-
3
-
-
0016770299
-
Reflection coefficients of permeant molecules in human red cell suspensions
-
Owen JD, Eyring EM. Reflection coefficients of permeant molecules in human red cell suspensions. J Gen Physiol 1975;66:251–265.
-
(1975)
J Gen Physiol
, vol.66
, pp. 251-265
-
-
Owen, J.D.1
Eyring, E.M.2
-
4
-
-
0020790044
-
The influence of skeleton on red cell deformability, membrane material properties, and shape
-
Mohandas N, Chasis JA, Shohet B. The influence of skeleton on red cell deformability, membrane material properties, and shape. Semin Hematol 1983;20:225–242.
-
(1983)
Semin Hematol
, vol.20
, pp. 225-242
-
-
Mohandas, N.1
Chasis, J.A.2
Shohet, B.3
-
5
-
-
0023161133
-
Erythrocyte membrane elasticity and viscosity
-
Hochmuth RM, Waugh RE. Erythrocyte membrane elasticity and viscosity. Ann Rev Physiol 1987;49:209–219.
-
(1987)
Ann Rev Physiol
, vol.49
, pp. 209-219
-
-
Hochmuth, R.M.1
Waugh, R.E.2
-
6
-
-
0037275959
-
Carrier erythrocytes: an overview
-
Hamidi M, Tajerzadeh H. Carrier erythrocytes: an overview. Drug Deliv 2003;10:9–20.
-
(2003)
Drug Deliv
, vol.10
, pp. 9-20
-
-
Hamidi, M.1
Tajerzadeh, H.2
-
7
-
-
84991093625
-
Red blood cells as carriers of antiviral agents
-
In, Magnani M, ed., Georgetown, Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers
-
Fraternale A, Casabianca A, Magnani M. Red blood cells as carriers of antiviral agents. In: Magnani M, ed. Erythrocyte Engineering for Drug Delivery and Targeting. Georgetown: Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers, 2003;93–102.
-
(2003)
Erythrocyte Engineering for Drug Delivery and Targeting
, pp. 93-102
-
-
Fraternale, A.1
Casabianca, A.2
Magnani, M.3
-
8
-
-
84991096242
-
Erythrocytes as carriers of anthracycline antibiotics in vitro and in vivo
-
In, Magnani M, ed., Georgetown, Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers
-
Vitvitsky VM. Erythrocytes as carriers of anthracycline antibiotics in vitro and in vivo. In: Magnani M, ed. Erythrocyte Engineering for Drug Delivery and Targeting. Georgetown: Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers, 2003;103–112.
-
(2003)
Erythrocyte Engineering for Drug Delivery and Targeting
, pp. 103-112
-
-
Vitvitsky, V.M.1
-
9
-
-
84991096240
-
Engineered red blood cells as circulating bioreactors
-
In, Magnani M, ed., Georgetown, Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers
-
Ninfali P, Biagiotti E. Engineered red blood cells as circulating bioreactors. In: Magnani M, ed. Erythrocyte Engineering for Drug Delivery and Targeting. Georgetown: Landes Bioscience Eureka and Kluwer Academic/Plenum Publishers, 2003;135–146.
-
(2003)
Erythrocyte Engineering for Drug Delivery and Targeting
, pp. 135-146
-
-
Ninfali, P.1
Biagiotti, E.2
-
12
-
-
0842309173
-
Drug, enzyme and peptide delivery using erythrocytes as carriers
-
Gutiérrez Millán C, Salayero Marinero ML, Zarzuelo Castaňeda A, Lanao JM. Drug, enzyme and peptide delivery using erythrocytes as carriers. J Control Release 2004;95:27–49.
-
(2004)
J Control Release
, vol.95
, pp. 27-49
-
-
Gutiérrez Millán, C.1
Salayero Marinero, M.L.2
Zarzuelo Castaňeda, A.3
Lanao, J.M.4
-
13
-
-
0001899824
-
Electroporation: the population distribution of macromolecular uptake and shape changes in red blood cells following a single 50 μs square wave pulse
-
Bliss JC, Harrison GI, Mourant JR, Powell KT, Weaver JC. Electroporation: the population distribution of macromolecular uptake and shape changes in red blood cells following a single 50 μs square wave pulse. Bioelectrochem Bioenerg 1988;20:57–71.
-
(1988)
Bioelectrochem Bioenerg
, vol.20
, pp. 57-71
-
-
Bliss, J.C.1
Harrison, G.I.2
Mourant, J.R.3
Powell, K.T.4
Weaver, J.C.5
-
14
-
-
0021904970
-
Entrapment of DNA and fluorescent compounds in erythrocyte carriers by endocytosis
-
Ihler GM. Entrapment of DNA and fluorescent compounds in erythrocyte carriers by endocytosis. Bibl Haematol 1985;51:127–133.
-
(1985)
Bibl Haematol
, vol.51
, pp. 127-133
-
-
Ihler, G.M.1
-
15
-
-
0025278682
-
The in vivo survival of human red cells with low oxygen affinity prepared by the osmotic pulse method of inositol hexaphosphate incorporation
-
Franco RS, Barker R, Mayfield G, Silberstain E, Weiner M. The in vivo survival of human red cells with low oxygen affinity prepared by the osmotic pulse method of inositol hexaphosphate incorporation. Transfusion 1990;30:196–200.
-
(1990)
Transfusion
, vol.30
, pp. 196-200
-
-
Franco, R.S.1
Barker, R.2
Mayfield, G.3
Silberstain, E.4
Weiner, M.5
-
16
-
-
0035896194
-
Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation, organ distribution and ethanol degradation
-
Lizano C, Perez MT, Pinilla M. Mouse erythrocytes as carriers for coencapsulated alcohol and aldehyde dehydrogenase obtained by electroporation in vivo survival rate in circulation, organ distribution and ethanol degradation. Life Sci 2001;68:2001–2016.
-
(2001)
Life Sci
, vol.68
, pp. 2001-2016
-
-
Lizano, C.1
Perez, M.T.2
Pinilla, M.3
-
17
-
-
0036268007
-
Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides
-
Magnani M, Rossi L, Fraternale A, et al. Erythrocyte-mediated delivery of drugs, peptides and modified oligonucleotides. Gene Ther 2002;9:749–751.
-
(2002)
Gene Ther
, vol.9
, pp. 749-751
-
-
Magnani, M.1
Rossi, L.2
Fraternale, A.3
-
18
-
-
4444306586
-
Red blood cell loading: a selection of procedure
-
In, Magnani M, ed., Georgetown, Landes Bioscience Eureka and Kluwer Academic /Plenum publishers
-
Rossi L, Serafini S, Magnani M. Red blood cell loading: a selection of procedure. In: Magnani M, ed. Erythrocyte Engineering for Drug Delivery and Targeting. Georgetown: Landes Bioscience Eureka and Kluwer Academic /Plenum publishers, 2003;1–15.
-
(2003)
Erythrocyte Engineering for Drug Delivery and Targeting
, pp. 1-15
-
-
Rossi, L.1
Serafini, S.2
Magnani, M.3
-
19
-
-
77949878932
-
Drug delivery by red blood cells: vascular carriers designed by Mother Nature
-
Muzykantov VR. Drug delivery by red blood cells: vascular carriers designed by Mother Nature. Expert Opin Drug Deliv 2010;7:403–427.
-
(2010)
Expert Opin Drug Deliv
, vol.7
, pp. 403-427
-
-
Muzykantov, V.R.1
-
20
-
-
79960814336
-
Drug delivery by red blood cells
-
Biagiotti S, Paoletti MF, Fraternale A, Rossi L, Magnani M. Drug delivery by red blood cells. IUBMB Life 2011;63:621–631.
-
(2011)
IUBMB Life
, vol.63
, pp. 621-631
-
-
Biagiotti, S.1
Paoletti, M.F.2
Fraternale, A.3
Rossi, L.4
Magnani, M.5
-
21
-
-
1642316966
-
The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cell
-
Svetina S, Kuzman D, Waugh RE. The cooperative role of membrane skeleton and bilayer in the mechanical behaviour of red blood cell. Bioelectrochemistry 2003;62:107–113.
-
(2003)
Bioelectrochemistry
, vol.62
, pp. 107-113
-
-
Svetina, S.1
Kuzman, D.2
Waugh, R.E.3
-
22
-
-
1042267268
-
Elastic properties of the red blood cell membrane that determine echinocyte deformability
-
Kuzman D, Svetina S, Waugh RE, Zeks B. Elastic properties of the red blood cell membrane that determine echinocyte deformability. Eur Biophys J 2004;33:1–15.
-
(2004)
Eur Biophys J
, vol.33
, pp. 1-15
-
-
Kuzman, D.1
Svetina, S.2
Waugh, R.E.3
Zeks, B.4
-
23
-
-
0036219447
-
Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing
-
Mukhopadhyay R, Lim GHW, Wortis M. Echinocyte shapes: bending, stretching, and shear determine spicule shape and spacing. Biophys J 2002;82:1756–1772.
-
(2002)
Biophys J
, vol.82
, pp. 1756-1772
-
-
Mukhopadhyay, R.1
Lim, G.H.W.2
Wortis, M.3
-
24
-
-
0024804323
-
Methotrexate loading of red cell carriers by osmotic stress and electric-pulse methods: ultra-structural observations
-
Kruse CA, Mierau GW, James GT. Methotrexate loading of red cell carriers by osmotic stress and electric-pulse methods: ultra-structural observations. Biotechnol Appl Biochem 1989;11:571–580.
-
(1989)
Biotechnol Appl Biochem
, vol.11
, pp. 571-580
-
-
Kruse, C.A.1
Mierau, G.W.2
James, G.T.3
-
25
-
-
77952930019
-
Loading trehalose into red blood cells by electroporation and its application in freeze-drying
-
Zhou X, Yuan J, Liu J, Liu B. Loading trehalose into red blood cells by electroporation and its application in freeze-drying. Cryo Letters 2010;31:147–156.
-
(2010)
Cryo Letters
, vol.31
, pp. 147-156
-
-
Zhou, X.1
Yuan, J.2
Liu, J.3
Liu, B.4
-
27
-
-
84991042933
-
Mechanical red blood cell trauma
-
In, Srinath LS, Megha S, eds., New Dehli, India, Tata McGraw Hill Publishing Company Limited
-
Costantino ML, Fumero R, Inzoli F. Mechanical red blood cell trauma. In: Srinath LS, Megha S, eds. Physiological Fluid Dynamics II. New Dehli, India: Tata McGraw Hill Publishing Company Limited, 1987;139–142.
-
(1987)
Physiological Fluid Dynamics II
, pp. 139-142
-
-
Costantino, M.L.1
Fumero, R.2
Inzoli, F.3
-
29
-
-
0022364534
-
Effects of blood storage on rheology and damage in low-stress shear flow
-
Beissinger RL, Williams MC. Effects of blood storage on rheology and damage in low-stress shear flow. Biorheology 1985;22:477–493.
-
(1985)
Biorheology
, vol.22
, pp. 477-493
-
-
Beissinger, R.L.1
Williams, M.C.2
-
30
-
-
0027328557
-
Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability
-
Lipowsky HH, Cram LE, Justice W, Eppihimer MJ. Effect of erythrocyte deformability on in vivo red cell transit time and hematocrit and their correlation with in vitro filterability. Microvasc Res 1993;46:43–64.
-
(1993)
Microvasc Res
, vol.46
, pp. 43-64
-
-
Lipowsky, H.H.1
Cram, L.E.2
Justice, W.3
Eppihimer, M.J.4
-
31
-
-
1942421637
-
Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage
-
Baskurt OK, Uyuklu M, Meiselman HJ. Protection of erythrocytes from sub-hemolytic mechanical damage by nitric oxide mediated inhibition of potassium leakage. Biorheology 2004;41:79–89.
-
(2004)
Biorheology
, vol.41
, pp. 79-89
-
-
Baskurt, O.K.1
Uyuklu, M.2
Meiselman, H.J.3
-
32
-
-
84991824984
-
Red blood cell mechanical stability
-
Baskurt OK. Red blood cell mechanical stability. Engineering 2012;5:8–10.
-
(2012)
Engineering
, vol.5
, pp. 8-10
-
-
Baskurt, O.K.1
-
33
-
-
84925346099
-
Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress
-
Simmonds MJ, Atac N, Baskurt OK, Meiselman HJ, Yalcin O. Erythrocyte deformability responses to intermittent and continuous subhemolytic shear stress. Biorheology 2014;51:171–185.
-
(2014)
Biorheology
, vol.51
, pp. 171-185
-
-
Simmonds, M.J.1
Atac, N.2
Baskurt, O.K.3
Meiselman, H.J.4
Yalcin, O.5
-
34
-
-
85044293921
-
Chapter 14—Fluorescent tracers of cell morphology and fluid flow, Section 14.5 fluorescent and biotinylated dextrans
-
In, eds., 11th Edition, Printed in USA
-
Chapter 14—Fluorescent tracers of cell morphology and fluid flow, Section 14.5 fluorescent and biotinylated dextrans. In: Johnson I, Spence MTZ, eds. The Molecular probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies, 11th Edition. Printed in USA 2010;630.
-
(2010)
The Molecular probes Handbook, A Guide to Fluorescent Probes and Labeling Technologies
, pp. 630
-
-
Johnson, I.1
Spence, M.T.Z.2
-
35
-
-
0021154773
-
In-vitro wall shear measurements at aortic valve prostheses
-
Tillmann W, Reul H, Herold M, Bruss K-H, Gilse J. In-vitro wall shear measurements at aortic valve prostheses. J Biomech 1984;17:263–279.
-
(1984)
J Biomech
, vol.17
, pp. 263-279
-
-
Tillmann, W.1
Reul, H.2
Herold, M.3
Bruss, K.-H.4
Gilse, J.5
-
36
-
-
84881421832
-
Shear stress-induced improvement of red blood cell deformability
-
Meram E, Yilmaz BD, Bas C, et al. Shear stress-induced improvement of red blood cell deformability. Biorheology 2013;50:165–176.
-
(2013)
Biorheology
, vol.50
, pp. 165-176
-
-
Meram, E.1
Yilmaz, B.D.2
Bas, C.3
-
38
-
-
0022644404
-
Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape
-
Reinhart WH, Chien S. Red cell rheology in stomatocyte-echinocyte transformation: roles of cell geometry and cell shape. Blood 1986;67:1110–1118.
-
(1986)
Blood
, vol.67
, pp. 1110-1118
-
-
Reinhart, W.H.1
Chien, S.2
|