메뉴 건너뛰기




Volumn 40, Issue , 2016, Pages 611-626

A spatially constrained generative asymmetric Gaussian mixture model for image segmentation

Author keywords

Asymmetric Gaussian mixture model; Expectation maximization (EM) algorithm; Image segmentation; Markov random fields (MRFs); Spatial constraint

Indexed keywords

APPROXIMATION ALGORITHMS; COMMUNICATION CHANNELS (INFORMATION THEORY); GAUSSIAN DISTRIBUTION; IMAGE PROCESSING; MARKOV PROCESSES; MAXIMUM PRINCIPLE; OBJECT RECOGNITION;

EID: 84991101931     PISSN: 10473203     EISSN: 10959076     Source Type: Journal    
DOI: 10.1016/j.jvcir.2016.08.001     Document Type: Article
Times cited : (28)

References (40)
  • 2
    • 77951276538 scopus 로고    scopus 로고
    • A robust fuzzy local information C-means clustering algorithm
    • [2] Krinidis, S., Chatzis, V., A robust fuzzy local information C-means clustering algorithm. IEEE Trans. Image Process. 19 (2010), 1328–1337.
    • (2010) IEEE Trans. Image Process. , vol.19 , pp. 1328-1337
    • Krinidis, S.1    Chatzis, V.2
  • 3
    • 33846221503 scopus 로고    scopus 로고
    • A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape
    • [3] Cremers, D., Rousson, M., Deriche, R., A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vision 72 (2007), 195–215.
    • (2007) Int. J. Comput. Vision , vol.72 , pp. 195-215
    • Cremers, D.1    Rousson, M.2    Deriche, R.3
  • 6
    • 84888002318 scopus 로고    scopus 로고
    • A nonsymmetric mixture model for unsupervised image segmentation
    • [6] Nguyen, T.M., Jonathan Wu, Q.M., A nonsymmetric mixture model for unsupervised image segmentation. IEEE Trans. Cybern. 43 (2013), 751–765.
    • (2013) IEEE Trans. Cybern. , vol.43 , pp. 751-765
    • Nguyen, T.M.1    Jonathan Wu, Q.M.2
  • 7
    • 84973099950 scopus 로고    scopus 로고
    • Finite Mixture Models
    • Wiley New York
    • [7] McLachlan, G., Peel, D., Finite Mixture Models. 2000, Wiley, New York.
    • (2000)
    • McLachlan, G.1    Peel, D.2
  • 8
    • 33846516584 scopus 로고    scopus 로고
    • Pattern Recognition and Machine Learning
    • Springer New York
    • [8] Bishop, C.M., Pattern Recognition and Machine Learning. 2006, Springer, New York.
    • (2006)
    • Bishop, C.M.1
  • 9
    • 0003747605 scopus 로고
    • Statistical Analysis of Finite Mixture Distributions
    • Wiley Hoboken, NJ
    • [9] Titterington, D.M., Smith, A.F.M., Makov, U.E., Statistical Analysis of Finite Mixture Distributions. 1985, Wiley, Hoboken, NJ.
    • (1985)
    • Titterington, D.M.1    Smith, A.F.M.2    Makov, U.E.3
  • 11
    • 0004203240 scopus 로고    scopus 로고
    • The EM Algorithm and Extensions, Wiley Series in Probability and Statistics
    • Wiley New York
    • [11] McLachlan, G.J., Krishnan, T., The EM Algorithm and Extensions, Wiley Series in Probability and Statistics. 1997, Wiley, New York.
    • (1997)
    • McLachlan, G.J.1    Krishnan, T.2
  • 12
    • 0039650029 scopus 로고
    • Markov Random Fields in Statistics, A Volume in Honour of John M. Hammersley
    • Oxford University Press
    • [12] Clifford, P., Markov Random Fields in Statistics, A Volume in Honour of John M. Hammersley. 1990, Oxford University Press.
    • (1990)
    • Clifford, P.1
  • 13
    • 0141613707 scopus 로고    scopus 로고
    • Hidden Markov random field model selection criteria based on mean field-like approximations
    • [13] Forbes, F., Peyrard, N., Hidden Markov random field model selection criteria based on mean field-like approximations. IEEE Trans. Pattern Anal. Mach. Intell. 25 (2003), 1089–1101.
    • (2003) IEEE Trans. Pattern Anal. Mach. Intell. , vol.25 , pp. 1089-1101
    • Forbes, F.1    Peyrard, N.2
  • 14
    • 0037209490 scopus 로고    scopus 로고
    • EM procedures using mean field-like approximations for Markov model-based image segmentation
    • [14] Celeux, G., Forbes, F., Peyrard, N., EM procedures using mean field-like approximations for Markov model-based image segmentation. Pattern Recogn. 36 (2003), 131–144.
    • (2003) Pattern Recogn. , vol.36 , pp. 131-144
    • Celeux, G.1    Forbes, F.2    Peyrard, N.3
  • 15
    • 84875979451 scopus 로고    scopus 로고
    • Fast and robust spatially constrained Gaussian mixture model for image segmentation
    • [15] Nguyen, T.M., Jonathan Wu, Q.M., Fast and robust spatially constrained Gaussian mixture model for image segmentation. IEEE Trans. Circuits Syst. Video Technol. 23 (2013), 621–635.
    • (2013) IEEE Trans. Circuits Syst. Video Technol. , vol.23 , pp. 621-635
    • Nguyen, T.M.1    Jonathan Wu, Q.M.2
  • 16
    • 0032122746 scopus 로고    scopus 로고
    • Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm
    • [16] Sanjay, G.S., Hebert, T.J., Bayesian pixel classification using spatially variant finite mixtures and the generalized EM algorithm. IEEE Trans. Image Process. 7 (1998), 1014–1028.
    • (1998) IEEE Trans. Image Process. , vol.7 , pp. 1014-1028
    • Sanjay, G.S.1    Hebert, T.J.2
  • 18
    • 34248678480 scopus 로고    scopus 로고
    • A spatially constrained generative model and an EM algorithm for image segmentation
    • [18] Diplaros, A., Vlassis, N., Gevers, T., A spatially constrained generative model and an EM algorithm for image segmentation. IEEE Trans. Neural Networks 18 (2007), 798–808.
    • (2007) IEEE Trans. Neural Networks , vol.18 , pp. 798-808
    • Diplaros, A.1    Vlassis, N.2    Gevers, T.3
  • 19
    • 34047208285 scopus 로고    scopus 로고
    • A class-adaptive spatially variant mixture model for image segmentation
    • [19] Nikou, C., Galatsanos, N., Likas, A., A class-adaptive spatially variant mixture model for image segmentation. IEEE Trans. Image Process. 16 (2007), 1121–1130.
    • (2007) IEEE Trans. Image Process. , vol.16 , pp. 1121-1130
    • Nikou, C.1    Galatsanos, N.2    Likas, A.3
  • 21
    • 0041407143 scopus 로고    scopus 로고
    • Robust mixture modeling using the t distribution
    • [21] Peel, D., McLachlan, G., Robust mixture modeling using the t distribution. Stat. Comput. 10 (2000), 339–348.
    • (2000) Stat. Comput. , vol.10 , pp. 339-348
    • Peel, D.1    McLachlan, G.2
  • 23
    • 77957964550 scopus 로고    scopus 로고
    • Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection
    • [23] Allili, M.S., Ziou, D., Bouguila, N., Boutemedjet, S., Image and video segmentation by combining unsupervised generalized Gaussian mixture modeling and feature selection. IEEE Trans. Circuits Syst. Video Technol. 20 (2010), 1373–1377.
    • (2010) IEEE Trans. Circuits Syst. Video Technol. , vol.20 , pp. 1373-1377
    • Allili, M.S.1    Ziou, D.2    Bouguila, N.3    Boutemedjet, S.4
  • 24
    • 0037228685 scopus 로고    scopus 로고
    • Bounded support Gaussian mixture modeling of speech spectra
    • [24] Lindblom, J., Samuelsson, J., Bounded support Gaussian mixture modeling of speech spectra. IEEE Trans. Speech Audio Process. 11 (2003), 88–99.
    • (2003) IEEE Trans. Speech Audio Process. , vol.11 , pp. 88-99
    • Lindblom, J.1    Samuelsson, J.2
  • 25
    • 84900802587 scopus 로고    scopus 로고
    • Bounded generalized Gaussian mixture model
    • [25] Nguyen, T.M., Jonathan Wu, Q.M., Zhang, H., Bounded generalized Gaussian mixture model. Pattern Recogn. 47 (2014), 3132–3142.
    • (2014) Pattern Recogn. , vol.47 , pp. 3132-3142
    • Nguyen, T.M.1    Jonathan Wu, Q.M.2    Zhang, H.3
  • 27
    • 84857433079 scopus 로고    scopus 로고
    • Model-based learning using a mixture of mixture of Gaussian and uniform distributions
    • [27] Browne, R.P., McNicholas, P.D., Sparling, M.D., Model-based learning using a mixture of mixture of Gaussian and uniform distributions. IEEE Trans. Pattern Anal. Mach. Intell. 34 (2014), 814–817.
    • (2014) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , pp. 814-817
    • Browne, R.P.1    McNicholas, P.D.2    Sparling, M.D.3
  • 28
    • 84901269373 scopus 로고    scopus 로고
    • Bounded asymmetrical student's-t mixture model
    • [28] Nguyen, T.M., Jonathan Wu, Q.M., Bounded asymmetrical student's-t mixture model. IEEE Trans. Cybern. 44 (2014), 857–869.
    • (2014) IEEE Trans. Cybern. , vol.44 , pp. 857-869
    • Nguyen, T.M.1    Jonathan Wu, Q.M.2
  • 29
    • 84898962959 scopus 로고    scopus 로고
    • Global coordination of local linear models
    • T.G. Dietterich S. Becker Z. Ghahramani MIT Press Cambridge, MA
    • [29] Roweis, S.T., Saul, L.K., Hinton, G.E., Global coordination of local linear models. Dietterich, T.G., Becker, S., Ghahramani, Z., (eds.) Advances in Neural Information Processing Systems, 2002, MIT Press, Cambridge, MA, 889–896.
    • (2002) Advances in Neural Information Processing Systems , pp. 889-896
    • Roweis, S.T.1    Saul, L.K.2    Hinton, G.E.3
  • 31
    • 84871375193 scopus 로고    scopus 로고
    • A robust fuzzy algorithm based on student's t-distribution and mean template for image segmentation application
    • [31] Zhang, H., Jonathan Wu, Q.M., Nguyen, T.M., A robust fuzzy algorithm based on student's t-distribution and mean template for image segmentation application. IEEE Signal Process. Lett. 20 (2013), 117–120.
    • (2013) IEEE Signal Process. Lett. , vol.20 , pp. 117-120
    • Zhang, H.1    Jonathan Wu, Q.M.2    Nguyen, T.M.3
  • 32
    • 84872242129 scopus 로고    scopus 로고
    • Fuzzy C-means clustering with local information and kernel metric for image segmentation
    • [32] Gong, M.G., Liang, Y., Shi, J., Ma, W.P., Ma, J.J., Fuzzy C-means clustering with local information and kernel metric for image segmentation. IEEE Trans. Image Process. 22 (2013), 573–584.
    • (2013) IEEE Trans. Image Process. , vol.22 , pp. 573-584
    • Gong, M.G.1    Liang, Y.2    Shi, J.3    Ma, W.P.4    Ma, J.J.5
  • 33
    • 84912571174 scopus 로고    scopus 로고
    • A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation
    • [33] Ji, Z., Cao, G., Sun, Q., A fuzzy clustering algorithm with robust spatially constraint for brain MR image segmentation. IEEE International Conference on Fuzzy Systems (FUZZ-IEEE), 2014, 202–209.
    • (2014) IEEE International Conference on Fuzzy Systems (FUZZ-IEEE) , pp. 202-209
    • Ji, Z.1    Cao, G.2    Sun, Q.3
  • 35
    • 20444501009 scopus 로고    scopus 로고
    • Unified segmentation
    • [35] Ashburner, J., Friston, K.J., Unified segmentation. Neuroimage 26 (2005), 839–851.
    • (2005) Neuroimage , vol.26 , pp. 839-851
    • Ashburner, J.1    Friston, K.J.2
  • 36
    • 0033233097 scopus 로고    scopus 로고
    • MRI simulation-based evaluation of image-processing and classification methods
    • [36] Kwan, R.K.-S., Evans, A.C., Pike, G.B., MRI simulation-based evaluation of image-processing and classification methods. IEEE Trans. Med. Imaging 18 (1999), 1085–1097.
    • (1999) IEEE Trans. Med. Imaging , vol.18 , pp. 1085-1097
    • Kwan, R.K.-S.1    Evans, A.C.2    Pike, G.B.3
  • 37
    • 84856690675 scopus 로고    scopus 로고
    • Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable
    • [37] Rohlfing, T., Image similarity and tissue overlaps as surrogates for image registration accuracy: widely used but unreliable. IEEE Trans. Med. Imaging 31 (2012), 153–163.
    • (2012) IEEE Trans. Med. Imaging , vol.31 , pp. 153-163
    • Rohlfing, T.1
  • 38
    • 0034850577 scopus 로고    scopus 로고
    • A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics
    • [38] Martin, D., Fowlkes, C., Tal, D., Malik, J., A database of human segmented natural images and its application to evaluating segmentation algorithms and measuring ecological statistics. Proc. 8th Int'l Conf. Computer Vision, vol. 2, 2001, 416–423.
    • (2001) Proc. 8th Int'l Conf. Computer Vision , vol.2 , pp. 416-423
    • Martin, D.1    Fowlkes, C.2    Tal, D.3    Malik, J.4
  • 40
    • 0021404166 scopus 로고
    • Mixture densities, maximum likelihood and the EM algorithm
    • [40] Redner, R.A., Walker, H.F., Mixture densities, maximum likelihood and the EM algorithm. SIAM Rev. 26 (1984), 195–239.
    • (1984) SIAM Rev. , vol.26 , pp. 195-239
    • Redner, R.A.1    Walker, H.F.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.