-
1
-
-
3242810561
-
Differential calculus over general base fields and rings
-
W. Bertram, H. Glöckner & K.-H. Neeb, "Differential calculus over general base fields and rings", Expo. Math. 22 (2004), no. 3, p. 213-282.
-
(2004)
Expo. Math.
, vol.22
, Issue.3
, pp. 213-282
-
-
Bertram, W.1
Glöckner, H.2
Neeb, K.-H.3
-
2
-
-
0002178644
-
Polyno.mials and multilinear mappings in topological vector spaces
-
J. Bochnak & J. Siciak, "Polyno.mials and multilinear mappings in topological vector spaces", Studia Math. 39 (1971), p. 59-76.
-
(1971)
Studia Math.
, vol.39
, pp. 59-76
-
-
Bochnak, J.1
Siciak, J.2
-
4
-
-
8144231442
-
Trees, reno.rmalization and differential equations
-
C. Brouder, "Trees, reno.rmalization and differential equations", BIT 44 (2004), no. 3, p. 425-438.
-
(2004)
BIT
, vol.44
, Issue.3
, pp. 425-438
-
-
Brouder, C.1
-
5
-
-
34547222712
-
A primer of Hopf algebras
-
Springer, Berlin
-
P. Cartier, "A primer of Hopf algebras", in Frontiers in number theory, physics, and geometry. II, Springer, Berlin, 2007, p. 537-615.
-
(2007)
Frontiers in Number Theory, Physics, and Geometry. II
, pp. 537-615
-
-
Cartier, P.1
-
6
-
-
77953915503
-
Algebraic structures of B-series
-
P. Chartier, E. Hairer & G. Vilmart, "Algebraic structures of B-series", Found. Comput. Math. 10 (2010), no. 4, p. 407-427.
-
(2010)
Found. Comput. Math.
, vol.10
, Issue.4
, pp. 407-427
-
-
Chartier, P.1
Hairer, E.2
Vilmart, G.3
-
7
-
-
0032257297
-
Hopf algebras, reno.rmalization and no.ncommutative geometry
-
A. Connes & D. Kreimer, "Hopf algebras, reno.rmalization and no.ncommutative geometry", Comm. Math. Phys. 199 (1998), no. 1, p. 203-242.
-
(1998)
Comm. Math. Phys.
, vol.199
, Issue.1
, pp. 203-242
-
-
Connes, A.1
Kreimer, D.2
-
8
-
-
0034349865
-
Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem
-
A. Connes & D. Kreimer, "Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem", Comm. Math. Phys. 210 (2000), no. 1, p. 249-273.
-
(2000)
Comm. Math. Phys.
, vol.210
, Issue.1
, pp. 249-273
-
-
Connes, A.1
Kreimer, D.2
-
9
-
-
0035530562
-
Reno.rmalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the reno.rmalization group
-
A. Connes & D. Kreimer, "Reno.rmalization in quantum field theory and the Riemann-Hilbert problem. II. The β-function, diffeomorphisms and the reno.rmalization group", Comm. Math. Phys. 216 (2001), no. 1, p. 215-241.
-
(2001)
Comm. Math. Phys.
, vol.216
, Issue.1
, pp. 215-241
-
-
Connes, A.1
Kreimer, D.2
-
10
-
-
35548938149
-
-
American Mathematical Society Colloquium Publications, American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi
-
A. Connes & M. Marcolli, Noncommutative geometry, quantum fields and motives, American Mathematical Society Colloquium Publications, vol. 55, American Mathematical Society, Providence, RI; Hindustan Book Agency, New Delhi, 2008, xxii+785 pages.
-
(2008)
Noncommutative Geometry, Quantum Fields and Motives
, vol.55
-
-
Connes, A.1
Marcolli, M.2
-
11
-
-
0036446267
-
Algebras whose groups of units are Lie groups
-
H. Glöckner, "Algebras whose groups of units are Lie groups", Studia Math. 153 (2002), no. 2, p. 147-177.
-
(2002)
Studia Math.
, vol.153
, Issue.2
, pp. 147-177
-
-
Glöckner, H.1
-
12
-
-
0002734990
-
Infinite-dimensional Lie groups without completeness restrictions
-
Polish Acad. Sci., Warsaw
-
H. Glöckner, "Infinite-dimensional Lie groups without completeness restrictions", in Geometry and analysis on finite- and infinite-dimensional Lie groups (Bedlewo, 2000), Banach Center Publ., vol. 55, Polish Acad. Sci., Warsaw, 2002, p. 43-59.
-
(2002)
Geometry and Analysis on Finite- And Infinite-dimensional Lie Groups (Bedlewo 2000), Banach Center Publ.
, vol.55
, pp. 43-59
-
-
Glöckner, H.1
-
13
-
-
41149170598
-
Instructive examples of smooth, complex differentiable and complex analytic mappings into locally convex spaces
-
H. Glöckner, "Instructive examples of smooth, complex differentiable and complex analytic mappings into locally convex spaces", J. Math. Kyoto Univ. 47 (2007), no. 3, p. 631-642.
-
(2007)
J. Math. Kyoto Univ.
, vol.47
, Issue.3
, pp. 631-642
-
-
Glöckner, H.1
-
14
-
-
38349119758
-
Simplified proofs for the pro-Lie group theorem and the one-parameter subgroup lifting lemma
-
H. Glöckner, "Simplified proofs for the pro-Lie group theorem and the one-parameter subgroup lifting lemma", J. Lie Theory 17 (2007), no. 4, p. 899-902.
-
(2007)
J. Lie Theory
, vol.17
, Issue.4
, pp. 899-902
-
-
Glöckner, H.1
-
16
-
-
84869175032
-
When unit groups of continuous inverse algebras are regular Lie groups
-
H. Glöckner & K.-H. Neeb, "When unit groups of continuous inverse algebras are regular Lie groups", Studia Math. 211 (2012), no. 2, p. 95-109.
-
(2012)
Studia Math.
, vol.211
, Issue.2
, pp. 95-109
-
-
Glöckner, H.1
Neeb, K.-H.2
-
17
-
-
68349125908
-
Pro-Lie groups which are infinite-dimensional Lie groups
-
K. H. Hofmann & K.-H. Neeb, "Pro-Lie groups which are infinite-dimensional Lie groups", Math. Proc. Cambridge Philos. Society 146 (2009), no. 2, p. 351-378.
-
(2009)
Math. Proc. Cambridge Philos. Society
, vol.146
, Issue.2
, pp. 351-378
-
-
Hofmann, K.H.1
Neeb, K.-H.2
-
18
-
-
76749171436
-
The Lie theory of connected pro-Lie groups
-
EMS, Zürich
-
K. H. Hofmann & S. A. Morris, The Lie theory of connected pro-Lie groups, EMS Tracts in Mathematics, vol. 2, EMS, Zürich, 2007, xvi+678 pages.
-
(2007)
EMS Tracts in Mathematics
, vol.2
-
-
Hofmann, K.H.1
Morris, S.A.2
-
19
-
-
0000443879
-
The structure of compact groups
-
third ed., De Gruyter, Berlin
-
K. H. Hofmann & S. A. Morris, The structure of compact groups, third ed., De Gruyter Studies in Mathematics, vol. 25, De Gruyter, Berlin, 2013, xxii+924 pages.
-
(2013)
De Gruyter Studies in Mathematics
, vol.25
-
-
Hofmann, K.H.1
Morris, S.A.2
-
20
-
-
0003356644
-
Quantum groups
-
Springer-Verlag, New York
-
C. Kassel, Quantum groups, Graduate Texts in Mathematics, vol. 155, Springer- Verlag, New York, 1995, xii+531 pages.
-
(1995)
Graduate Texts in Mathematics
, vol.155
-
-
Kassel, C.1
-
21
-
-
0003235678
-
Differential calculus in locally convex spaces
-
Springer-Verlag, Berlin-New York
-
H. H. Keller, Differential calculus in locally convex spaces, Lecture Notes in Mathematics, Vol. 417, Springer-Verlag, Berlin-New York, 1974, iii+143 pages.
-
(1974)
Lecture Notes in Mathematics
, vol.417
-
-
Keller, H.H.1
-
22
-
-
0003023917
-
The convenient setting of global analysis
-
American Mathematical Society, Providence, RI
-
A. Kriegl & P. W. Michor, The convenient setting of global analysis, Mathematical Surveys and Mono.graphs, vol. 53, American Mathematical Society, Providence, RI, 1997, x+618 pages.
-
(1997)
Mathematical Surveys and Monographs
, vol.53
-
-
Kriegl, A.1
Michor, P.W.2
-
23
-
-
0010072347
-
Cocommutative Hopf algebras
-
R. G. Larson, "Cocommutative Hopf algebras", Canad. J. Math. 19 (1967), p. 350- 360.
-
(1967)
Canad. J. Math.
, vol.19
, pp. 350-360
-
-
Larson, R.G.1
-
24
-
-
84856989341
-
Combinatorial Hopf algebras
-
Amer. Math. Soc., Providence, RI
-
J.-L. Loday & M. Ronco, "Combinatorial Hopf algebras", in Quanta of maths, Clay Math. Proc., vol. 11, Amer. Math. Soc., Providence, RI, 2010, p. 347-383.
-
(2010)
Quanta of Maths, Clay Math. Proc.
, vol.11
, pp. 347-383
-
-
Loday, J.-L.1
Ronco, M.2
-
27
-
-
66049132842
-
Coassociative coalgebras
-
North- Holland, Amsterdam
-
W. Michaelis, "Coassociative coalgebras", in Handbook of algebra, Vol. 3, North- Holland, Amsterdam, 2003, p. 587-788.
-
(2003)
Handbook of Algebra
, vol.3
, pp. 587-788
-
-
Michaelis, W.1
-
28
-
-
0001335921
-
Remarks on infinite-dimensional Lie groups
-
Les Houches, North-Holland, Amsterdam
-
J. W. Milnor, "Remarks on infinite-dimensional Lie groups", in Relativity, groups and topology, II (Les Houches, 1983), North-Holland, Amsterdam, 1984, p. 1007- 1057.
-
(1983)
Relativity, Groups and Topology, II
, vol.1984
, pp. 1007-1057
-
-
Milnor, J.W.1
-
29
-
-
0000859132
-
On the structure of Hopf algebras
-
J. W. Milnor & J. C. Moore, "On the structure of Hopf algebras", Ann. of Math. (2) 81 (1965), p. 211-264.
-
(1965)
Ann. of Math.
, vol.2
, Issue.81
, pp. 211-264
-
-
Milnor, J.W.1
Moore, J.C.2
-
30
-
-
33749023336
-
Towards a Lie theory of locally convex groups
-
K.-H. Neeb, "Towards a Lie theory of locally convex groups", Jpn. J. Math. 1 (2006), no. 2, p. 291-468.
-
(2006)
Jpn. J. Math.
, vol.1
, Issue.2
, pp. 291-468
-
-
Neeb, K.-H.1
-
31
-
-
35548932467
-
Reno.rmalization of gauge fields: A Hopf algebra approach
-
W. D. Van Suijlekom, "Reno.rmalization of gauge fields: a Hopf algebra approach", Comm. Math. Phys. 276 (2007), no. 3, p. 773-798.
-
(2007)
Comm. Math. Phys.
, vol.276
, Issue.3
, pp. 773-798
-
-
Van Suijlekom, W.D.1
-
32
-
-
70349673819
-
The structure of reno.rmalization Hopf algebras for gauge theories. I. Representing Feynman graphs on BV-algebras
-
W. D. Van Suijlekom, "The structure of reno.rmalization Hopf algebras for gauge theories. I. Representing Feynman graphs on BV-algebras", Comm. Math. Phys. 290 (2009), no. 1, p. 291-319.
-
(2009)
Comm. Math. Phys.
, vol.290
, Issue.1
, pp. 291-319
-
-
Van Suijlekom, W.D.1
-
33
-
-
33749461069
-
Hopf algebras
-
W. A. Benjamin, Inc., New York
-
M. E. Sweedler, Hopf algebras, Mathematics Lecture Note Series, W. A. Benjamin, Inc., New York, 1969, vii+336 pages.
-
(1969)
Mathematics Lecture Note Series
-
-
Sweedler, M.E.1
-
34
-
-
0003302892
-
Introduction to affine group schemes
-
Springer-Verlag, New York-Berlin
-
W. C.Waterhouse, Introduction to affine group schemes, Graduate Texts in Mathematics, vol. 66, Springer-Verlag, New York-Berlin, 1979, xi+164 pages.
-
(1979)
Graduate Texts in Mathematics
, vol.66
-
-
Waterhouse, W.C.1
-
35
-
-
33645449965
-
On the conjecture of Iwasawa and Gleason
-
H. Yamabe, "On the conjecture of Iwasawa and Gleason", Ann. of Math. (2) 58 (1953), p. 48-54.
-
(1953)
Ann. of Math.
, vol.2
, Issue.58
, pp. 48-54
-
-
Yamabe, H.1
|