-
4
-
-
0005899131
-
Uber eine Klasse superadditiver Mengen-funktionale von Brunn-Minkowski-Lustemik-schem Typus
-
A. Dinghas (1957), Uber eine Klasse superadditiver Mengen-funktionale von Brunn-Minkowski-Lustemik-schem Typus, Math. Zeitschr. 68, 111-125.
-
(1957)
Math. Zeitschr
, vol.68
, pp. 111-125
-
-
Dinghas, A.1
-
5
-
-
0024091845
-
On the complexity of computing the volume of a poly tope
-
M. Dyer and A. Frieze (1988): On the complexity of computing the volume of a poly tope. SIAM J. Comp. 17, 967-974.
-
(1988)
SIAM J. Comp
, vol.17
, pp. 967-974
-
-
Dyer, M.1
Frieze, A.2
-
8
-
-
0038372147
-
A geometric inequality and the complexity of computing volume
-
G. Elekes (1986): A geometric inequality and the complexity of computing volume, Discrete and Computational Geometry 1, 289-292.
-
(1986)
Discrete and Computational Geometry
, vol.1
, pp. 289-292
-
-
Elekes, G.1
-
10
-
-
38249043088
-
Random generation of combinatorial structures from a uniform distribution
-
M. R. Jerrum, L. G. Valiant and V. V. Vazirani (1986): Random generation of combinatorial structures from a uniform distribution, Theoretical Computer Science 43, 169-188.
-
(1986)
Theoretical Computer Science
, vol.43
, pp. 169-188
-
-
Jerrum, M.R.1
Valiant, L.G.2
Vazirani, V.V.3
-
11
-
-
0040768409
-
On the complexity of computing the volume of a polytope. Izveitia Akad
-
L. G. Khachiyan (1988): On the complexity of computing the volume of a polytope. Izveitia Akad. Nauk SSSR, Engineering Cybernetics 3, 216-217.
-
(1988)
Nauk SSSR, Engineering Cybernetics
, vol.3
, pp. 216-217
-
-
Khachiyan, L.G.1
-
12
-
-
47549105576
-
The problem of computing the volume of polytopes is NP-hard
-
L. G. Khachiyan (1989): The problem of computing the volume of polytopes is NP-hard. Uspekhi Mat. Nauk 44, 199-200.
-
(1989)
Uspekhi Mat. Nauk
, vol.44
, pp. 199-200
-
-
Khachiyan, L.G.1
-
13
-
-
0020845921
-
Integer programming with a fixed number of variables
-
H. W. Lenstra, Jr. (1983), Integer programming with a fixed number of variables, Oper. Res. 8, 538-548.
-
(1983)
Oper. Res
, vol.8
, pp. 538-548
-
-
Lenstra, H.W.1
-
14
-
-
4244169908
-
-
Jber. d. Dt. Math.-Verein., Jubilaumstagung 1990, B. G. Teubner, Stuttgart
-
L. Lovasz (1992): How to compute the volume? Jber. d. Dt. Math.-Verein., Jubilaumstagung 1990, B. G. Teubner, Stuttgart, 138-151.
-
(1992)
How to Compute the Volume?
, pp. 138-151
-
-
Lovasz, L.1
-
15
-
-
0040174183
-
Mixing rate of Markov chains, an isoperimetric inequality, and computing the volume
-
L. Lovasz and M. Simonovits (1990): Mixing rate of Markov chains, an isoperimetric inequality, and computing the volume. Proc. Slst Annual Symp. on Found, of Computer Science, IEEE Computer Soc, 346-355.
-
(1990)
Proc. Slst Annual Symp. on Found, of Computer Science, IEEE Computer Soc
, pp. 346-355
-
-
Lovasz, L.1
Simonovits, M.2
-
16
-
-
85065715521
-
Random walks in a convex body and an improved volume algorithm (preprint
-
(1992)
-
L. Lovasz and M. Simonovits (1991): Random walks in a convex body and an improved volume algorithm (preprint, Math. Inst. Hung. Acad. Sci. No. 1/1992).
-
(1991)
Math. Inst. Hung. Acad. Sci
, Issue.1
-
-
Lovasz, L.1
Simonovits, M.2
-
17
-
-
5744249209
-
Equation of state calculation by fast computing machines
-
N. Metropolis et al: Equation of state calculation by fast computing machines, J. Chem. Physics 21 (1953) 1087-1092.
-
(1953)
J. Chem. Physics
, vol.21
, pp. 1087-1092
-
-
Metropolis, N.1
-
18
-
-
34250943125
-
An optimal Poincare inequality for convex domains
-
L. E. Payne and H. F. Weinberger (1960): An optimal Poincare inequality for convex domains, Arch. Rat. mech. Anal. 5, 286-292.
-
(1960)
Arch. Rat. Mech. Anal
, vol.5
, pp. 286-292
-
-
Payne, L.E.1
Weinberger, H.F.2
-
19
-
-
0000485147
-
Logarithmic concave measures with applications to stochastic programming
-
A. Prekopa (1971), Logarithmic concave measures with applications to stochastic programming, Acta Sci. Math. Szeged. 32 301-316.
-
(1971)
Acta Sci. Math. Szeged
, vol.32
, pp. 301-316
-
-
Prekopa, A.1
-
20
-
-
0000485147
-
On logarithmic concave measures and functions
-
A. Prekopa (1973), On logarithmic concave measures and functions, Acta Sci. Math. Szeged. 34, 335-343.
-
(1973)
Acta Sci. Math. Szeged
, vol.34
, pp. 335-343
-
-
Prekopa, A.1
-
21
-
-
84898957407
-
Conductance and the rapid mixing property for Markov chains: The approximation of the permanent resolved
-
A. Sinclair and M. Jerrum (1988): Conductance and the rapid mixing property for Markov chains: the approximation of the permanent resolved, Proc. 20th ACM STOC, pp. 235-244.
-
(1988)
Proc. 20th ACM STOC
, pp. 235-244
-
-
Sinclair, A.1
Jerrum, M.2
|