메뉴 건너뛰기




Volumn 25, Issue 5, 2016, Pages 2180-2192

A Bayesian model for joint analysis of multivariate repeated measures and time to event data in crossover trials

Author keywords

Bayesian joint modeling; crossover trials; fixed boundaries inflation; multi level random effects; non linear mixed model; zero one inflated beta regression

Indexed keywords

HUMAN; JOINT; MAXIMUM LIKELIHOOD METHOD; STATISTICAL MODEL; VISUAL ANALOG SCALE; ANTAGONISTS AND INHIBITORS; BAYES THEOREM; CLINICAL TRIAL (TOPIC); CROSSOVER PROCEDURE; HEAT; KAPLAN MEIER METHOD; LONGITUDINAL STUDY; MARKOV CHAIN; MONTE CARLO METHOD; PROCEDURES;

EID: 84989819163     PISSN: 09622802     EISSN: 14770334     Source Type: Journal    
DOI: 10.1177/0962280213519594     Document Type: Article
Times cited : (15)

References (22)
  • 1
    • 0031022645 scopus 로고    scopus 로고
    • Model-based approaches to analysing incomplete longitudinal and failure time data
    • Hogan JW, Laird NM,. Model-based approaches to analysing incomplete longitudinal and failure time data. Stat Med 1997; 16: 259-272.
    • (1997) Stat Med , vol.16 , pp. 259-272
    • Hogan, J.W.1    Laird, N.M.2
  • 2
    • 0000710136 scopus 로고    scopus 로고
    • Joint modeling of longitudinal measurements and event time data
    • Henderson R, Diggle P, Dobson A,. Joint modeling of longitudinal measurements and event time data. Biostatistics 2000; 1: 465-480.
    • (2000) Biostatistics , vol.1 , pp. 465-480
    • Henderson, R.1    Diggle, P.2    Dobson, A.3
  • 3
    • 33745288267 scopus 로고    scopus 로고
    • Joint models for multivariate longitudinal and multivariate survival data
    • Chi Y-Y, Ibrahim JG,. Joint models for multivariate longitudinal and multivariate survival data. Biometrics 2006; 62: 432-445.
    • (2006) Biometrics , vol.62 , pp. 432-445
    • Chi, Y.-Y.1    Ibrahim, J.G.2
  • 4
    • 0037199763 scopus 로고    scopus 로고
    • Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables
    • Lin H, McCulloch CE, Mayne ST,. Maximum likelihood estimation in the joint analysis of time-to-event and multiple longitudinal variables. Stat Med 2002; 21: 2369-2382.
    • (2002) Stat Med , vol.21 , pp. 2369-2382
    • Lin, H.1    McCulloch, C.E.2    Mayne, S.T.3
  • 5
    • 43749118704 scopus 로고    scopus 로고
    • A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros
    • Rizopoulos D, Verbeke G, Lesaffre E, et al. A two-part joint model for the analysis of survival and longitudinal binary data with excess zeros. Biometrics 2008; 64: 611-619.
    • (2008) Biometrics , vol.64 , pp. 611-619
    • Rizopoulos, D.1    Verbeke, G.2    Lesaffre, E.3
  • 6
    • 49749119975 scopus 로고    scopus 로고
    • A joint model for longitudinal measurements and survival data in the presence of multiple failure types
    • Elashoff RM, Li G, Li N,. A joint model for longitudinal measurements and survival data in the presence of multiple failure types. Biometrics 2008; 64: 762-771.
    • (2008) Biometrics , vol.64 , pp. 762-771
    • Elashoff, R.M.1    Li, G.2    Li, N.3
  • 7
    • 34547502683 scopus 로고    scopus 로고
    • Bayesian approaches to joint longitudinal and survival models accommodating both zero and nonzero cure fractions
    • Chi Y-Y, Ibrahim JG,. Bayesian approaches to joint longitudinal and survival models accommodating both zero and nonzero cure fractions. Stat Sin 2007; 17: 445-462.
    • (2007) Stat Sin , vol.17 , pp. 445-462
    • Chi, Y.-Y.1    Ibrahim, J.G.2
  • 8
    • 8644269772 scopus 로고    scopus 로고
    • Joint longitudinal-survival cure models and their application to prostate cancer
    • Yu M, Law NJ, Taylor JMG, et al. Joint longitudinal-survival cure models and their application to prostate cancer. Stat Sin 1996; 14: 835-862.
    • (1996) Stat Sin , vol.14 , pp. 835-862
    • Yu, M.1    Law, N.J.2    Taylor, J.M.G.3
  • 9
    • 24144440046 scopus 로고    scopus 로고
    • Joint modelling of accelerated failure time and longitudinal data
    • Tseng Y-K, Hseih F, Wang J-L,. Joint modelling of accelerated failure time and longitudinal data. Biometrika 2005; 92: 587-603.
    • (2005) Biometrika , vol.92 , pp. 587-603
    • Tseng, Y.-K.1    Hseih, F.2    Wang, J.-L.3
  • 10
    • 0037869564 scopus 로고    scopus 로고
    • A Bayesian semiparametric joint hierarchical model for longitudinal and survival data
    • Brown ER, Ibrahim JG,. A Bayesian semiparametric joint hierarchical model for longitudinal and survival data. Biometrics 2003; 59: 221-228.
    • (2003) Biometrics , vol.59 , pp. 221-228
    • Brown, E.R.1    Ibrahim, J.G.2
  • 11
    • 0442327792 scopus 로고    scopus 로고
    • Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome
    • Wang Y, Taylor JMG,. Jointly modeling longitudinal and event time data with application to acquired immunodeficiency syndrome. J Am Stat Assoc 2001; 96: 895-905.
    • (2001) J Am Stat Assoc , vol.96 , pp. 895-905
    • Wang, Y.1    Taylor, J.M.G.2
  • 12
    • 0001646484 scopus 로고
    • Cox's regression model for counting processes: A large sample study
    • Andersen PK, Gill RD,. Cox's regression model for counting processes: a large sample study. Ann Stat 1982; 10: 1100-1120.
    • (1982) Ann Stat , vol.10 , pp. 1100-1120
    • Andersen, P.K.1    Gill, R.D.2
  • 14
    • 12344304266 scopus 로고    scopus 로고
    • Gene selection using a two-level hierarchical Bayesian model
    • Bae K, Mallick BK,. Gene selection using a two-level hierarchical Bayesian model. Bioinformatics 2004; 18: 3423-3430.
    • (2004) Bioinformatics , vol.18 , pp. 3423-3430
    • Bae, K.1    Mallick, B.K.2
  • 15
    • 0001509344 scopus 로고
    • Non-parametric Bayesian analysis of survival time data
    • Kalbfleisch JD,. Non-parametric Bayesian analysis of survival time data. J R Statist Soc B 1978; 40: 214-221.
    • (1978) J R Statist Soc B , vol.40 , pp. 214-221
    • Kalbfleisch, J.D.1
  • 16
    • 0035995082 scopus 로고    scopus 로고
    • Markov beta and gamma processes for modelling hazard rates
    • Neito-Barajas LE, Walker SG,. Markov beta and gamma processes for modelling hazard rates. Scand J Stat 2002; 29: 413-414.
    • (2002) Scand J Stat , vol.29 , pp. 413-414
    • Neito-Barajas, L.E.1    Walker, S.G.2
  • 17
    • 84867086419 scopus 로고    scopus 로고
    • Prior distributions for variance parameters in hierarchical models
    • Gelman A,. Prior distributions for variance parameters in hierarchical models. Bayesian Anal 2006; 1: 515-533.
    • (2006) Bayesian Anal , vol.1 , pp. 515-533
    • Gelman, A.1
  • 18
    • 84989949691 scopus 로고    scopus 로고
    • Plummer M. http://mcmc-jags.sourceforge.net/.
    • Plummer, M.1
  • 19
  • 20
    • 0001574731 scopus 로고
    • Efficient parametrisations for normal linear mixed models
    • Gelfand AE, Sahu SK, Carlin BP,. Efficient parametrisations for normal linear mixed models. Biometrika 1995; 82: 479-488.
    • (1995) Biometrika , vol.82 , pp. 479-488
    • Gelfand, A.E.1    Sahu, S.K.2    Carlin, B.P.3
  • 21
    • 84972492387 scopus 로고
    • Inference from iterative simulation using multiple sequences
    • Gelman A, Rubin DB,. Inference from iterative simulation using multiple sequences. Stat Sci 1992; 7: 457-511.
    • (1992) Stat Sci , vol.7 , pp. 457-511
    • Gelman, A.1    Rubin, D.B.2
  • 22
    • 0032273615 scopus 로고    scopus 로고
    • General methods for monitoring convergence of iterative simulations
    • Brooks SP, Gelman A,. General methods for monitoring convergence of iterative simulations. J Comput Graph Stat 1998; 7: 434-455.
    • (1998) J Comput Graph Stat , vol.7 , pp. 434-455
    • Brooks, S.P.1    Gelman, A.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.