-
1
-
-
0031022645
-
Model-based approaches to analysing incomplete longitudinal and failure time data
-
Hogan JW, Laird NM,. Model-based approaches to analysing incomplete longitudinal and failure time data. Stat Med 1997; 16: 259-272.
-
(1997)
Stat Med
, vol.16
, pp. 259-272
-
-
Hogan, J.W.1
Laird, N.M.2
-
2
-
-
0000710136
-
Joint modeling of longitudinal measurements and event time data
-
Henderson R, Diggle P, Dobson A,. Joint modeling of longitudinal measurements and event time data. Biostatistics 2000; 1: 465-480.
-
(2000)
Biostatistics
, vol.1
, pp. 465-480
-
-
Henderson, R.1
Diggle, P.2
Dobson, A.3
-
3
-
-
33745288267
-
Joint models for multivariate longitudinal and multivariate survival data
-
Chi Y-Y, Ibrahim JG,. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62: 432-445.
-
(2006)
Biometrics
, vol.62
, pp. 432-445
-
-
Chi, Y.-Y.1
Ibrahim, J.G.2
-
4
-
-
0037199763
-
Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables
-
Lin H, McCulloch CE, Mayne ST,. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med 2002; 21: 2369-2382.
-
(2002)
Stat Med
, vol.21
, pp. 2369-2382
-
-
Lin, H.1
McCulloch, C.E.2
Mayne, S.T.3
-
5
-
-
43749118704
-
A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros
-
Rizopoulos D, Verbeke G, Lesaffre E, et al. A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics 2008; 64: 611-619.
-
(2008)
Biometrics
, vol.64
, pp. 611-619
-
-
Rizopoulos, D.1
Verbeke, G.2
Lesaffre, E.3
-
6
-
-
49749119975
-
A joint model for longitudinal measurements and survival data in the presence of multiple failure types
-
Elashoff RM, Li G, Li N,. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64: 762-771.
-
(2008)
Biometrics
, vol.64
, pp. 762-771
-
-
Elashoff, R.M.1
Li, G.2
Li, N.3
-
7
-
-
34547502683
-
Bayesian approaches to joint longitudinal and survival models accommodating both zero and nonzero cure fractions
-
Chi Y-Y, Ibrahim JG,. Bayesian approaches to joint longitudinal and survival models accommodating both zero and nonzero cure fractions. Stat Sin 2007; 17: 445-462.
-
(2007)
Stat Sin
, vol.17
, pp. 445-462
-
-
Chi, Y.-Y.1
Ibrahim, J.G.2
-
8
-
-
8644269772
-
Joint longitudinal-survival cure models and their application to prostate cancer
-
Yu M, Law NJ, Taylor JMG, et al. Joint longitudinal-survival cure models and their application to prostate cancer. Stat Sin 1996; 14: 835-862.
-
(1996)
Stat Sin
, vol.14
, pp. 835-862
-
-
Yu, M.1
Law, N.J.2
Taylor, J.M.G.3
-
9
-
-
24144440046
-
Joint modelling of accelerated failure time and longitudinal data
-
Tseng Y-K, Hseih F, Wang J-L,. Joint modelling of accelerated failure time and longitudinal data. Biometrika 2005; 92: 587-603.
-
(2005)
Biometrika
, vol.92
, pp. 587-603
-
-
Tseng, Y.-K.1
Hseih, F.2
Wang, J.-L.3
-
10
-
-
0037869564
-
A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
-
Brown ER, Ibrahim JG,. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 2003; 59: 221-228.
-
(2003)
Biometrics
, vol.59
, pp. 221-228
-
-
Brown, E.R.1
Ibrahim, J.G.2
-
11
-
-
0442327792
-
Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
-
Wang Y, Taylor JMG,. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 2001; 96: 895-905.
-
(2001)
J Am Stat Assoc
, vol.96
, pp. 895-905
-
-
Wang, Y.1
Taylor, J.M.G.2
-
12
-
-
0001646484
-
Cox's regression model for counting processes: A large sample study
-
Andersen PK, Gill RD,. Cox's regression model for counting processes: a large sample study. Ann Stat 1982; 10: 1100-1120.
-
(1982)
Ann Stat
, vol.10
, pp. 1100-1120
-
-
Andersen, P.K.1
Gill, R.D.2
-
14
-
-
12344304266
-
Gene selection using a two-level hierarchical Bayesian model
-
Bae K, Mallick BK,. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 2004; 18: 3423-3430.
-
(2004)
Bioinformatics
, vol.18
, pp. 3423-3430
-
-
Bae, K.1
Mallick, B.K.2
-
15
-
-
0001509344
-
Non-parametric Bayesian analysis of survival time data
-
Kalbfleisch JD,. Non-parametric Bayesian analysis of survival time data. J R Statist Soc B 1978; 40: 214-221.
-
(1978)
J R Statist Soc B
, vol.40
, pp. 214-221
-
-
Kalbfleisch, J.D.1
-
16
-
-
0035995082
-
Markov beta and gamma processes for modelling hazard rates
-
Neito-Barajas LE, Walker SG,. Markov beta and gamma processes for modelling hazard rates. Scand J Stat 2002; 29: 413-414.
-
(2002)
Scand J Stat
, vol.29
, pp. 413-414
-
-
Neito-Barajas, L.E.1
Walker, S.G.2
-
17
-
-
84867086419
-
Prior distributions for variance parameters in hierarchical models
-
Gelman A,. Prior distributions for variance parameters in hierarchical models. Bayesian Anal 2006; 1: 515-533.
-
(2006)
Bayesian Anal
, vol.1
, pp. 515-533
-
-
Gelman, A.1
-
18
-
-
84989949691
-
-
Plummer M. http://mcmc-jags.sourceforge.net/.
-
-
-
Plummer, M.1
-
20
-
-
0001574731
-
Efficient parametrisations for normal linear mixed models
-
Gelfand AE, Sahu SK, Carlin BP,. Efficient parametrisations for normal linear mixed models. Biometrika 1995; 82: 479-488.
-
(1995)
Biometrika
, vol.82
, pp. 479-488
-
-
Gelfand, A.E.1
Sahu, S.K.2
Carlin, B.P.3
-
21
-
-
84972492387
-
Inference from iterative simulation using multiple sequences
-
Gelman A, Rubin DB,. Inference from iterative simulation using multiple sequences. Stat Sci 1992; 7: 457-511.
-
(1992)
Stat Sci
, vol.7
, pp. 457-511
-
-
Gelman, A.1
Rubin, D.B.2
-
22
-
-
0032273615
-
General methods for monitoring convergence of iterative simulations
-
Brooks SP, Gelman A,. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 1998; 7: 434-455.
-
(1998)
J Comput Graph Stat
, vol.7
, pp. 434-455
-
-
Brooks, S.P.1
Gelman, A.2
|