-
1
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
Tarascon, J. M. & Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359-367 (2001).
-
(2001)
Nature
, vol.414
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
2
-
-
38949102073
-
Building better batteries
-
Armand, M. & Tarascon, J. M. Building better batteries. Nature 451, 652-657 (2008).
-
(2008)
Nature
, vol.451
, pp. 652-657
-
-
Armand, M.1
Tarascon, J.M.2
-
3
-
-
84874070243
-
Materials science and materials chemistry for large scale electrochemical energy storage: From transportation to electrical grid
-
Liu, J. et al. Materials science and materials chemistry for large scale electrochemical energy storage: from transportation to electrical grid. Adv. Funct. Mater. 23, 929-946 (2013).
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 929-946
-
-
Liu, J.1
-
4
-
-
84924528297
-
Towards greener and more sustainable batteries for electrical energy storage
-
Larcher, D. & Tarascon, J. M. Towards greener and more sustainable batteries for electrical energy storage. Nature Chem. 7, 19-29 (2015).
-
(2015)
Nature Chem.
, vol.7
, pp. 19-29
-
-
Larcher, D.1
Tarascon, J.M.2
-
5
-
-
84867079777
-
Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage
-
Jiang, J. et al. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 24, 5166-5180 (2012).
-
(2012)
Adv. Mater.
, vol.24
, pp. 5166-5180
-
-
Jiang, J.1
-
6
-
-
0036643870
-
Studies of the activated carbons used in double-layer supercapacitors
-
Qu, D. Studies of the activated carbons used in double-layer supercapacitors. J. Power Sources 109, 403-411 (2002).
-
(2002)
J. Power Sources
, vol.109
, pp. 403-411
-
-
Qu, D.1
-
7
-
-
54949139227
-
Materials for electrochemical capacitors
-
Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845-854 (2008).
-
(2008)
Nature Mater.
, vol.7
, pp. 845-854
-
-
Simon, P.1
Gogotsi, Y.2
-
8
-
-
85051785834
-
Carbon materials for chemical capacitive energy storage
-
Zhai, Y. et al. Carbon materials for chemical capacitive energy storage. Adv. Mater. 23, 4828-4850 (2011).
-
(2011)
Adv. Mater.
, vol.23
, pp. 4828-4850
-
-
Zhai, Y.1
-
9
-
-
0028439202
-
Rechargeable lithium batteries with aqueous electrolytes
-
Li, W., Dahn, J. R. &Wainwright, D. S. Rechargeable lithium batteries with aqueous electrolytes. Science 264, 1115-1118 (1994).
-
(1994)
Science
, vol.264
, pp. 1115-1118
-
-
Li, W.1
Dahn, J.R.2
Wainwright, D.S.3
-
10
-
-
77956050828
-
Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte
-
Luo, J.-Y., Cui, W.-J., He, P. & Xia, Y.-Y. Raising the cycling stability of aqueous lithium-ion batteries by eliminating oxygen in the electrolyte. Nature Chem. 2, 760-765 (2010).
-
(2010)
Nature Chem.
, vol.2
, pp. 760-765
-
-
Luo, J.-Y.1
Cui, W.-J.2
He, P.3
Xia, Y.-Y.4
-
11
-
-
79954510120
-
Aqueous cathode for next-generation alkali-ion batteries
-
Lu, Y., Goodenough, J. B. & Kim, Y. Aqueous cathode for next-generation alkali-ion batteries. J. Am. Chem. Soc. 133, 5756-5759 (2011).
-
(2011)
J. Am. Chem. Soc.
, vol.133
, pp. 5756-5759
-
-
Lu, Y.1
Goodenough, J.B.2
Kim, Y.3
-
12
-
-
18244423631
-
LiV3O8: Characterization as anode material for an aqueous rechargeable Li-ion battery system
-
Köhler, J., Makihara, H., Uegaito, H., Inoue, H. & Toki, M. LiV3O8: characterization as anode material for an aqueous rechargeable Li-ion battery system. Electrochim. Acta 46, 59-65 (2000).
-
(2000)
Electrochim. Acta
, vol.46
, pp. 59-65
-
-
Köhler, J.1
Makihara, H.2
Uegaito, H.3
Inoue, H.4
Toki, M.5
-
13
-
-
38049146197
-
Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability
-
Luo, J. Y. & Xia, Y. Y. Aqueous lithium-ion battery LiTi2(PO4)3/LiMn2O4 with high power and energy densities as well as superior cycling stability. Adv. Funct. Mater. 17, 3877-3884 (2007).
-
(2007)
Adv. Funct. Mater.
, vol.17
, pp. 3877-3884
-
-
Luo, J.Y.1
Xia, Y.Y.2
-
14
-
-
82555195041
-
Copper hexacyanoferrate battery electrodes with long cycle life and high power
-
Wessells, C. D., Huggins, R. A. & Cui, Y. Copper hexacyanoferrate battery electrodes with long cycle life and high power. Nature Commun. 2, 550 (2011).
-
(2011)
Nature Commun.
, vol.2
, pp. 550
-
-
Wessells, C.D.1
Huggins, R.A.2
Cui, Y.3
-
15
-
-
84869420954
-
A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage
-
Pasta, M., Wessells, C. D., Huggins, R. A. & Cui, Y. A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage. Nature Commun. 3, 1149 (2012).
-
(2012)
Nature Commun
, vol.3
, pp. 1149
-
-
Pasta, M.1
Wessells, C.D.2
Huggins, R.A.3
Cui, Y.4
-
16
-
-
84906064490
-
Aqueous batteries based on mixed monovalence metal ions: A new battery family
-
Chen, L., Zhang, L., Zhou, X. & Liu, Z. Aqueous batteries based on mixed monovalence metal ions: a new battery family. ChemSusChem 7, 2295-2302 (2014).
-
(2014)
ChemSusChem
, vol.7
, pp. 2295-2302
-
-
Chen, L.1
Zhang, L.2
Zhou, X.3
Liu, Z.4
-
17
-
-
79954482443
-
Metal-air batteries with high energy density: Li-air versus Zn-air
-
Lee, J.-S. et al. Metal-air batteries with high energy density: Li-air versus Zn-air. Adv. Energy Mater. 1, 34-50 (2011).
-
(2011)
Adv. Energy Mater.
, vol.1
, pp. 34-50
-
-
Lee, J.-S.1
-
18
-
-
84921519419
-
Towards high-voltage aqueous metal-ion batteries beyond 1. 5 V: The zinc/zinc hexacyanoferrate system
-
Zhang, L., Chen, L., Zhou, X. & Liu, Z. Towards high-voltage aqueous metal-ion batteries beyond 1. 5 V: the zinc/zinc hexacyanoferrate system. Adv. Energy Mater. http://dx. doi. org/10. 1002/aenm. 201400930 (2015).
-
(2015)
Adv. Energy Mater.
-
-
Zhang, L.1
Chen, L.2
Zhou, X.3
Liu, Z.4
-
19
-
-
84922901714
-
An aqueous zinc-ion battery based on copper hexacyanoferrate
-
Trócoli, R. & La Mantia, F. An aqueous zinc-ion battery based on copper hexacyanoferrate. ChemSusChem 8, 481-485 (2015).
-
(2015)
ChemSusChem
, vol.8
, pp. 481-485
-
-
Trócoli, R.1
La Mantia, F.2
-
20
-
-
0026845149
-
Rechargeable alkaline manganese dioxide batteries: I. in situ X-ray di-raction investigation of the (EMD-type) insertion system
-
Mondoloni, C., Laborde, M., Rioux, J., Andoni, E. & Lévy-Clément, C. Rechargeable alkaline manganese dioxide batteries: I. In situ X-ray di-raction investigation of the (EMD-type) insertion system. J. Electrochem. Soc. 139, 954-959 (1992).
-
(1992)
J. Electrochem. Soc.
, vol.139
, pp. 954-959
-
-
Mondoloni, C.1
Laborde, M.2
Rioux, J.3
Andoni, E.4
Lévy-Clément, C.5
-
21
-
-
84904821584
-
A manganese-doped barium carbonate cathode for alkaline batteries
-
Hertzberg, B., Sviridov, L., Stach, E. A., Gupta, T. & Steingart, D. A manganese-doped barium carbonate cathode for alkaline batteries. J. Electrochem. Soc. 161, A835-A840 (2014).
-
(2014)
J. Electrochem. Soc.
, vol.161
, pp. A835-A840
-
-
Hertzberg, B.1
Sviridov, L.2
Stach, E.A.3
Gupta, T.4
Steingart, D.5
-
22
-
-
84906056717
-
Energetic zinc ion chemistry: The rechargeable zinc ion battery
-
Xu, C., Li, B., Du, H. & Kang, F. Energetic zinc ion chemistry: the rechargeable zinc ion battery. Angew. Chem. 124, 957-959 (2012).
-
(2012)
Angew. Chem.
, vol.124
, pp. 957-959
-
-
Xu, C.1
Li, B.2
Du, H.3
Kang, F.4
-
23
-
-
60449115411
-
Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage
-
Xu, C., Du, H., Li, B., Kang, F. & Zeng, Y. Reversible insertion properties of zinc ion into manganese dioxide and its application for energy storage. Electrochem. Solid State Lett. 12, A61-A65 (2009).
-
(2009)
Electrochem. Solid State Lett.
, vol.12
, pp. A61-A65
-
-
Xu, C.1
Du, H.2
Li, B.3
Kang, F.4
Zeng, Y.5
-
24
-
-
84930224916
-
Electrochemically induced structural transformation in a-MnO2 cathode of a high capacity zinc-ion battery system
-
Alfaruqi, M. H. et al. Electrochemically induced structural transformation in a-MnO2 cathode of a high capacity zinc-ion battery system. Chem. Mater. 27, 3609-3620 (2015).
-
(2015)
Chem. Mater.
, vol.27
, pp. 3609-3620
-
-
Alfaruqi, M.H.1
-
25
-
-
84899854276
-
Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions
-
Xu, D. et al. Preparation and characterization of MnO2/acid-treated CNT nanocomposites for energy storage with zinc ions. Electrochim. Acta 133, 254-261 (2014).
-
(2014)
Electrochim. Acta
, vol.133
, pp. 254-261
-
-
Xu, D.1
-
26
-
-
84906225566
-
Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide
-
Lee, B. et al. Electrochemically-induced reversible transition from the tunneled to layered polymorphs of manganese dioxide. Sci. Rep. 4, 6066 (2014).
-
(2014)
Sci. Rep.
, vol.4
, pp. 6066
-
-
Lee, B.1
-
27
-
-
84941074340
-
Enhanced reversible divalent zinc storage in a structurally stable --MnO2 nanorod electrode
-
Alfaruqi, M. H. et al. Enhanced reversible divalent zinc storage in a structurally stable --MnO2 nanorod electrode. J. Power Sources 288, 320-327 (2015).
-
(2015)
J. Power Sources
, vol.288
, pp. 320-327
-
-
Alfaruqi, M.H.1
-
28
-
-
84875927950
-
Investigation on zinc ion storage in alpha manganese dioxide for zinc ion battery by electrochemical impedance spectrum
-
Xu, C., Chiang, S. W., Ma, J. & Kang, F. Investigation on zinc ion storage in alpha manganese dioxide for zinc ion battery by electrochemical impedance spectrum. J. Electrochem. Soc. 160, A93-A97 (2013).
-
(2013)
J. Electrochem. Soc.
, vol.160
, pp. A93-A97
-
-
Xu, C.1
Chiang, S.W.2
Ma, J.3
Kang, F.4
-
29
-
-
84930680505
-
Elucidating the intercalation mechanism of zinc ions into-MnO2 for rechargeable zinc batteries
-
Lee, B. et al. Elucidating the intercalation mechanism of zinc ions into [-]-MnO2 for rechargeable zinc batteries. Chem. Commun. 51, 9265-9268 (2015).
-
(2015)
Chem. Commun.
, vol.51
, pp. 9265-9268
-
-
Lee, B.1
-
30
-
-
33947515144
-
Single-crystal --MnO2 nanorods: Synthesis and electrochemical properties
-
Hongen, W., Zhouguang, L., Dong, Q., Yujie, L. &Wei, Z. Single-crystal --MnO2 nanorods: synthesis and electrochemical properties. Nanotechnology 18, 115616 (2007).
-
(2007)
Nanotechnology
, vol.18
, pp. 115616
-
-
Hongen, W.1
Zhouguang, L.2
Dong, Q.3
Yujie, L.4
Wei, Z.5
-
31
-
-
27944474839
-
High-power alkaline Zn-MnO2 batteries using-MnO2 nanowires/nanotubes and electrolytic zinc powder
-
Cheng, F. Y., Chen, J., Gou, X. L. & Shen, P. W. High-power alkaline Zn-MnO2 batteries using-MnO2 nanowires/nanotubes and electrolytic zinc powder. Adv. Mater. 17, 2753-2756 (2005).
-
(2005)
Adv. Mater.
, vol.17
, pp. 2753-2756
-
-
Cheng, F.Y.1
Chen, J.2
Gou, X.L.3
Shen, P.W.4
-
32
-
-
57849129803
-
Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries
-
Sun, J. et al. Overpotential and electrochemical impedance analysis on Cr2O3 thin film and powder electrode in rechargeable lithium batteries. Solid State Ion. 179, 2390-2395 (2008).
-
(2008)
Solid State Ion.
, vol.179
, pp. 2390-2395
-
-
Sun, J.1
-
33
-
-
84908343087
-
Advances of aqueous rechargeable lithium-ion battery: A review
-
Alias, N. & Mohamad, A. A. Advances of aqueous rechargeable lithium-ion battery: a review. J. Power Sources 274, 237-251 (2015).
-
(2015)
J. Power Sources
, vol.274
, pp. 237-251
-
-
Alias, N.1
Mohamad, A.A.2
-
34
-
-
33745130389
-
High lithium electroactivity of nanometer-sized rutile TiO2
-
Hu, Y. S., Kienle, L., Guo, Y. G. & Maier, J. High lithium electroactivity of nanometer-sized rutile TiO2. Adv. Mater. 18, 1421-1426 (2006).
-
(2006)
Adv. Mater.
, vol.18
, pp. 1421-1426
-
-
Hu, Y.S.1
Kienle, L.2
Guo, Y.G.3
Maier, J.4
-
35
-
-
37849002504
-
High-performance lithium battery anodes using silicon nanowires
-
Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31-35 (2008).
-
(2008)
Nature Nanotech.
, vol.3
, pp. 31-35
-
-
Chan, C.K.1
-
36
-
-
77958073750
-
Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries
-
Lee, H.-W. et al. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 10, 3852-3856 (2010).
-
(2010)
Nano Lett.
, vol.10
, pp. 3852-3856
-
-
Lee, H.-W.1
-
37
-
-
54949142171
-
Enhanced potential of amorphous electrode materials: Case study of RuO2
-
Delmer, O., Balaya, P., Kienle, L. & Maier, J. Enhanced potential of amorphous electrode materials: case study of RuO2. Adv. Mater. 20, 501-505 (2008).
-
(2008)
Adv. Mater.
, vol.20
, pp. 501-505
-
-
Delmer, O.1
Balaya, P.2
Kienle, L.3
Maier, J.4
-
38
-
-
79958074816
-
Investigation on porous MnO microsphere anode for lithium ion batteries
-
Zhong, K. et al. Investigation on porous MnO microsphere anode for lithium ion batteries. J. Power Sources 196, 6802-6808 (2011).
-
(2011)
J. Power Sources
, vol.196
, pp. 6802-6808
-
-
Zhong, K.1
-
39
-
-
84885194615
-
Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries
-
Pan, H. et al. Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv. Energy Mater. 3, 1186-1194 (2013).
-
(2013)
Adv. Energy Mater.
, vol.3
, pp. 1186-1194
-
-
Pan, H.1
-
40
-
-
59349091439
-
Battery energy storage technology for power systems: An overview
-
Divya, K. C. & Østergaard, J. Battery energy storage technology for power systems: An overview. Electr. Power Syst. Res. 79, 511-520 (2009).
-
(2009)
Electr. Power Syst. Res.
, vol.79
, pp. 511-520
-
-
Divya, K.C.1
Østergaard, J.2
|