-
1
-
-
77956269049
-
2 shell as thermal energy storage materials
-
2 shell as thermal energy storage materials. Chem. Eng. J. 163 (2010), 154–159.
-
(2010)
Chem. Eng. J.
, vol.163
, pp. 154-159
-
-
Fang, G.1
Chen, Z.2
Li, H.3
-
2
-
-
59049088108
-
Utilization of phase change materials in solar domestic hot water systems
-
[2] Mazman, M., Cabeza, L.F., Mehling, H., Nogues, M., Evliya, H., Paksoy, H.Ö., Utilization of phase change materials in solar domestic hot water systems. Renew. Energy 34 (2009), 1639–1643.
-
(2009)
Renew. Energy
, vol.34
, pp. 1639-1643
-
-
Mazman, M.1
Cabeza, L.F.2
Mehling, H.3
Nogues, M.4
Evliya, H.5
Paksoy, H.Ö.6
-
3
-
-
71549118554
-
Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating
-
[3] Benli, H., Durmuş, A., Performance analysis of a latent heat storage system with phase change material for new designed solar collectors in greenhouse heating. Sol. Energy 83 (2009), 2109–2119.
-
(2009)
Sol. Energy
, vol.83
, pp. 2109-2119
-
-
Benli, H.1
Durmuş, A.2
-
4
-
-
0242573522
-
Cooling of mobile electronic devices using phase change materials
-
[4] Tan, F., Tso, C., Cooling of mobile electronic devices using phase change materials. Appl. Therm. Eng. 24 (2004), 159–169.
-
(2004)
Appl. Therm. Eng.
, vol.24
, pp. 159-169
-
-
Tan, F.1
Tso, C.2
-
5
-
-
79952456804
-
Synthesis and thermal properties of poly (n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics
-
[5] Alay, S., Göde, F., Alkan, C., Synthesis and thermal properties of poly (n-butyl acrylate)/n-hexadecane microcapsules using different cross-linkers and their application to textile fabrics. J. Appl. Polym. Sci. 120 (2011), 2821–2829.
-
(2011)
J. Appl. Polym. Sci.
, vol.120
, pp. 2821-2829
-
-
Alay, S.1
Göde, F.2
Alkan, C.3
-
6
-
-
84873333591
-
Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency
-
[6] Soares, N., Costa, J., Gaspar, A., Santos, P., Review of passive PCM latent heat thermal energy storage systems towards buildings’ energy efficiency. Energy Build. 59 (2013), 82–103.
-
(2013)
Energy Build.
, vol.59
, pp. 82-103
-
-
Soares, N.1
Costa, J.2
Gaspar, A.3
Santos, P.4
-
7
-
-
84899416965
-
Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration
-
[7] Gil, A., Oró, E., Miró, L., Peiro, G., Ruiz, Á., Salmerón, J.M., Cabeza, L.F., Experimental analysis of hydroquinone used as phase change material (PCM) to be applied in solar cooling refrigeration. Int. J. Refrig. 39 (2014), 95–103.
-
(2014)
Int. J. Refrig.
, vol.39
, pp. 95-103
-
-
Gil, A.1
Oró, E.2
Miró, L.3
Peiro, G.4
Ruiz, Á.5
Salmerón, J.M.6
Cabeza, L.F.7
-
8
-
-
84939808538
-
An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications
-
[8] Wang, X., Dennis, M., An experimental study on the formation behavior of single and binary hydrates of TBAB, TBAF and TBPB for cold storage air conditioning applications. Chem. Eng. Sci. 137 (2015), 938–946.
-
(2015)
Chem. Eng. Sci.
, vol.137
, pp. 938-946
-
-
Wang, X.1
Dennis, M.2
-
9
-
-
38649096923
-
Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging
-
[9] Johnston, J.H., Grindrod, J.E., Dodds, M., Schimitschek, K., Composite nano-structured calcium silicate phase change materials for thermal buffering in food packaging. Curr. Appl. Phys. 8 (2008), 508–511.
-
(2008)
Curr. Appl. Phys.
, vol.8
, pp. 508-511
-
-
Johnston, J.H.1
Grindrod, J.E.2
Dodds, M.3
Schimitschek, K.4
-
10
-
-
84860722979
-
Developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6 °C
-
[10] Ohkawara, H., Kitagawa, T., Fukushima, N., Ito, T., Sawa, Y., Yoshimine, T., Newly, A., Developed container for safe, easy, and cost-effective overnight transportation of tissues and organs by electrically keeping tissue or organ temperature at 3 to 6 °C. Transplant. Proc., 2012, 855–858.
-
(2012)
Transplant. Proc.
, pp. 855-858
-
-
Ohkawara, H.1
Kitagawa, T.2
Fukushima, N.3
Ito, T.4
Sawa, Y.5
Yoshimine, T.6
Newly, A.7
-
11
-
-
84991394909
-
-
Heating or cooling pad or glove with phase change material, in, Google Patents
-
[11] C. Lachenbruch, R. Barnett, Heating or cooling pad or glove with phase change material, in, Google Patents, 2001.
-
(2001)
-
-
Lachenbruch, C.1
Barnett, R.2
-
12
-
-
84956579469
-
The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material
-
[12] Şahan, N., Fois, M., Paksoy, H., The effects of various carbon derivative additives on the thermal properties of paraffin as a phase change material. Int. J. Energy Res. 40 (2016), 198–206.
-
(2016)
Int. J. Energy Res.
, vol.40
, pp. 198-206
-
-
Şahan, N.1
Fois, M.2
Paksoy, H.3
-
13
-
-
84899444262
-
Phase change materials for thermal energy storage
-
[13] Pielichowska, K., Pielichowski, K., Phase change materials for thermal energy storage. Prog. Mater. Sci. 65 (2014), 67–123.
-
(2014)
Prog. Mater. Sci.
, vol.65
, pp. 67-123
-
-
Pielichowska, K.1
Pielichowski, K.2
-
14
-
-
0037729275
-
Latent heat characteristics of fatty acid derivatives pursuant phase change material applications
-
[14] Suppes, G., Goff, M., Lopes, S., Latent heat characteristics of fatty acid derivatives pursuant phase change material applications. Chem. Eng. Sci. 58 (2003), 1751–1763.
-
(2003)
Chem. Eng. Sci.
, vol.58
, pp. 1751-1763
-
-
Suppes, G.1
Goff, M.2
Lopes, S.3
-
15
-
-
33846639140
-
Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material
-
[15] Sarı, A., Karaipekli, A., Thermal conductivity and latent heat thermal energy storage characteristics of paraffin/expanded graphite composite as phase change material. Appl. Therm. Eng. 27 (2007), 1271–1277.
-
(2007)
Appl. Therm. Eng.
, vol.27
, pp. 1271-1277
-
-
Sarı, A.1
Karaipekli, A.2
-
17
-
-
84907548905
-
2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval
-
2 nanofibers absorbed with fatty acid eutectics for thermal energy storage/retrieval. Sol. Energy Mater. Sol. Cells 132 (2015), 183–190.
-
(2015)
Sol. Energy Mater. Sol. Cells
, vol.132
, pp. 183-190
-
-
Zong, X.1
Cai, Y.2
Sun, G.3
Zhao, Y.4
Huang, F.5
Song, L.6
Hu, Y.7
Fong, H.8
Wei, Q.9
-
18
-
-
68749105582
-
A review on long-term sorption solar energy storage
-
[18] N'Tsoukpoe, K.E., Liu, H., Le Pierrès, N., Luo, L., A review on long-term sorption solar energy storage. Renew. Sustain. Energy Rev. 13 (2009), 2385–2396.
-
(2009)
Renew. Sustain. Energy Rev.
, vol.13
, pp. 2385-2396
-
-
N'Tsoukpoe, K.E.1
Liu, H.2
Le Pierrès, N.3
Luo, L.4
-
19
-
-
84961145726
-
Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials
-
[19] Sarı, A., Thermal energy storage characteristics of bentonite-based composite PCMs with enhanced thermal conductivity as novel thermal storage building materials. Energy Convers. Manag. 117 (2016), 132–141.
-
(2016)
Energy Convers. Manag.
, vol.117
, pp. 132-141
-
-
Sarı, A.1
-
20
-
-
33749989085
-
Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage
-
[20] Cao, Q., Liu, P., Hyperbranched polyurethane as novel solid–solid phase change material for thermal energy storage. Eur. Polym. J. 42 (2006), 2931–2939.
-
(2006)
Eur. Polym. J.
, vol.42
, pp. 2931-2939
-
-
Cao, Q.1
Liu, P.2
-
21
-
-
34147190489
-
Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material
-
[21] Li, W.-D., Ding, E.-Y., Preparation and characterization of cross-linking PEG/MDI/PE copolymer as solid–solid phase change heat storage material. Sol. Energy Mater. Sol. Cells 91 (2007), 764–768.
-
(2007)
Sol. Energy Mater. Sol. Cells
, vol.91
, pp. 764-768
-
-
Li, W.-D.1
Ding, E.-Y.2
-
22
-
-
80053588037
-
Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials
-
[22] Sarı, A., Alkan, C., Biçer, A., Karaipekli, A., Synthesis and thermal energy storage characteristics of polystyrene-graft-palmitic acid copolymers as solid–solid phase change materials. Sol. Energy Mater. Sol. Cells 95 (2011), 3195–3201.
-
(2011)
Sol. Energy Mater. Sol. Cells
, vol.95
, pp. 3195-3201
-
-
Sarı, A.1
Alkan, C.2
Biçer, A.3
Karaipekli, A.4
-
23
-
-
84937973707
-
Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement
-
[23] Liu, C., Rao, Z., Zhao, J., Huo, Y., Li, Y., Review on nanoencapsulated phase change materials: Preparation, characterization and heat transfer enhancement. Nano Energy 13 (2015), 814–826.
-
(2015)
Nano Energy
, vol.13
, pp. 814-826
-
-
Liu, C.1
Rao, Z.2
Zhao, J.3
Huo, Y.4
Li, Y.5
-
24
-
-
84892715875
-
A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
-
[24] Jamekhorshid, A., Sadrameli, S., Farid, M., A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium. Renew. Sustain. Energy Rev. 31 (2014), 531–542.
-
(2014)
Renew. Sustain. Energy Rev.
, vol.31
, pp. 531-542
-
-
Jamekhorshid, A.1
Sadrameli, S.2
Farid, M.3
-
25
-
-
54249101827
-
Phase change materials (PCMs) for energy storage in architecture. Use with the magic box prototype
-
[25] Neila González, F., Acha Román, C., Higueras García, E., Frutos, C. Bedoya, Phase change materials (PCMs) for energy storage in architecture. Use with the magic box prototype. Mater. Constr. 58 (2008), 119–126.
-
(2008)
Mater. Constr.
, vol.58
, pp. 119-126
-
-
Neila González, F.1
Acha Román, C.2
Higueras García, E.3
Frutos, C.B.4
-
26
-
-
75849121698
-
Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent
-
[26] Giraud, S., Salaün, F., Bedek, G., Vroman, I., Bourbigot, S., Influence of chemical shell structure on the thermal properties of microcapsules containing a flame retardant agent. Polym. Degrad. Stab. 95 (2010), 315–319.
-
(2010)
Polym. Degrad. Stab.
, vol.95
, pp. 315-319
-
-
Giraud, S.1
Salaün, F.2
Bedek, G.3
Vroman, I.4
Bourbigot, S.5
-
27
-
-
74449090480
-
Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance
-
[27] Zhang, H., Wang, X., Wu, D., Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 343 (2010), 246–255.
-
(2010)
J. Colloid Interface Sci.
, vol.343
, pp. 246-255
-
-
Zhang, H.1
Wang, X.2
Wu, D.3
-
28
-
-
84906858892
-
2 hybrid shell for dual-functional phase change materials
-
2 hybrid shell for dual-functional phase change materials. Appl. Energy 134 (2014), 456–468.
-
(2014)
Appl. Energy
, vol.134
, pp. 456-468
-
-
Jiang, F.1
Wang, X.2
Wu, D.3
-
29
-
-
84893284329
-
2 shell as shape-stabilized thermal energy storage materials
-
2 shell as shape-stabilized thermal energy storage materials. Sol. Energy Mater. Sol. Cells 123 (2014), 183–188.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.123
, pp. 183-188
-
-
Cao, L.1
Tang, F.2
Fang, G.3
-
30
-
-
84887251363
-
Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation
-
[30] Yu, S., Wang, X., Wu, D., Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: synthesis, microstructure, and performance evaluation. Appl. Energy 114 (2014), 632–643.
-
(2014)
Appl. Energy
, vol.114
, pp. 632-643
-
-
Yu, S.1
Wang, X.2
Wu, D.3
-
31
-
-
4844221601
-
The sol-gel encapsulation of enzymes
-
[31] Pierre, A., The sol-gel encapsulation of enzymes. Biocatal. Biotransformation 22 (2004), 145–170.
-
(2004)
Biocatal. Biotransformation
, vol.22
, pp. 145-170
-
-
Pierre, A.1
-
33
-
-
78049351024
-
Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery
-
[33] Chen, Y., Chen, H., Zeng, D., Tian, Y., Chen, F., Feng, J., Shi, J., Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 4 (2010), 6001–6013.
-
(2010)
ACS Nano
, vol.4
, pp. 6001-6013
-
-
Chen, Y.1
Chen, H.2
Zeng, D.3
Tian, Y.4
Chen, F.5
Feng, J.6
Shi, J.7
-
34
-
-
84881513809
-
2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery
-
2–ZnO nanocapsules: encapsulation of small biomolecules for drugs and “SiOZO-plex” for gene delivery. J. Nanopart. Res. 15 (2013), 1–13.
-
(2013)
J. Nanopart. Res.
, vol.15
, pp. 1-13
-
-
Kumar, V.B.1
Annamanedi, M.2
Prashad, M.D.3
Arunasree, K.M.4
Mastai, Y.5
Gedanken, A.6
Paik, P.7
-
36
-
-
84862806538
-
Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov
-
[36] Klančnik, G., Medved, J., Mrvar, P., Differential thermal analysis (DTA) and differential scanning calorimetry (DSC) as a method of material investigation Diferenčna termična analiza (DTA) in diferenčna vrstična kalorimetrija (DSC) kot metoda za raziskavo materialov. RMZ–Mater. Geoenviron. 57 (2010), 127–142.
-
(2010)
RMZ–Mater. Geoenviron.
, vol.57
, pp. 127-142
-
-
Klančnik, G.1
Medved, J.2
Mrvar, P.3
-
37
-
-
84930615163
-
Core–shell polymeric microcapsules with superior thermal and solvent stability
-
[37] Kang, S., Baginska, M., White, S.R., Sottos, N.R., Core–shell polymeric microcapsules with superior thermal and solvent stability. ACS Appl. Mater. Interfaces 7 (2015), 10952–10956.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 10952-10956
-
-
Kang, S.1
Baginska, M.2
White, S.R.3
Sottos, N.R.4
-
38
-
-
84894531718
-
Thermally enhanced paraffin for solar applications
-
[38] Paksoy, H., Sahan, N., Thermally enhanced paraffin for solar applications. Energy Procedia 30 (2012), 350–352.
-
(2012)
Energy Procedia
, vol.30
, pp. 350-352
-
-
Paksoy, H.1
Sahan, N.2
-
39
-
-
84876227256
-
Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings
-
[39] Chen, Z., Cao, L., Shan, F., Fang, G., Preparation and characteristics of microencapsulated stearic acid as composite thermal energy storage material in buildings. Energy Build. 62 (2013), 469–474.
-
(2013)
Energy Build.
, vol.62
, pp. 469-474
-
-
Chen, Z.1
Cao, L.2
Shan, F.3
Fang, G.4
|