-
1
-
-
0027608675
-
Exponentiated Weibull family for analyzing bathtub failure rate data
-
Mudholkar G. S. Srivastava D. K. Exponentiated Weibull family for analyzing bathtub failure rate data. IEEE Trans. Reliability, 1993, 42 (2), 299–302
-
(1993)
IEEE Trans. Reliability
, vol.42
, Issue.2
-
-
Mudholkar, G.S.1
Srivastava, D.K.2
-
2
-
-
0030122796
-
Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function
-
Xie M. Lai C. D. Reliability analysis using an additive Weibull model with bathtub-shaped failure rate function. Reliability Engng System Safety, 1995, 52 (1), 87–93
-
(1995)
Reliability Engng System Safety
, vol.52
, Issue.1
-
-
Xie, M.1
Lai, C.D.2
-
3
-
-
0036604308
-
A modified Weibull extension with bathtub-shaped failure rate function
-
Xie M. Tang Y. Goh T. N. A modified Weibull extension with bathtub-shaped failure rate function. Reliability Engng System Safety, 2002, 76 (2), 279–285
-
(2002)
Reliability Engng System Safety
, vol.76
, Issue.2
-
-
Xie, M.1
Tang, Y.2
Goh, T.N.3
-
6
-
-
33845681735
-
Generalization of the Weibull distribution: The odd Weibull family
-
Cooray K. Generalization of the Weibull distribution: The odd Weibull family. Statist. Modelling, 2006, 6 (3), 265–277
-
(2006)
Statist. Modelling
, vol.6
, Issue.3
-
-
Cooray, K.1
-
8
-
-
0033418995
-
Generalized exponential distributions
-
Gupta R. D. Kundu D. Generalized exponential distributions. Aust. N. Z. J. Statists, 1999, 41 (2), 173–188
-
(1999)
Aust. N. Z. J. Statists
, vol.41
, Issue.2
-
-
Gupta, R.D.1
Kundu, D.2
-
9
-
-
0032676360
-
The exponentiated Weibull family: A graphical approach
-
Jiang R. Murthy D. N. P. The exponentiated Weibull family: A graphical approach. IEEE Trans. Reliability, 1999, 48 (1), 68–72
-
(1999)
IEEE Trans. Reliability
, vol.48
, Issue.1
-
-
Jiang, R.1
Murthy, D.N.P.2
-
11
-
-
0023326910
-
How to identify a bathtub hazard rate
-
Aarset M. V. How to identify a bathtub hazard rate. IEEE Trans. Reliability, 1987, 36 (1), 106–108
-
(1987)
IEEE Trans. Reliability
, vol.36
, Issue.1
-
-
Aarset, M.V.1
-
12
-
-
0002005187
-
Total time on test processes and applications to failure data analysis
-
Society for Industrial and Applied Mathematics Philadelphia, Pennsylvania
-
Barlow R. E. Campo R. Total time on test processes and applications to failure data analysis. In Reliability and fault tree analysis, (Eds Barlow R. E. Fussel J. B. Singpurwalla N. D. ), 1975, pp. 451–481 (Society for Industrial and Applied Mathematics, Philadelphia, Pennsylvania)
-
Reliability and fault tree analysis
-
-
Barlow, R.E.1
Campo, R.2
-
13
-
-
0020289713
-
A graphic method applicable to age replacement problems
-
Bergman B. Klefsjo B. A graphic method applicable to age replacement problems. IEEE Trans. Reliability, 1982, 52 (3), 478–481
-
(1982)
IEEE Trans. Reliability
, vol.52
, Issue.3
-
-
Bergman, B.1
Klefsjo, B.2
-
15
-
-
84987266075
-
A statistical distribution function of wide applicability
-
Weibull W. A statistical distribution function of wide applicability. J. Appl. Mechanics, 1951, 18, 293–297
-
(1951)
J. Appl. Mechanics
, vol.18
-
-
Weibull, W.1
-
17
-
-
0015107930
-
Some economic problems related to burn-in programs
-
Weiss G. H. Dishon M. Some economic problems related to burn-in programs. IEEE Trans. Reliability, 1971, 20, 190–195
-
(1971)
IEEE Trans. Reliability
, vol.20
-
-
Weiss, G.H.1
Dishon, M.2
-
18
-
-
37249042742
-
Estimating the turning point of a bathtub-shaped failure distribution
-
Bebbington M. Lai C. D. Zitikis R. Estimating the turning point of a bathtub-shaped failure distribution. J. Statist. Planning Inference, 2008, 138 (4), 1157–1166
-
(2008)
J. Statist. Planning Inference
, vol.138
, Issue.4
-
-
Bebbington, M.1
Lai, C.D.2
Zitikis, R.3
-
19
-
-
3242779265
-
Mean residual life and other properties of Weibull related bathtub-shaped failure rate distributions
-
Lai C. D. Zhang L. Y. Xie M. Mean residual life and other properties of Weibull related bathtub-shaped failure rate distributions. Int. J. Reliability, Qual. Safety Engng, 2004, 11 (2), 113–132
-
(2004)
Int. J. Reliability, Qual. Safety Engng
, vol.11
, Issue.2
-
-
Lai, C.D.1
Zhang, L.Y.2
Xie, M.3
-
20
-
-
0029379498
-
Bathtub failure rate and upside-down bathtub mean residual life
-
Mi J. Bathtub failure rate and upside-down bathtub mean residual life. IEEE Trans. Reliability, 1995, 44 (3), 388–391
-
(1995)
IEEE Trans. Reliability
, vol.44
, Issue.3
-
-
Mi, J.1
-
21
-
-
0001434556
-
Mean residual life functions for certain types of non-monotonic ageing
-
Gupta R. C. Akman H. O. Mean residual life functions for certain types of non-monotonic ageing. Commun. Statists — Stochastic Models, 1995, 11, 219–225
-
(1995)
Commun. Statists — Stochastic Models
, vol.11
-
-
Gupta, R.C.1
Akman, H.O.2
-
23
-
-
33745213787
-
Useful periods for lifetime distributions with bathtub shaped hazard rate functions
-
Bebbington M. Lai C. D. Zitikis R. Useful periods for lifetime distributions with bathtub shaped hazard rate functions. IEEE Trans. Reliability, 2006, 55 (2), 245–251
-
(2006)
IEEE Trans. Reliability
, vol.55
, Issue.2
-
-
Bebbington, M.1
Lai, C.D.2
Zitikis, R.3
-
24
-
-
2142825691
-
On changing points of mean residual life and failure rate function for some generalized Weibull distributions
-
Xie M. Goh T. N. Tang Y. On changing points of mean residual life and failure rate function for some generalized Weibull distributions. Reliability Engng System Safety, 2004, 84 (2), 293–299
-
(2004)
Reliability Engng System Safety
, vol.84
, Issue.2
-
-
Xie, M.1
Goh, T.N.2
Tang, Y.3
-
25
-
-
0009691145
-
Discrimination procedures for separate families of hypotheses
-
Dyer A. R. Discrimination procedures for separate families of hypotheses. J. Am. Statist. Assoc., 1973, 68, 970–974
-
(1973)
J. Am. Statist. Assoc.
, vol.68
-
-
Dyer, A.R.1
-
27
-
-
27844474258
-
Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples
-
Ng H. K. T. Parameter estimation for a modified Weibull distribution, for progressively type-II censored samples. IEEE Trans. Reliability, 2005, 54 (3), 374–380
-
(2005)
IEEE Trans. Reliability
, vol.54
, Issue.3
-
-
Ng, H.K.T.1
|