-
1
-
-
2142812371
-
Robust real-time face detection
-
Viola, P.A., Jones, M.J.: Robust real-time face detection. Int. J. Comput. Vis. 57(2), 137-154 (2004)
-
(2004)
Int. J. Comput. Vis
, vol.57
, Issue.2
, pp. 137-154
-
-
Viola, P.A.1
Jones, M.J.2
-
2
-
-
84903622275
-
Fast feature pyramids for object detection
-
Dollár, P., Appel, R., Belongie, S.J., Perona, P.: Fast feature pyramids for object detection. IEEE Trans. Pattern Anal. Mach. Intell. 36(8), 1532-1545 (2014)
-
(2014)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.36
, Issue.8
, pp. 1532-1545
-
-
Dollár, P.1
Appel, R.2
Belongie, S.J.3
Perona, P.4
-
3
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
Girshick, R.B., Donahue, J., Darrell, T., Malik, J.: Rich feature hierarchies for accurate object detection and semantic segmentation. In: CVPR, pp. 580-587(2014)
-
(2014)
CVPR
, pp. 580-587
-
-
Girshick, R.B.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
4
-
-
84964588182
-
Fast R-CNN
-
Girshick, R.B.: Fast R-CNN. In: ICCV, pp. 1440-1448(2015)
-
(2015)
ICCV
, pp. 1440-1448
-
-
Girshick, R.B.1
-
5
-
-
84965102370
-
3D object proposals for accurate object class detection
-
Chen, X., Kundu, K., Zhu, Y., Berneshawi, A., Ma, H., Fidler, S., Urtasun, R.: 3D object proposals for accurate object class detection. In: NIPS (2015)
-
(2015)
NIPS
-
-
Chen, X.1
Kundu, K.2
Zhu, Y.3
Berneshawi, A.4
Ma, H.5
Fidler, S.6
Urtasun, R.7
-
6
-
-
84906508687
-
Spatial pyramid pooling in deep convolutional networks for visual recognition
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 346-361. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9-23
-
(2014)
ECCV 2014. LNCS
, vol.8691
, pp. 346-361
-
-
He, K.1
Zhang, X.2
Ren, S.3
Sun, J.4
-
7
-
-
84973864191
-
Object detection via a multi-region and semantic segmentation-aware CNN model
-
Gidaris, S., Komodakis, N.: Object detection via a multi-region and semantic segmentation-aware CNN model. In: ICCV, pp. 1134-1142(2015)
-
(2015)
ICCV
, pp. 1134-1142
-
-
Gidaris, S.1
Komodakis, N.2
-
8
-
-
84856655938
-
Segmentation as selective search for object recognition
-
van de Sande, K.E.A., Uijlings, J.R.R., Gevers, T., Smeulders, A.W.M.: Segmentation as selective search for object recognition. In: ICCV, pp. 1879-1886(2011)
-
(2011)
ICCV
, pp. 1879-1886
-
-
Van De Sande, K.E.A.1
Uijlings, J.R.R.2
Gevers, T.3
Smeulders, A.W.M.4
-
9
-
-
84960980241
-
Faster R-CNN: Towards real-time object detection with region proposal networks
-
Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: Towards real-time object detection with region proposal networks. In: NIPS (2015)
-
(2015)
NIPS
-
-
Ren, S.1
He, K.2
Girshick, R.3
Sun, J.4
-
10
-
-
84866704163
-
Are we ready for autonomous driving? The KITTI vision benchmark suite
-
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the KITTI vision benchmark suite. In: CVPR, pp. 3354-3361(2012)
-
(2012)
CVPR
, pp. 3354-3361
-
-
Geiger, A.1
Lenz, P.2
Urtasun, R.3
-
11
-
-
84945230598
-
Fully convolutional networks for semantic segmentation
-
Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: CVPR, pp. 3431-3440 (2015)
-
(2015)
CVPR
, pp. 3431-3440
-
-
Long, J.1
Shelhamer, E.2
Darrell, T.3
-
12
-
-
84973859794
-
Holistically-nested edge detection
-
Xie, S., Tu, Z.: Holistically-nested edge detection. In: ICCV, pp. 1395-1403 (2015)
-
(2015)
ICCV
, pp. 1395-1403
-
-
Xie, S.1
Tu, Z.2
-
13
-
-
84857435937
-
Pedestrian detection: An evaluation of the state of the art
-
Dollár, P., Wojek, C., Schiele, B., Perona, P.: Pedestrian detection: An evaluation of the state of the art. IEEE Trans. Pattern Anal. Mach. Intell. 34(4), 743-761 (2012)
-
(2012)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.34
, Issue.4
, pp. 743-761
-
-
Dollár, P.1
Wojek, C.2
Schiele, B.3
Perona, P.4
-
14
-
-
24644457809
-
Robust object detection via soft cascade
-
Bourdev, L.D., Brandt, J.: Robust object detection via soft cascade. In: CVPR, pp. 236-243 (2005)
-
(2005)
CVPR
, pp. 236-243
-
-
Bourdev, L.D.1
Brandt, J.2
-
15
-
-
84973862008
-
Learning complexity-aware cascades for deep pedestrian detection
-
Cai, Z., Saberian, M.J., Vasconcelos, N.: Learning complexity-aware cascades for deep pedestrian detection. In: ICCV, pp. 3361-3369 (2015)
-
(2015)
ICCV
, pp. 3361-3369
-
-
Cai, Z.1
Saberian, M.J.2
Vasconcelos, N.3
-
16
-
-
84959496883
-
Learning to detect vehicles by clustering appearance patterns
-
Ohn-Bar, E., Trivedi, M.M.: Learning to detect vehicles by clustering appearance patterns. IEEE Trans. Intell. Transp. Syst. 16(5), 2511-2521 (2015)
-
(2015)
IEEE Trans. Intell. Transp. Syst
, vol.16
, Issue.5
, pp. 2511-2521
-
-
Ohn-Bar, E.1
Trivedi, M.M.2
-
17
-
-
84907341129
-
Boosting algorithms for detector cascade learning
-
Saberian, M.J., Vasconcelos, N.: Boosting algorithms for detector cascade learning. J. Mach. Learn. Res. 15(1), 2569-2605 (2014)
-
(2014)
J. Mach. Learn. Res
, vol.15
, Issue.1
, pp. 2569-2605
-
-
Saberian, M.J.1
Vasconcelos, N.2
-
18
-
-
84876231242
-
Imagenet classification with deep convolutional neural networks
-
Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: NIPS, pp. 1106-1114(2012)
-
(2012)
NIPS
, pp. 1106-1114
-
-
Krizhevsky, A.1
Sutskever, I.2
Hinton, G.E.3
-
19
-
-
77955422240
-
Object detection with discriminatively trained part-based models
-
Felzenszwalb, P.F., Girshick, R.B., McAllester, D.A., Ramanan, D.: Object detection with discriminatively trained part-based models. IEEE Trans. Pattern Anal. Mach. Intell. 32(9), 1627-1645 (2010)
-
(2010)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.32
, Issue.9
, pp. 1627-1645
-
-
Felzenszwalb, P.F.1
Girshick, R.B.2
McAllester, D.A.3
Ramanan, D.4
-
20
-
-
84898769710
-
Regionlets for generic object detection
-
Wang, X., Yang, M., Zhu, S., Lin, Y.: Regionlets for generic object detection. In: ICCV, pp. 17-24 (2013)
-
(2013)
ICCV
, pp. 17-24
-
-
Wang, X.1
Yang, M.2
Zhu, S.3
Lin, Y.4
-
21
-
-
84986308404
-
You only look once: Unified, real-time object detection
-
Redmon, J., Divvala, S.K., Girshick, R.B., Farhadi, A.: You only look once: Unified, real-time object detection. In: CVPR (2016)
-
(2016)
CVPR
-
-
Redmon, J.1
Divvala, S.K.2
Girshick, R.B.3
Farhadi, A.4
-
22
-
-
84937522268
-
Going deeper with convolutions
-
Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: CVPR, pp. 1-9 (2015)
-
(2015)
CVPR
, pp. 1-9
-
-
Szegedy, C.1
Liu, W.2
Jia, Y.3
Sermanet, P.4
Reed, S.5
Anguelov, D.6
Erhan, D.7
Vanhoucke, V.8
Rabinovich, A.9
-
23
-
-
85009928594
-
Deeply-supervised nets
-
Lee, C., Xie, S., Gallagher, P.W., Zhang, Z., Tu, Z.: Deeply-supervised nets. In: AISTATS (2015)
-
(2015)
AISTATS
-
-
Lee, C.1
Xie, S.2
Gallagher, P.W.3
Zhang, Z.4
Tu, Z.5
-
24
-
-
84866719946
-
Pedestrian detection at 100 frames per second
-
Benenson, R., Mathias, M., Timofte, R., Gool, L.J.V.: Pedestrian detection at 100 frames per second. In: CVPR, pp. 2903-2910 (2012)
-
(2012)
CVPR
, pp. 2903-2910
-
-
Benenson, R.1
Mathias, M.2
Timofte, R.3
Gool, L.J.V.4
-
26
-
-
84986259967
-
Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks
-
Bell, S., Zitnick, C.L., Bala, K., Girshick, R.B.: Inside-outside net: Detecting objects in context with skip pooling and recurrent neural networks. In: CVPR (2016)
-
(2016)
CVPR
-
-
Bell, S.1
Zitnick, C.L.2
Bala, K.3
Girshick, R.B.4
-
27
-
-
84959233955
-
SegDeepM: Exploiting segmentation and context in deep neural networks for object detection
-
Zhu, Y., Urtasun, R., Salakhutdinov, R., Fidler, S.: segDeepM: Exploiting segmentation and context in deep neural networks for object detection. In: CVPR, pp. 4703-4711 (2015)
-
(2015)
CVPR
, pp. 4703-4711
-
-
Zhu, Y.1
Urtasun, R.2
Salakhutdinov, R.3
Fidler, S.4
-
28
-
-
77951298115
-
The pascal visual object classes (VOC) challenge
-
Everingham, M., Gool, L.J.V., Williams, C.K.I., Winn, J.M., Zisserman, A.: The pascal visual object classes (VOC) challenge. Int. J. Comput. Vis. 88(2), 303-338 (2010)
-
(2010)
Int. J. Comput. Vis
, vol.88
, Issue.2
, pp. 303-338
-
-
Everingham, M.1
Gool, L.J.V.2
Williams, C.K.I.3
Winn, J.M.4
Zisserman, A.5
-
29
-
-
84947041871
-
Imagenet large scale visual recognition challenge
-
Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy, A., Khosla, A., Bernstein, M.S., Berg, A.C., Li, F.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211-252 (2015)
-
(2015)
Int. J. Comput. Vis
, vol.115
, Issue.3
, pp. 211-252
-
-
Russakovsky, O.1
Deng, J.2
Su, H.3
Krause, J.4
Satheesh, S.5
Ma, S.6
Huang, Z.7
Karpathy, A.8
Khosla, A.9
Bernstein, M.S.10
Berg, A.C.11
Li, F.12
-
30
-
-
84913580146
-
Caffe: Convolutional architecture for fast feature embedding
-
Jia, Y., Shelhamer, E., Donahue, J., Karayev, S., Long, J., Girshick, R.B., Guadarrama, S., Darrell, T.: Caffe: Convolutional architecture for fast feature embedding. In: MM, pp. 675-678 (2014)
-
(2014)
MM
, pp. 675-678
-
-
Jia, Y.1
Shelhamer, E.2
Donahue, J.3
Karayev, S.4
Long, J.5
Girshick, R.B.6
Guadarrama, S.7
Darrell, T.8
-
31
-
-
84963773434
-
What makes for effective detection proposals?
-
Hosang, J., Benenson, R., Dollár, P., Schiele, B.: What makes for effective detection proposals? PAMI 38(4), 814-830 (2015)
-
(2015)
PAMI
, vol.38
, Issue.4
, pp. 814-830
-
-
Hosang, J.1
Benenson, R.2
Dollár, P.3
Schiele, B.4
-
32
-
-
84911456915
-
BING: Binarized normed gradients for objectness estimation at 300fps
-
Cheng, M., Zhang, Z., Lin, W., Torr, P.H.S.: BING: binarized normed gradients for objectness estimation at 300fps. In: CVPR, pp. 3286-3293 (2014)
-
(2014)
CVPR
, pp. 3286-3293
-
-
Cheng, M.1
Zhang, Z.2
Lin, W.3
Torr, P.H.S.4
-
33
-
-
84906489617
-
Edge boxes: Locating object proposals from edges
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Zitnick, C.L., Dollár, P.: Edge boxes: locating object proposals from edges. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 391-405. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10602-1-26
-
(2014)
ECCV 2014. LNCS
, vol.8693
, pp. 391-405
-
-
Zitnick, C.L.1
Dollár, P.2
-
34
-
-
84911417279
-
Multiscale combinatorial grouping
-
Arbeláez, P.A., Pont-Tuset, J., Barron, J.T., Marqués, F., Malik, J.: Multiscale combinatorial grouping. In: CVPR, pp. 328-335 (2014)
-
(2014)
CVPR
, pp. 328-335
-
-
Arbeláez, P.A.1
Pont-Tuset, J.2
Barron, J.T.3
Marqués, F.4
Malik, J.5
-
35
-
-
85162369635
-
Joint 3D estimation of objects and scene layout
-
Geiger, A., Wojek, C., Urtasun, R.: Joint 3D estimation of objects and scene layout. In: NIPS, pp. 1467-1475 (2011)
-
(2011)
NIPS
, pp. 1467-1475
-
-
Geiger, A.1
Wojek, C.2
Urtasun, R.3
-
36
-
-
84960851889
-
Multi-view and 3D deformable part models
-
Pepik, B., Stark, M., Gehler, P.V., Schiele, B.: Multi-view and 3D deformable part models. IEEE Trans. Pattern Anal. Mach. Intell. 37(11), 2232-2245 (2015)
-
(2015)
IEEE Trans. Pattern Anal. Mach. Intell
, vol.37
, Issue.11
, pp. 2232-2245
-
-
Pepik, B.1
Stark, M.2
Gehler, P.V.3
Schiele, B.4
-
37
-
-
84959238956
-
Data-driven 3D voxel patterns for object category recognition
-
Xiang, Y., Choi, W., Lin, Y., Savarese, S.: Data-driven 3D voxel patterns for object category recognition. In: CVPR, pp. 1903-1911 (2015)
-
(2015)
CVPR
, pp. 1903-1911
-
-
Xiang, Y.1
Choi, W.2
Lin, Y.3
Savarese, S.4
-
38
-
-
84906345251
-
Integrating context and occlusion for car detection by hierarchical and-or model
-
Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.), Springer, Heidelberg
-
Li, B., Wu, T., Zhu, S.-C.: Integrating context and occlusion for car detection by hierarchical and-or model. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 652-667. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10599-4-42
-
(2014)
ECCV 2014. LNCS
, vol.8694
, pp. 652-667
-
-
Li, B.1
Wu, T.2
Zhu, S.-C.3
-
39
-
-
84973883645
-
Deep learning strong parts for pedestrian detection
-
Tian, Y., Luo, P., Wang, X., Tang, X.: Deep learning strong parts for pedestrian detection. In: ICCV, pp. 1904-1912 (2015)
-
(2015)
ICCV, Pp. 1904-1912
-
-
Tian, Y.1
Luo, P.2
Wang, X.3
Tang, X.4
-
40
-
-
84955153854
-
Filtered channel features for pedestrian detection
-
Zhang, S., Benenson, R., Schiele, B.: Filtered channel features for pedestrian detection. In: CVPR, pp. 1751-1760 (2015)
-
(2015)
CVPR
, pp. 1751-1760
-
-
Zhang, S.1
Benenson, R.2
Schiele, B.3
-
42
-
-
84986300463
-
Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers
-
Yang, F., Choi, W., Lin, Y.: Exploit all the layers: Fast and accurate CNN object detector with scale dependent pooling and cascaded rejection classifiers. In: CVPR. (2016)
-
(2016)
CVPR
-
-
Yang, F.1
Choi, W.2
Lin, Y.3
-
43
-
-
84937921067
-
Local decorrelation for improved pedestrian detection
-
Nam, W., Dollár, P., Han, J.H.: Local decorrelation for improved pedestrian detection. In: NIPS, pp. 424-432 (2014)
-
(2014)
NIPS
, pp. 424-432
-
-
Nam, W.1
Dollár, P.2
Han, J.H.3
|