Zhao, J.3    Huo, Y.4    Li, Y.5
  • 24
    • 84892715875 scopus 로고    scopus 로고
    • A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
    • [24] Jamekhorshid, A., Sadrameli, S., Farid, M., A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 31 (2014), 531–542.
    • (2014) Renew. Sustain. Energy Rev. , vol.31 , pp. 531-542
    • Jamekhorshid, A.1    Sadrameli, S.2    Farid, M.3
  • 25
    • 54249101827 scopus 로고    scopus 로고
    • Phase change materials (PCMs) for energy storage in architecture. Use with the magic box prototype
    • [25] Neila González, F., Acha Román, C., Higueras García, E., Frutos, C. Bedoya, Phase change materials (PCMs) for energy storage in architecture. Use with the magic box prototype. Mater. Constr. 58 (2008), 119–126.
    • (2008) Mater. Constr. , vol.58 , pp. 119-126
    • Neila González, F.1    Acha Román, C.2    Higueras García, E.3    Frutos, C.B.4
  • 26
    • 75849121698 scopus 로고    scopus 로고
    • Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent
    • [26] Giraud, S., Salaün, F., Bedek, G., Vroman, I., Bourbigot, S., Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polym. Degrad. Stab. 95 (2010), 315–319.
    • (2010) Polym. Degrad. Stab. , vol.95 , pp. 315-319
    • Giraud, S.1    Salaün, F.2    Bedek, G.3    Vroman, I.4    Bourbigot, S.5
  • 27
    • 74449090480 scopus 로고    scopus 로고
    • Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance
    • [27] Zhang, H., Wang, X., Wu, D., Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 343 (2010), 246–255.
    • (2010) J. Colloid Interface Sci. , vol.343 , pp. 246-255
    • Zhang, H.1    Wang, X.2    Wu, D.3
  • 28
    • 84906858892 scopus 로고    scopus 로고
    • 2 hybrid shell for dual-functional phase change materials
    • 2 hybrid shell for dual-functional phase change materials. Appl. Energy 134 (2014), 456–468.
    • (2014) Appl. Energy , vol.134 , pp. 456-468
    • Jiang, F.1    Wang, X.2    Wu, D.3
  • 29
    • 84893284329 scopus 로고    scopus 로고
    • 2 shell as shape-stabilized thermal energy storage materials
    • 2 shell as shape-stabilized thermal energy storage materials. Sol. Energy Mater. Sol. Cells 123 (2014), 183–188.
    • (2014) Sol. Energy Mater. Sol. Cells , vol.123 , pp. 183-188
    • Cao, L.1    Tang, F.2    Fang, G.3
  • 30
    • 84887251363 scopus 로고    scopus 로고
    • Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation
    • [30] Yu, S., Wang, X., Wu, D., Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl. Energy 114 (2014), 632–643.
    • (2014) Appl. Energy , vol.114 , pp. 632-643
    • Yu, S.1    Wang, X.2    Wu, D.3
  • 31
    • 4844221601 scopus 로고    scopus 로고
    • The sol-gel encapsulation of enzymes
    • [31] Pierre, A., The sol-gel encapsulation of enzymes. Biocatal. Biotransformation 22 (2004), 145–170.
    • (2004) Biocatal. Biotransformation , vol.22 , pp. 145-170
    • Pierre, A.1
  • 33
    • 78049351024 scopus 로고    scopus 로고
    • Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery
    • [33] Chen, Y., Chen, H., Zeng, D., Tian, Y., Chen, F., Feng, J., Shi, J., Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4 (2010), 6001–6013.
    • (2010) ACS Nano , vol.4 , pp. 6001-6013
    • Chen, Y.1    Chen, H.2    Zeng, D.3    Tian, Y.4    Chen, F.5    Feng, J.6    Shi, J.7
  • 36
    • 84862806538 scopus 로고    scopus 로고
    • Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov
    • [36] Klančnik, G., Medved, J., Mrvar, P., Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov. RMZ–Mater. Geoenviron. 57 (2010), 127–142.
    • (2010) RMZ–Mater. Geoenviron. , vol.57 , pp. 127-142
    • Klančnik, G.1    Medved, J.2    Mrvar, P.3
  • 37
    • 84930615163 scopus 로고    scopus 로고
    • Core–shell polymeric microcapsules with superior thermal and solvent stability
    • [37] Kang, S., Baginska, M., White, S.R., Sottos, N.R., Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl. Mater. Interfaces 7 (2015), 10952–10956.
    • (2015) ACS Appl. Mater. Interfaces , vol.7 , pp. 10952-10956
    • Kang, S.1    Baginska, M.2    White, S.R.3    Sottos, N.R.4
  • 38
    • 84894531718 scopus 로고    scopus 로고
    • Thermally enhanced paraffin for solar applications
    • [38] Paksoy, H., Sahan, N., Thermally enhanced paraffin for solar applications. Energy Procedia 30 (2012), 350–352.
    • (2012) Energy Procedia , vol.30 , pp. 350-352
    • Paksoy, H.1    Sahan, N.2
  • 39
    • 84876227256 scopus 로고    scopus 로고
    • Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings
    • [39] Chen, Z., Cao, L., Shan, F., Fang, G., Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 62 (2013), 469–474.
    • (2013) Energy Build. , vol.62 , pp. 469-474
    • Chen, Z.1    Cao, L.2    Shan, F.3    Fang, G.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.