-
2
-
-
77951276538
-
A robust fuzzy local information C-means clustering algorithm
-
[2] Krinidis, S., Chatzis, V., A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19 (2010), 1328–1337.
-
(2010)
IEEE Trans. Image Process.
, vol.19
, pp. 1328-1337
-
-
Krinidis, S.1
Chatzis, V.2
-
3
-
-
33846221503
-
A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape
-
[3] Cremers, D., Rousson, M., Deriche, R., A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vision 72 (2007), 195–215.
-
(2007)
Int. J. Comput. Vision
, vol.72
, pp. 195-215
-
-
Cremers, D.1
Rousson, M.2
Deriche, R.3
-
4
-
-
84959205572
-
Fully convolutional networks for semantic segmentation
-
[4] Long, J., Shelhamer, E., Darrell, T., Fully convolutional networks for semantic segmentation. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2015, 3431–3440.
-
(2015)
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
5
-
-
84973861983
-
Conditional random fields as recurrent neural networks
-
[5] Zheng, S., Jayasumana, S., Romera-Paredes, B., Vineet, V., Su, Z., Du, D., Huang, C., Torr, H.S., Conditional random fields as recurrent neural networks. Proceedings of the IEEE International Conference on Computer Vision, 2015, 1529–1537.
-
(2015)
Proceedings of the IEEE International Conference on Computer Vision
, pp. 1529-1537
-
-
Zheng, S.1
Jayasumana, S.2
Romera-Paredes, B.3
Vineet, V.4
Su, Z.5
Du, D.6
Huang, C.7
Torr, H.S.8
-
6
-
-
84888002318
-
A nonsymmetric mixture model for unsupervised image segmentation
-
[6] Nguyen, T.M., Jonathan Wu, Q.M., A nonsymmetric mixture model for unsupervised image segmentation. IEEE Trans. Cybern. 43 (2013), 751–765.
-
(2013)
IEEE Trans. Cybern.
, vol.43
, pp. 751-765
-
-
Nguyen, T.M.1
Jonathan Wu, Q.M.2
-
7
-
-
84973099950
-
Finite Mixture Models
-
Wiley New York
-
[7] McLachlan, G., Peel, D., Finite Mixture Models. 2000, Wiley, New York.
-
(2000)
-
-
McLachlan, G.1
Peel, D.2
-
8
-
-
33846516584
-
Pattern Recognition and Machine Learning
-
Springer New York
-
[8] Bishop, C.M., Pattern Recognition and Machine Learning. 2006, Springer, New York.
-
(2006)
-
-
Bishop, C.M.1
-
9
-
-
0003747605
-
Statistical Analysis of Finite Mixture Distributions
-
Wiley Hoboken, NJ
-
[9] Titterington, D.M., Smith, A.F.M., Makov, U.E., Statistical Analysis of Finite Mixture Distributions. 1985, Wiley, Hoboken, NJ.
-
(1985)
-
-
Titterington, D.M.1
Smith, A.F.M.2
Makov, U.E.3
-
10
-
-
0033640646
-
Statistical pattern recognition: a review
-
[10] Jain, A.K., Duin, R.P.W., Mao, J.C., Statistical pattern recognition: a review. IEEE Trans. Pattern Anal. Mach. Intell. 22 (2000), 4–37.
-
(2000)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.22
, pp. 4-37
-
-
Jain, A.K.1
Duin, R.P.W.2
Mao, J.C.3
-
11
-
-
0004203240
-
The EM Algorithm and Extensions, Wiley Series in Probability and Statistics
-
Wiley New York
-
[11] McLachlan, G.J., Krishnan, T., The EM Algorithm and Extensions, Wiley Series in Probability and Statistics. 1997, Wiley, New York.
-
(1997)
-
-
McLachlan, G.J.1
Krishnan, T.2
-
12
-
-
0039650029
-
Markov Random Fields in Statistics, A Volume in Honour of John M. Hammersley
-
Oxford University Press
-
[12] Clifford, P., Markov Random Fields in Statistics, A Volume in Honour of John M. Hammersley. 1990, Oxford University Press.
-
(1990)
-
-
Clifford, P.1
-
13
-
-
0141613707
-
Hidden Markov random field model selection criteria based on mean field-like approximations
-
[13] Forbes, F., Peyrard, N., Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), 1089–1101.
-
(2003)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.25
, pp. 1089-1101
-
-
Forbes, F.1
Peyrard, N.2
-
14
-
-
0037209490
-
EM procedures using mean field-like approximations for Markov model-based image segmentation
-
[14] Celeux, G., Forbes, F., Peyrard, N., EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recogn. 36 (2003), 131–144.
-
(2003)
Pattern Recogn.
, vol.36
, pp. 131-144
-
-
Celeux, G.1
Forbes, F.2
Peyrard, N.3
-
15
-
-
84875979451
-
Fast and robust spatially constrained Gaussian mixture model for image segmentation
-
[15] Nguyen, T.M., Jonathan Wu, Q.M., Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23 (2013), 621–635.
-
(2013)
IEEE Trans. Circuits Syst. Video Technol.
, vol.23
, pp. 621-635
-
-
Nguyen, T.M.1
Jonathan Wu, Q.M.2
-
16
-
-
0032122746
-
Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm
-
[16] Sanjay, G.S., Hebert, T.J., Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7 (1998), 1014–1028.
-
(1998)
IEEE Trans. Image Process.
, vol.7
, pp. 1014-1028
-
-
Sanjay, G.S.1
Hebert, T.J.2
-
17
-
-
15344351001
-
A spatially constrained mixture model for image segmentation
-
[17] Blekas, K., Likas, A., Galatsanos, N.P., Lagaris, I.E., A spatially constrained mixture model for image segmentation. IEEE Trans. Neural Networks 16 (2005), 494–498.
-
(2005)
IEEE Trans. Neural Networks
, vol.16
, pp. 494-498
-
-
Blekas, K.1
Likas, A.2
Galatsanos, N.P.3
Lagaris, I.E.4
-
18
-
-
34248678480
-
A spatially constrained generative model and an EM algorithm for image segmentation
-
[18] Diplaros, A., Vlassis, N., Gevers, T., A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans. Neural Networks 18 (2007), 798–808.
-
(2007)
IEEE Trans. Neural Networks
, vol.18
, pp. 798-808
-
-
Diplaros, A.1
Vlassis, N.2
Gevers, T.3
-
19
-
-
34047208285
-
A class-adaptive spatially variant mixture model for image segmentation
-
[19] Nikou, C., Galatsanos, N., Likas, A., A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16 (2007), 1121–1130.
-
(2007)
IEEE Trans. Image Process.
, vol.16
, pp. 1121-1130
-
-
Nikou, C.1
Galatsanos, N.2
Likas, A.3
-
20
-
-
84892611017
-
A Bayesian bounded asymmetric mixture model with segmentation application
-
[20] Nguyen, T.M., Jonathan Wu, Q.M., Mukherjee, D., Zhang, H., A Bayesian bounded asymmetric mixture model with segmentation application. IEEE J. Biomed. Health Inform. 18 (2014), 109–119.
-
(2014)
IEEE J. Biomed. Health Inform.
, vol.18
, pp. 109-119
-
-
Nguyen, T.M.1
Jonathan Wu, Q.M.2
Mukherjee, D.3
Zhang, H.4
-
21
-
-
0041407143
-
Robust mixture modeling using the t distribution
-
[21] Peel, D., McLachlan, G., Robust mixture modeling using the t distribution. Stat. Comput. 10 (2000), 339–348.
-
(2000)
Stat. Comput.
, vol.10
, pp. 339-348
-
-
Peel, D.1
McLachlan, G.2
-
22
-
-
84901837489
-
Mixtures of shifted asymmetric laplace distributions
-
[22] Franczak, B.C., Browne, R.P., McNicholas, P., Mixtures of shifted asymmetric laplace distributions. IEEE Trans. Pattern Anal. Mach. Intell. 36 (2014), 1149–1157.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.36
, pp. 1149-1157
-
-
Franczak, B.C.1
Browne, R.P.2
McNicholas, P.3
-
23
-
-
77957964550
-
Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection
-
[23] Allili, M.S., Ziou, D., Bouguila, N., Boutemedjet, S., Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection. IEEE Trans. Circuits Syst. Video Technol. 20 (2010), 1373–1377.
-
(2010)
IEEE Trans. Circuits Syst. Video Technol.
, vol.20
, pp. 1373-1377
-
-
Allili, M.S.1
Ziou, D.2
Bouguila, N.3
Boutemedjet, S.4
-
24
-
-
0037228685
-
Bounded support Gaussian mixture modeling of speech spectra
-
[24] Lindblom, J., Samuelsson, J., Bounded support Gaussian mixture modeling of speech spectra. IEEE Trans. Speech Audio Process. 11 (2003), 88–99.
-
(2003)
IEEE Trans. Speech Audio Process.
, vol.11
, pp. 88-99
-
-
Lindblom, J.1
Samuelsson, J.2
-
25
-
-
84900802587
-
Bounded generalized Gaussian mixture model
-
[25] Nguyen, T.M., Jonathan Wu, Q.M., Zhang, H., Bounded generalized Gaussian mixture model. Pattern Recogn. 47 (2014), 3132–3142.
-
(2014)
Pattern Recogn.
, vol.47
, pp. 3132-3142
-
-
Nguyen, T.M.1
Jonathan Wu, Q.M.2
Zhang, H.3
-
26
-
-
84890533440
-
Image segmentation by a robust modified Gaussian mixture model
-
[26] Zhang, H., Jonathan Wu, Q.M., Nguyen, T.M., Image segmentation by a robust modified Gaussian mixture model. The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2013, 1478–1482.
-
(2013)
The 38th International Conference on Acoustics, Speech, and Signal Processing (ICASSP)
, pp. 1478-1482
-
-
Zhang, H.1
Jonathan Wu, Q.M.2
Nguyen, T.M.3
-
27
-
-
84857433079
-
Model-based learning using a mixture of mixture of Gaussian and uniform distributions
-
[27] Browne, R.P., McNicholas, P.D., Sparling, M.D., Model-based learning using a mixture of mixture of Gaussian and uniform distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34 (2014), 814–817.
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell.
, vol.34
, pp. 814-817
-
-
Browne, R.P.1
McNicholas, P.D.2
Sparling, M.D.3
-
28
-
-
84901269373
-
Bounded asymmetrical student's-t mixture model
-
[28] Nguyen, T.M., Jonathan Wu, Q.M., Bounded asymmetrical student's-t mixture model. IEEE Trans. Cybern. 44 (2014), 857–869.
-
(2014)
IEEE Trans. Cybern.
, vol.44
, pp. 857-869
-
-
Nguyen, T.M.1
Jonathan Wu, Q.M.2
-
29
-
-
84898962959
-
Global coordination of local linear models
-
T.G. Dietterich S. Becker Z. Ghahramani MIT Press Cambridge, MA
-
[29] Roweis, S.T., Saul, L.K., Hinton, G.E., Global coordination of local linear models. Dietterich, T.G., Becker, S., Ghahramani, Z., (eds.) Advances in Neural Information Processing Systems, 2002, MIT Press, Cambridge, MA, 889–896.
-
(2002)
Advances in Neural Information Processing Systems
, pp. 889-896
-
-
Roweis, S.T.1
Saul, L.K.2
Hinton, G.E.3
-
30
-
-
12144267390
-
Self-organizing mixture models
-
[30] Verbeek, J.J., Vlassis, N., Kröse, B., Self-organizing mixture models. Neurocomputing 63 (2005), 99–123.
-
(2005)
Neurocomputing
, vol.63
, pp. 99-123
-
-
Verbeek, J.J.1
Vlassis, N.2
Kröse, B.3
-
31
-
-
84871375193
-
A robust fuzzy algorithm based on student's t-distribution and mean template for image segmentation application
-
[31] Zhang, H., Jonathan Wu, Q.M., Nguyen, T.M., A robust fuzzy algorithm based on student's t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20 (2013), 117–120.
-
(2013)
IEEE Signal Process. Lett.
, vol.20
, pp. 117-120
-
-
Zhang, H.1
Jonathan Wu, Q.M.2
Nguyen, T.M.3
-
32
-
-
84872242129
-
Fuzzy C-means clustering with local information and kernel metric for image segmentation
-
[32] Gong, M.G., Liang, Y., Shi, J., Ma, W.P., Ma, J.J., Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22 (2013), 573–584.
-
(2013)
IEEE Trans. Image Process.
, vol.22
, pp. 573-584
-
-
Gong, M.G.1
Liang, Y.2
Shi, J.3
Ma, W.P.4
Ma, J.J.5
-
33
-
-
84912571174
-
A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation
-
[33] Ji, Z., Cao, G., Sun, Q., A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014, 202–209.
-
(2014)
IEEE International Conference on Fuzzy Systems (FUZZ-IEEE)
, pp. 202-209
-
-
Ji, Z.1
Cao, G.2
Sun, Q.3
-
34
-
-
0033201366
-
Automated model-based tissue classification of MR images of the brain
-
[34] Van Leemput, K.V., Maes, F., Vandermeulen, D., Suetens, P., Automated model-based tissue classification of MR images of the brain. IEEE Trans. Med. Imaging 18 (1999), 897–908.
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, pp. 897-908
-
-
Van Leemput, K.V.1
Maes, F.2
Vandermeulen, D.3
Suetens, P.4
-
35
-
-
20444501009
-
Unified segmentation
-
[35] Ashburner, J., Friston, K.J., Unified segmentation. Neuroimage 26 (2005), 839–851.
-
(2005)
Neuroimage
, vol.26
, pp. 839-851
-
-
Ashburner, J.1
Friston, K.J.2
-
36
-
-
0033233097
-
MRI simulation-based evaluation of image-processing and classification methods
-
[36] Kwan, R.K.-S., Evans, A.C., Pike, G.B., MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18 (1999), 1085–1097.
-
(1999)
IEEE Trans. Med. Imaging
, vol.18
, pp. 1085-1097
-
-
Kwan, R.K.-S.1
Evans, A.C.2
Pike, G.B.3
-
37
-
-
84856690675
-
Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable
-
[37] Rohlfing, T., Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imaging 31 (2012), 153–163.
-
(2012)
IEEE Trans. Med. Imaging
, vol.31
, pp. 153-163
-
-
Rohlfing, T.1
-
38
-
-
0034850577
-
A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
-
[38] Martin, D., Fowlkes, C., Tal, D., Malik, J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc. 8th Int'l Conf. Computer Vision, vol. 2, 2001, 416–423.
-
(2001)
Proc. 8th Int'l Conf. Computer Vision
, vol.2
, pp. 416-423
-
-
Martin, D.1
Fowlkes, C.2
Tal, D.3
Malik, J.4
-
39
-
-
85026759249
-
A measure for objective evaluation of image segmentation algorithms
-
[39] Unnikrishnan, R., Pantofaru, C., Hebert, M., A measure for objective evaluation of image segmentation algorithms. Proc. IEEE Conf. Computer Vision and Pattern Recognition, vol. 3, 2005, 34–41.
-
(2005)
Proc. IEEE Conf. Computer Vision and Pattern Recognition
, vol.3
, pp. 34-41
-
-
Unnikrishnan, R.1
Pantofaru, C.2
Hebert, M.3
-
40
-
-
0021404166
-
Mixture densities, maximum likelihood and the EM algorithm
-
[40] Redner, R.A., Walker, H.F., Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 (1984), 195–239.
-
(1984)
SIAM Rev.
, vol.26
, pp. 195-239
-
-
Redner, R.A.1
Walker, H.F.2
|