메뉴 건너뛰기




Volumn 26, Issue 9, 2016, Pages 705-717

Stitching Organelles: Organization and Function of Specialized Membrane Contact Sites in Plants

Author keywords

PLAMs; plasmodesmata; stress inducible MCS; SYT; tethers; VAP27

Indexed keywords

PLANT PROTEIN; SYNAPTOBREVIN; SYNAPTOTAGMIN; LIPID;

EID: 84991242219     PISSN: 09628924     EISSN: 18793088     Source Type: Journal    
DOI: 10.1016/j.tcb.2016.05.007     Document Type: Review
Times cited : (90)

References (92)
  • 1
    • 33845874376 scopus 로고    scopus 로고
    • Compartmentation in plant metabolism
    • 1 Lunn, J.E., Compartmentation in plant metabolism. J. Exp. Bot. 58 (2007), 35–47.
    • (2007) J. Exp. Bot. , vol.58 , pp. 35-47
    • Lunn, J.E.1
  • 2
    • 84903157796 scopus 로고    scopus 로고
    • Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics
    • 2 Prinz, W.A., Bridging the gap: membrane contact sites in signaling, metabolism, and organelle dynamics. J. Cell Biol. 205 (2014), 759–769.
    • (2014) J. Cell Biol. , vol.205 , pp. 759-769
    • Prinz, W.A.1
  • 3
    • 84959386305 scopus 로고    scopus 로고
    • Signalling at membrane contact sites: two membranes come together to handle second messengers
    • 3 Levine, T.P., Patel, S., Signalling at membrane contact sites: two membranes come together to handle second messengers. Curr. Opin. Cell Biol. 39 (2016), 77–83.
    • (2016) Curr. Opin. Cell Biol. , vol.39 , pp. 77-83
    • Levine, T.P.1    Patel, S.2
  • 4
    • 84880617115 scopus 로고    scopus 로고
    • Organization and function of membrane contact sites
    • 4 Helle, S.C.J., et al. Organization and function of membrane contact sites. Biochim. Biophys. Acta Mol. Cell Res. 1833 (2013), 2526–2541.
    • (2013) Biochim. Biophys. Acta Mol. Cell Res. , vol.1833 , pp. 2526-2541
    • Helle, S.C.J.1
  • 5
    • 84955677104 scopus 로고    scopus 로고
    • Structure and function of ER membrane contact sites with other organelles
    • 5 Phillips, M.J., Voeltz, G.K., Structure and function of ER membrane contact sites with other organelles. Nat. Rev. Mol. Cell Biol. 17 (2016), 69–82.
    • (2016) Nat. Rev. Mol. Cell Biol. , vol.17 , pp. 69-82
    • Phillips, M.J.1    Voeltz, G.K.2
  • 6
    • 85009919376 scopus 로고    scopus 로고
    • Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions
    • 6 Dickson, E.J., et al. Regulation of calcium and phosphoinositides at endoplasmic reticulum–membrane junctions. Biochem. Soc. Trans. 44 (2016), 467–473.
    • (2016) Biochem. Soc. Trans. , vol.44 , pp. 467-473
    • Dickson, E.J.1
  • 7
    • 85009877523 scopus 로고    scopus 로고
    • New molecular mechanisms of inter-organelle lipid transport
    • 7 Drin, G., et al. New molecular mechanisms of inter-organelle lipid transport. Biochem. Soc. Trans. 44 (2016), 486–492.
    • (2016) Biochem. Soc. Trans. , vol.44 , pp. 486-492
    • Drin, G.1
  • 8
    • 84938696236 scopus 로고    scopus 로고
    • Molecular mechanisms of inter-organelle ER–PM contact sites
    • 8 Henne, W.M., et al. Molecular mechanisms of inter-organelle ER–PM contact sites. Curr. Opin. Cell Biol. 35 (2015), 123–130.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 123-130
    • Henne, W.M.1
  • 9
    • 84929470035 scopus 로고    scopus 로고
    • The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum–plasma membrane contact sites and confers cellular resistance to mechanical stresses
    • 9 Pérez-Sancho, J., et al. The Arabidopsis synaptotagmin1 is enriched in endoplasmic reticulum–plasma membrane contact sites and confers cellular resistance to mechanical stresses. Plant Physiol. 168 (2015), 132–143.
    • (2015) Plant Physiol. , vol.168 , pp. 132-143
    • Pérez-Sancho, J.1
  • 10
    • 84957601083 scopus 로고    scopus 로고
    • Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development
    • 10 Wang, P., et al. Plant VAP27 proteins: domain characterization, intracellular localization and role in plant development. New Phytol. 210 (2016), 1311–1326.
    • (2016) New Phytol. , vol.210 , pp. 1311-1326
    • Wang, P.1
  • 11
    • 84992092871 scopus 로고    scopus 로고
    • Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mildew fungi in Arabidopsis
    • Published online March 25, 2016
    • 11 Kim, H., et al. Synaptotagmin 1 negatively controls the two distinct immune secretory pathways to powdery mildew fungi in Arabidopsis. Plant Cell Physiol., 2016, 10.1093/pcp/pcw061 Published online March 25, 2016.
    • (2016) Plant Cell Physiol.
    • Kim, H.1
  • 12
    • 84908344367 scopus 로고    scopus 로고
    • Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites
    • 12 Barajas, D., et al. Co-opted oxysterol-binding ORP and VAP proteins channel sterols to RNA virus replication sites via membrane contact sites. PLoS Pathog., 10, 2014, e1004388.
    • (2014) PLoS Pathog. , vol.10 , pp. e1004388
    • Barajas, D.1
  • 13
    • 84938744495 scopus 로고    scopus 로고
    • Synaptotagmin SYTA forms ER–plasma membrane junctions that are recruited to plasmodesmata for plant virus movement
    • 13 Levy, A., et al. Synaptotagmin SYTA forms ER–plasma membrane junctions that are recruited to plasmodesmata for plant virus movement. Curr. Biol. 25 (2015), 2018–2025.
    • (2015) Curr. Biol. , vol.25 , pp. 2018-2025
    • Levy, A.1
  • 14
    • 84906322953 scopus 로고    scopus 로고
    • Lipid trafficking in plant cells
    • 14 Hurlock, A.K., et al. Lipid trafficking in plant cells. Traffic 15 (2014), 915–932.
    • (2014) Traffic , vol.15 , pp. 915-932
    • Hurlock, A.K.1
  • 15
    • 84926372990 scopus 로고    scopus 로고
    • Lipid trafficking at endoplasmic reticulum–chloroplast membrane contact sites
    • 15 Block, M.A., Jouhet, J., Lipid trafficking at endoplasmic reticulum–chloroplast membrane contact sites. Curr. Opin. Cell Biol. 35 (2015), 21–29.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 21-29
    • Block, M.A.1    Jouhet, J.2
  • 16
    • 84938909818 scopus 로고    scopus 로고
    • Chloroplasts extend stromules independently and in response to internal redox signals
    • 16 Brunkard, J.O., et al. Chloroplasts extend stromules independently and in response to internal redox signals. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), 10044–10049.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. 10044-10049
    • Brunkard, J.O.1
  • 17
    • 67649752350 scopus 로고    scopus 로고
    • Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress
    • 17 Sinclair, A.M., et al. Peroxule extension over ER-defined paths constitutes a rapid subcellular response to hydroxyl stress. Plant J. 59 (2009), 231–242.
    • (2009) Plant J. , vol.59 , pp. 231-242
    • Sinclair, A.M.1
  • 18
    • 10344232677 scopus 로고    scopus 로고
    • Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria
    • 18 Jouhet, J., et al. Phosphate deprivation induces transfer of DGDG galactolipid from chloroplast to mitochondria. J. Cell Biol. 167 (2004), 863–874.
    • (2004) J. Cell Biol. , vol.167 , pp. 863-874
    • Jouhet, J.1
  • 19
    • 84968813481 scopus 로고    scopus 로고
    • Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants
    • 19 Tilsner, J., et al. Staying tight: plasmodesmal membrane contact sites and the control of cell-to-cell connectivity in plants. Annu. Rev. Plant Biol. 67 (2016), 23.1–23.28.
    • (2016) Annu. Rev. Plant Biol. , vol.67 , pp. 23.1-23.28
    • Tilsner, J.1
  • 20
    • 84905177663 scopus 로고    scopus 로고
    • Redefining the metabolic continuity of chloroplasts and ER
    • 20 Mehrshahi, P., et al. Redefining the metabolic continuity of chloroplasts and ER. Trends Plant Sci. 19 (2014), 501–507.
    • (2014) Trends Plant Sci. , vol.19 , pp. 501-507
    • Mehrshahi, P.1
  • 21
    • 84902584945 scopus 로고    scopus 로고
    • The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum
    • 21 Wang, P., et al. The plant cytoskeleton, NET3C, and VAP27 mediate the link between the plasma membrane and endoplasmic reticulum. Curr. Biol. 24 (2014), 1397–1405.
    • (2014) Curr. Biol. , vol.24 , pp. 1397-1405
    • Wang, P.1
  • 22
    • 0034595095 scopus 로고    scopus 로고
    • Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain
    • 22 Laurent, F., et al. Molecular cloning and partial characterization of a plant VAP33 homologue with a major sperm protein domain. Biochem. Biophys. Res. Commun. 270 (2000), 286–292.
    • (2000) Biochem. Biophys. Res. Commun. , vol.270 , pp. 286-292
    • Laurent, F.1
  • 23
    • 84930652920 scopus 로고    scopus 로고
    • A new family of StART domain proteins at membrane contact sites has a role in ER–PM sterol transport
    • 23 Gatta, A.T., et al. A new family of StART domain proteins at membrane contact sites has a role in ER–PM sterol transport. eLife, 4, 2015, e07253.
    • (2015) eLife , vol.4 , pp. e07253
    • Gatta, A.T.1
  • 24
    • 84959191741 scopus 로고    scopus 로고
    • VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome
    • Published online February 17 2016
    • 24 Murphy, S.E., Levine, T.P., VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim. Biophys. Acta., 2016, 10.1016/j.bbalip.2016.02.009 Published online February 17 2016.
    • (2016) Biochim. Biophys. Acta.
    • Murphy, S.E.1    Levine, T.P.2
  • 25
    • 66249114650 scopus 로고    scopus 로고
    • The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12
    • 25 Saravanan, R.S., et al. The targeting of the oxysterol-binding protein ORP3a to the endoplasmic reticulum relies on the plant VAP33 homolog PVA12. Plant J. 58 (2009), 817–830.
    • (2009) Plant J. , vol.58 , pp. 817-830
    • Saravanan, R.S.1
  • 26
    • 34548648653 scopus 로고    scopus 로고
    • Evolutionary genomics of plant genes encoding N-terminal–TM–C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans
    • 26 Craxton, M., Evolutionary genomics of plant genes encoding N-terminal–TM–C2 domain proteins and the similar FAM62 genes and synaptotagmin genes of metazoans. BMC Genomics, 8, 2007, 25.
    • (2007) BMC Genomics , vol.8 , pp. 25
    • Craxton, M.1
  • 27
    • 84963582640 scopus 로고    scopus 로고
    • Control of plasma membrane lipid homeostasis by the extended synaptotagmins
    • 27 Saheki, Y., et al. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18 (2016), 504–515.
    • (2016) Nat. Cell Biol. , vol.18 , pp. 504-515
    • Saheki, Y.1
  • 28
    • 84935013862 scopus 로고    scopus 로고
    • Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly
    • 28 AhYoung, A.P., et al. Conserved SMP domains of the ERMES complex bind phospholipids and mediate tether assembly. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E3179–E3188.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E3179-E3188
    • AhYoung, A.P.1
  • 29
    • 84903532519 scopus 로고    scopus 로고
    • Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer
    • 29 Schauder, C.M., et al. Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature 510 (2014), 552–555.
    • (2014) Nature , vol.510 , pp. 552-555
    • Schauder, C.M.1
  • 30
    • 62549102934 scopus 로고    scopus 로고
    • Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability
    • 30 Schapire, A.L., et al. Arabidopsis synaptotagmin 1 is required for the maintenance of plasma membrane integrity and cell viability. Plant Cell 20 (2008), 3374–3388.
    • (2008) Plant Cell , vol.20 , pp. 3374-3388
    • Schapire, A.L.1
  • 31
    • 84947716568 scopus 로고    scopus 로고
    • Analysis of protein–lipid Interactions using purified C2 domains
    • 31 Pérez-Sancho, J., et al. Analysis of protein–lipid Interactions using purified C2 domains. Methods Mol. Biol. 1363 (2016), 175–187.
    • (2016) Methods Mol. Biol. , vol.1363 , pp. 175-187
    • Pérez-Sancho, J.1
  • 32
    • 84962208471 scopus 로고    scopus 로고
    • ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein
    • 32 Dalal, J., et al. ROSY1, a novel regulator of gravitropic response is a stigmasterol binding protein. J. Plant Physiol. 196-197 (2016), 28–40.
    • (2016) J. Plant Physiol. , vol.196-197 , pp. 28-40
    • Dalal, J.1
  • 33
    • 84946204772 scopus 로고    scopus 로고
    • Reticulomics: protein–protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane
    • 33 Kriechbaumer, V., et al. Reticulomics: protein–protein interaction studies with two plasmodesmata-localized reticulon family proteins identify binding partners enriched at plasmodesmata, endoplasmic reticulum, and the plasma membrane. Plant Physiol. 169 (2015), 1933–1945.
    • (2015) Plant Physiol. , vol.169 , pp. 1933-1945
    • Kriechbaumer, V.1
  • 34
    • 62549127319 scopus 로고    scopus 로고
    • Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1
    • 34 Yamazaki, T., et al. Calcium-dependent freezing tolerance in Arabidopsis involves membrane resealing via synaptotagmin SYT1. Plant Cell 20 (2008), 3389–3404.
    • (2008) Plant Cell , vol.20 , pp. 3389-3404
    • Yamazaki, T.1
  • 35
    • 84903647691 scopus 로고    scopus 로고
    • The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans
    • 35 Bozkurt, T.O., et al. The plant membrane-associated REMORIN1.3 accumulates in discrete perihaustorial domains and enhances susceptibility to Phytophthora infestans. Plant Physiol. 165 (2014), 1005–1018.
    • (2014) Plant Physiol. , vol.165 , pp. 1005-1018
    • Bozkurt, T.O.1
  • 36
    • 82155188707 scopus 로고    scopus 로고
    • Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis
    • 36 Zhang, H., et al. Golgi apparatus-localized synaptotagmin 2 is required for unconventional secretion in Arabidopsis. PLoS ONE, 6, 2011, e26477.
    • (2011) PLoS ONE , vol.6 , pp. e26477
    • Zhang, H.1
  • 37
    • 84960944558 scopus 로고    scopus 로고
    • Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion
    • 37 Wang, H., et al. Arabidopsis synaptotagmin 2 participates in pollen germination and tube growth and is delivered to plasma membrane via conventional secretion. Mol. Plant. 8 (2015), 1737–1750.
    • (2015) Mol. Plant. , vol.8 , pp. 1737-1750
    • Wang, H.1
  • 38
    • 84963852458 scopus 로고    scopus 로고
    • ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function
    • Published online April 13, 2016
    • 38 Galmes, R., et al. ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function. EMBO Rep., 2016, 10.15252/embr.201541108 Published online April 13, 2016.
    • (2016) EMBO Rep.
    • Galmes, R.1
  • 39
    • 84960432396 scopus 로고    scopus 로고
    • AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex
    • 39 Michaud, M., et al. AtMic60 is involved in plant mitochondria lipid trafficking and is part of a large complex. Curr. Biol. 26 (2016), 627–639.
    • (2016) Curr. Biol. , vol.26 , pp. 627-639
    • Michaud, M.1
  • 40
    • 84925782876 scopus 로고    scopus 로고
    • ER–mitochondria contact sites in yeast: beyond the myths of ERMES
    • 40 Lang, A., et al. ER–mitochondria contact sites in yeast: beyond the myths of ERMES. Curr. Opin. Cell Biol. 35 (2015), 7–12.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 7-12
    • Lang, A.1
  • 41
    • 84920413092 scopus 로고    scopus 로고
    • A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria
    • 41 Lahiri, S., et al. A conserved endoplasmic reticulum membrane protein complex (EMC) facilitates phospholipid transfer from the ER to mitochondria. PLoS Biol., 12, 2014, e1001969.
    • (2014) PLoS Biol. , vol.12 , pp. e1001969
    • Lahiri, S.1
  • 42
    • 85091357761 scopus 로고    scopus 로고
    • The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?
    • 42 Wideman, J.G., The ubiquitous and ancient ER membrane protein complex (EMC): tether or not?. F1000Res., 4, 2015, 624.
    • (2015) F1000Res. , vol.4 , pp. 624
    • Wideman, J.G.1
  • 43
    • 84907550396 scopus 로고    scopus 로고
    • Specialised membrane domains of plasmodesmata, plant intercellular nanopores
    • 43 Bayer, E.M., et al. Specialised membrane domains of plasmodesmata, plant intercellular nanopores. Front. Plant Sci., 5, 2014, 507.
    • (2014) Front. Plant Sci. , vol.5 , pp. 507
    • Bayer, E.M.1
  • 44
    • 84926383378 scopus 로고    scopus 로고
    • The cytosol must flow: intercellular transport through plasmodesmata
    • 44 Brunkard, J.O., et al. The cytosol must flow: intercellular transport through plasmodesmata. Curr. Opin. Cell Biol. 35 (2015), 13–20.
    • (2015) Curr. Opin. Cell Biol. , vol.35 , pp. 13-20
    • Brunkard, J.O.1
  • 45
    • 84949024241 scopus 로고    scopus 로고
    • Symplastic communication in organ formation and tissue patterning
    • 45 Otero, S., et al. Symplastic communication in organ formation and tissue patterning. Curr. Opin. Plant Biol. 29 (2016), 21–28.
    • (2016) Curr. Opin. Plant Biol. , vol.29 , pp. 21-28
    • Otero, S.1
  • 46
    • 0002469966 scopus 로고
    • Substructure of freeze-substituted plasmodesmata
    • 46 Ding, B., et al. Substructure of freeze-substituted plasmodesmata. Protoplasma 169 (1992), 28–41.
    • (1992) Protoplasma , vol.169 , pp. 28-41
    • Ding, B.1
  • 47
    • 79955426023 scopus 로고    scopus 로고
    • Arabidopsis plasmodesmal proteome
    • 47 Fernandez-Calvino, L., et al. Arabidopsis plasmodesmal proteome. PLoS ONE, 6, 2011, e18880.
    • (2011) PLoS ONE , vol.6 , pp. e18880
    • Fernandez-Calvino, L.1
  • 48
    • 84928940021 scopus 로고    scopus 로고
    • Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis
    • 48 Grison, M., et al. Specific membrane lipid composition is important for plasmodesmata function in Arabidopsis. Plant Cell 27 (2015), 1228–1250.
    • (2015) Plant Cell , vol.27 , pp. 1228-1250
    • Grison, M.1
  • 49
    • 83455229801 scopus 로고    scopus 로고
    • Callose biosynthesis regulates symplastic trafficking during root development
    • 49 Vatén, A., et al. Callose biosynthesis regulates symplastic trafficking during root development. Dev. Cell 21 (2011), 1144–1155.
    • (2011) Dev. Cell , vol.21 , pp. 1144-1155
    • Vatén, A.1
  • 50
    • 33846937358 scopus 로고    scopus 로고
    • A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis
    • 50 Levy, A., et al. A plasmodesmata-associated beta-1,3-glucanase in Arabidopsis. Plant J. 49 (2007), 669–682.
    • (2007) Plant J. , vol.49 , pp. 669-682
    • Levy, A.1
  • 51
    • 84901039719 scopus 로고    scopus 로고
    • Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance
    • 51 De Storme, N., Geelen, D., Callose homeostasis at plasmodesmata: molecular regulators and developmental relevance. Front. Plant Sci., 5, 2014, 138.
    • (2014) Front. Plant Sci. , vol.5 , pp. 138
    • De Storme, N.1    Geelen, D.2
  • 52
    • 0033984411 scopus 로고    scopus 로고
    • Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata
    • 52 Holdaway-Clarke, T.L., et al. Physiological elevations in cytoplasmic free calcium by cold or ion injection result in transient closure of higher plant plasmodesmata. Planta 210 (2000), 329–335.
    • (2000) Planta , vol.210 , pp. 329-335
    • Holdaway-Clarke, T.L.1
  • 53
    • 84887617011 scopus 로고    scopus 로고
    • 2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum–plasma membrane junctions
    • 2+ signaling mediated by E-Syt1 and Nir2 at endoplasmic reticulum–plasma membrane junctions. Cell Rep. 5 (2013), 813–825.
    • (2013) Cell Rep. , vol.5 , pp. 813-825
    • Chang, C.L.1
  • 54
    • 84931291555 scopus 로고    scopus 로고
    • Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites
    • 54 Fernández-Busnadiego, R., et al. Three-dimensional architecture of extended synaptotagmin-mediated endoplasmic reticulum–plasma membrane contact sites. Proc. Natl. Acad. Sci. U.S.A. 112 (2015), E2004–E2013.
    • (2015) Proc. Natl. Acad. Sci. U.S.A. , vol.112 , pp. E2004-E2013
    • Fernández-Busnadiego, R.1
  • 55
    • 29244479804 scopus 로고    scopus 로고
    • Effects of calreticulin on viral cell-to-cell movement
    • 55 Chen, M.-H., et al. Effects of calreticulin on viral cell-to-cell movement. Plant Physiol. 138 (2005), 1866–1876.
    • (2005) Plant Physiol. , vol.138 , pp. 1866-1876
    • Chen, M.-H.1
  • 56
    • 84921768657 scopus 로고    scopus 로고
    • Plasmodesmata: channels for viruses on the move
    • M. Heinlein Springer New York
    • 56 Heinlein, M., Plasmodesmata: channels for viruses on the move. Heinlein, M., (eds.) In Plasmodesmata, 2015, Springer, New York, 25–52.
    • (2015) In Plasmodesmata , pp. 25-52
    • Heinlein, M.1
  • 57
    • 84920915834 scopus 로고    scopus 로고
    • Plant virus movement
    • Published online June 16, 2014
    • 57 Tilsner, J., et al. Plant virus movement. eLS, 2014, 10.1002/9780470015902.a0020711.pub2 Published online June 16, 2014.
    • (2014) eLS
    • Tilsner, J.1
  • 58
    • 84929589847 scopus 로고    scopus 로고
    • Morphogenesis of endoplasmic reticulum membrane-invaginated vesicles during beet black scorch virus infection: role of auxiliary replication protein and new implications of three-dimensional architecture
    • 58 Cao, X., et al. Morphogenesis of endoplasmic reticulum membrane-invaginated vesicles during beet black scorch virus infection: role of auxiliary replication protein and new implications of three-dimensional architecture. J. Virol. 89 (2015), 6184–6195.
    • (2015) J. Virol. , vol.89 , pp. 6184-6195
    • Cao, X.1
  • 59
    • 84908274818 scopus 로고    scopus 로고
    • Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication
    • 59 Xu, K., Nagy, P.D., Expanding use of multi-origin subcellular membranes by positive-strand RNA viruses during replication. Curr. Opin. Virol. 9 (2014), 119–126.
    • (2014) Curr. Opin. Virol. , vol.9 , pp. 119-126
    • Xu, K.1    Nagy, P.D.2
  • 60
    • 84920129392 scopus 로고    scopus 로고
    • Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast
    • 60 Barajas, D., et al. Tombusviruses upregulate phospholipid biosynthesis via interaction between p33 replication protein and yeast lipid sensor proteins during virus replication in yeast. Virology 471 (2014), 72–80.
    • (2014) Virology , vol.471 , pp. 72-80
    • Barajas, D.1
  • 61
    • 84880030958 scopus 로고    scopus 로고
    • Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata
    • 61 Tilsner, J., et al. Replication and trafficking of a plant virus are coupled at the entrances of plasmodesmata. J. Cell Biol. 201 (2013), 981–995.
    • (2013) J. Cell Biol. , vol.201 , pp. 981-995
    • Tilsner, J.1
  • 62
    • 84908612160 scopus 로고    scopus 로고
    • The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses
    • 62 Uchiyama, A., et al. The Arabidopsis synaptotagmin SYTA regulates the cell-to-cell movement of diverse plant viruses. Front. Plant Sci., 5, 2014, 584.
    • (2014) Front. Plant Sci. , vol.5 , pp. 584
    • Uchiyama, A.1
  • 63
    • 84982719876 scopus 로고
    • Continuity of chloroplast and endoplasmic reticulum membranes in Chara and Equisetum
    • 63 McLean, B., et al. Continuity of chloroplast and endoplasmic reticulum membranes in Chara and Equisetum. New Phytol. 109 (1988), 59–65.
    • (1988) New Phytol. , vol.109 , pp. 59-65
    • McLean, B.1
  • 64
    • 0031170901 scopus 로고    scopus 로고
    • The plant ER: a dynamic organelle composed of a large number of discrete functional domains
    • 64 Staehelin, L.A., The plant ER: a dynamic organelle composed of a large number of discrete functional domains. Plant J. 11 (1997), 1151–1165.
    • (1997) Plant J. , vol.11 , pp. 1151-1165
    • Staehelin, L.A.1
  • 65
    • 33847760354 scopus 로고    scopus 로고
    • Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts
    • 65 Andersson, M.X., et al. Optical manipulation reveals strong attracting forces at membrane contact sites between endoplasmic reticulum and chloroplasts. J. Biol. Chem. 282 (2007), 1170–1174.
    • (2007) J. Biol. Chem. , vol.282 , pp. 1170-1174
    • Andersson, M.X.1
  • 66
    • 84944318985 scopus 로고    scopus 로고
    • Chloroplast signaling within, between and beyond cells
    • 66 Bobik, K., Burch-Smith, T.M., Chloroplast signaling within, between and beyond cells. Front Plant Sci., 6, 2015, 781.
    • (2015) Front Plant Sci. , vol.6 , pp. 781
    • Bobik, K.1    Burch-Smith, T.M.2
  • 67
    • 84946782223 scopus 로고    scopus 로고
    • Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids
    • 67 Fan, J., et al. Arabidopsis TRIGALACTOSYLDIACYLGLYCEROL5 interacts with TGD1, TGD2, and TGD4 to facilitate lipid transfer from the endoplasmic reticulum to plastids. Plant Cell 27 (2015), 2941–2955.
    • (2015) Plant Cell , vol.27 , pp. 2941-2955
    • Fan, J.1
  • 68
    • 77953604756 scopus 로고    scopus 로고
    • Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid
    • 68 Xu, C., et al. Lipid transport mediated by Arabidopsis TGD proteins is unidirectional from the endoplasmic reticulum to the plastid. Plant Cell Physiol. 51 (2010), 1019–1028.
    • (2010) Plant Cell Physiol. , vol.51 , pp. 1019-1028
    • Xu, C.1
  • 69
    • 84862823195 scopus 로고    scopus 로고
    • TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein
    • 69 Wang, Z., et al. TGD4 involved in endoplasmic reticulum-to-chloroplast lipid trafficking is a phosphatidic acid binding protein. Plant J. 70 (2012), 614–623.
    • (2012) Plant J. , vol.70 , pp. 614-623
    • Wang, Z.1
  • 70
    • 84880395654 scopus 로고    scopus 로고
    • Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts
    • 70 Mehrshahi, P., et al. Transorganellar complementation redefines the biochemical continuity of endoplasmic reticulum and chloroplasts. Proc. Natl. Acad. Sci. U.S.A. 110 (2013), 12126–12131.
    • (2013) Proc. Natl. Acad. Sci. U.S.A. , vol.110 , pp. 12126-12131
    • Mehrshahi, P.1
  • 71
    • 6344233800 scopus 로고    scopus 로고
    • Plastids and stromules interact with the nucleus and cell membrane in vascular plants
    • 71 Kwok, E.Y., Hanson, M.R., Plastids and stromules interact with the nucleus and cell membrane in vascular plants. Plant Cell Rep. 23 (2004), 188–195.
    • (2004) Plant Cell Rep. , vol.23 , pp. 188-195
    • Kwok, E.Y.1    Hanson, M.R.2
  • 72
    • 79953725998 scopus 로고    scopus 로고
    • Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics
    • 72 Schattat, M., et al. Plastid stromule branching coincides with contiguous endoplasmic reticulum dynamics. Plant Physiol. 155 (2011), 1667–1677.
    • (2011) Plant Physiol. , vol.155 , pp. 1667-1677
    • Schattat, M.1
  • 73
    • 84991272914 scopus 로고    scopus 로고
    • Stromules
    • 73 Kumar, A., et al. Stromules. Adv. Plant Biol. 5 (2014), 189–220.
    • (2014) Adv. Plant Biol. , vol.5 , pp. 189-220
    • Kumar, A.1
  • 74
    • 4143094805 scopus 로고    scopus 로고
    • Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell
    • 74 Waters, M.T., et al. Stromule formation is dependent upon plastid size, plastid differentiation status and the density of plastids within the cell. Plant J. 39 (2004), 655–667.
    • (2004) Plant J. , vol.39 , pp. 655-667
    • Waters, M.T.1
  • 75
    • 84938947444 scopus 로고    scopus 로고
    • Chloroplast stromules function during innate immunity
    • 75 Caplan, J.L., et al. Chloroplast stromules function during innate immunity. Dev Cell. 34 (2015), 45–57.
    • (2015) Dev Cell. , vol.34 , pp. 45-57
    • Caplan, J.L.1
  • 76
    • 80053426242 scopus 로고    scopus 로고
    • A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus
    • 76 Sun, X., et al. A chloroplast envelope-bound PHD transcription factor mediates chloroplast signals to the nucleus. Nature Comm., 2, 2011, 477.
    • (2011) Nature Comm. , vol.2 , pp. 477
    • Sun, X.1
  • 77
    • 84896691528 scopus 로고    scopus 로고
    • The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis
    • 77 Foyer, C.H., et al. The functions of WHIRLY1 and REDOX-RESPONSIVE TRANSCRIPTION FACTOR 1 in cross tolerance responses in plants: a hypothesis. Phil. Trans. R. Soc. B., 369, 2014, 20130226.
    • (2014) Phil. Trans. R. Soc. B. , vol.369 , pp. 20130226
    • Foyer, C.H.1
  • 78
    • 38849106202 scopus 로고    scopus 로고
    • Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector
    • 78 Caplan, J.L., et al. Chloroplastic protein NRIP1 mediates innate immune receptor recognition of a viral effector. Cell 132 (2008), 449–462.
    • (2008) Cell , vol.132 , pp. 449-462
    • Caplan, J.L.1
  • 79
    • 84975797352 scopus 로고    scopus 로고
    • No peroxisome is an island – peroxisome contact sites
    • 79 Shai, N., et al. No peroxisome is an island – peroxisome contact sites. Biochim. Biophys. Acta 1863 (2015), 1061–1069.
    • (2015) Biochim. Biophys. Acta , vol.1863 , pp. 1061-1069
    • Shai, N.1
  • 80
    • 85055036758 scopus 로고    scopus 로고
    • High light intensity leads to increased peroxule-mitochondria interactions in plants
    • 80 Jaipargas, E.A., et al. High light intensity leads to increased peroxule-mitochondria interactions in plants. Front. Cell Dev. Biol., 4, 2016, 6.
    • (2016) Front. Cell Dev. Biol. , vol.4 , pp. 6
    • Jaipargas, E.A.1
  • 81
    • 84942165980 scopus 로고    scopus 로고
    • Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis
    • 81 Oikawa, K., et al. Physical interaction between peroxisomes and chloroplasts elucidated by in situ laser analysis. Nat. Plants, 1, 2015, 15035.
    • (2015) Nat. Plants , vol.1 , pp. 15035
    • Oikawa, K.1
  • 82
    • 84953265309 scopus 로고    scopus 로고
    • In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers
    • 82 Gao, H., et al. In vivo quantification of peroxisome tethering to chloroplasts in tobacco epidermal cells using optical tweezers. Plant Phys. 170 (2016), 263–272.
    • (2016) Plant Phys. , vol.170 , pp. 263-272
    • Gao, H.1
  • 83
    • 84954441494 scopus 로고    scopus 로고
    • Formation of mitochondrial outer membrane derived protrusions and vesicles in Arabidopsis thaliana
    • 83 Yamashita, A., et al. Formation of mitochondrial outer membrane derived protrusions and vesicles in Arabidopsis thaliana. PLoS ONE, 11, 2016, e0146717.
    • (2016) PLoS ONE , vol.11 , pp. e0146717
    • Yamashita, A.1
  • 84
    • 79952575017 scopus 로고    scopus 로고
    • Oxysterol binding proteins (OSBPs) and their encoding genes in Arabidopsis and rice
    • 84 Umate, P., Oxysterol binding proteins (OSBPs) and their encoding genes in Arabidopsis and rice. Steroids 76 (2011), 524–529.
    • (2011) Steroids , vol.76 , pp. 524-529
    • Umate, P.1
  • 85
    • 0025373088 scopus 로고
    • Cortical endoplasmic reticulum in plants
    • 85 Hepler, P., et al. Cortical endoplasmic reticulum in plants. J. Cell Sci. 96 (1990), 355–373.
    • (1990) J. Cell Sci. , vol.96 , pp. 355-373
    • Hepler, P.1
  • 86
    • 75649083805 scopus 로고    scopus 로고
    • Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves
    • 86 Sparkes, I., et al. Movement and remodeling of the endoplasmic reticulum in nondividing cells of tobacco leaves. Plant Cell 21 (2009), 3937–3949.
    • (2009) Plant Cell , vol.21 , pp. 3937-3949
    • Sparkes, I.1
  • 87
    • 79956049098 scopus 로고    scopus 로고
    • Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells
    • 87 Yokota, E., et al. Myosin XI-dependent formation of tubular structures from endoplasmic reticulum isolated from tobacco cultured BY-2 cells. Plant Physiol. 156 (2011), 129–143.
    • (2011) Plant Physiol. , vol.156 , pp. 129-143
    • Yokota, E.1
  • 88
    • 84914156055 scopus 로고    scopus 로고
    • Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis
    • 88 Hamada, T., et al. Microtubules contribute to tubule elongation and anchoring of endoplasmic reticulum, resulting in high network complexity in Arabidopsis. Plant Physiol. 166 (2014), 1869–1876.
    • (2014) Plant Physiol. , vol.166 , pp. 1869-1876
    • Hamada, T.1
  • 89
    • 34249094787 scopus 로고    scopus 로고
    • Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell
    • 89 Perktold, A., et al. Organelle association visualized by three-dimensional ultrastructural imaging of the yeast cell. FEMS Yeast Res. 7 (2007), 629–638.
    • (2007) FEMS Yeast Res. , vol.7 , pp. 629-638
    • Perktold, A.1
  • 90
    • 79955488489 scopus 로고    scopus 로고
    • A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature
    • 90 West, M., et al. A 3D analysis of yeast ER structure reveals how ER domains are organized by membrane curvature. J. Cell Biol. 193 (2011), 333–346.
    • (2011) J. Cell Biol. , vol.193 , pp. 333-346
    • West, M.1
  • 91
    • 0025697913 scopus 로고
    • Comparison of the ultrastructure of conventionally fixed and high-pressure frozen freeze substituted root-tips of Nicotiana and Arabidopsis
    • 91 Kiss, J.Z., et al. Comparison of the ultrastructure of conventionally fixed and high-pressure frozen freeze substituted root-tips of Nicotiana and Arabidopsis. Protoplasma 157 (1990), 64–74.
    • (1990) Protoplasma , vol.157 , pp. 64-74
    • Kiss, J.Z.1
  • 92
    • 64849095076 scopus 로고    scopus 로고
    • Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum
    • 92 Sparkes, I.A., et al. Grab a Golgi: laser trapping of Golgi bodies reveals in vivo interactions with the endoplasmic reticulum. Traffic 10 (2009), 567–571.
    • (2009) Traffic , vol.10 , pp. 567-571
    • Sparkes, I.A.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.