-
1
-
-
84897557208
-
Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences
-
Gross, B. C.; Erkal, J. L.; Lockwood, S. Y.; Chen, C.; Spence, D. M. Evaluation of 3D Printing and Its Potential Impact on Biotechnology and the Chemical Sciences Anal. Chem. 2014, 86, 3240-3253 10.1021/ac403397r
-
(2014)
Anal. Chem.
, vol.86
, pp. 3240-3253
-
-
Gross, B.C.1
Erkal, J.L.2
Lockwood, S.Y.3
Chen, C.4
Spence, D.M.5
-
2
-
-
84896508793
-
Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes
-
Shallan, A. I.; Smejkal, P.; Corban, M.; Guijt, R. M.; Breadmore, M. C. Cost-Effective Three-Dimensional Printing of Visibly Transparent Microchips within Minutes Anal. Chem. 2014, 86, 3124-3130 10.1021/ac4041857
-
(2014)
Anal. Chem.
, vol.86
, pp. 3124-3130
-
-
Shallan, A.I.1
Smejkal, P.2
Corban, M.3
Guijt, R.M.4
Breadmore, M.C.5
-
3
-
-
84908061196
-
Discrete Elements for 3D Microfluidics
-
Bhargava, K. C.; Thompson, B.; Malmstadt, N. Discrete Elements for 3D Microfluidics Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 15013-15018 10.1073/pnas.1414764111
-
(2014)
Proc. Natl. Acad. Sci. U. S. A.
, vol.111
, pp. 15013-15018
-
-
Bhargava, K.C.1
Thompson, B.2
Malmstadt, N.3
-
4
-
-
77951051632
-
Fabrication of Versatile Channel Flow Cells for Quantitative Electroanalysis Using Prototyping
-
Snowden, M. E.; King, P. H.; Covington, J. A.; Macpherson, J. V.; Unwin, P. R. Fabrication of Versatile Channel Flow Cells for Quantitative Electroanalysis Using Prototyping Anal. Chem. 2010, 82, 3124-3131 10.1021/ac100345v
-
(2010)
Anal. Chem.
, vol.82
, pp. 3124-3131
-
-
Snowden, M.E.1
King, P.H.2
Covington, J.A.3
Macpherson, J.V.4
Unwin, P.R.5
-
5
-
-
84901022826
-
3D printedMicrofluidic Devices with Integrated Versatile and Reusable Electrodes
-
Erkal, J. L.; Selimovic, A.; Gross, B. C.; Lockwood, S. Y.; Walton, E. L.; McNamara, S.; Martin, R. S.; Spence, D. M. 3D printedMicrofluidic Devices with Integrated Versatile and Reusable Electrodes Lab Chip 2014, 14, 2023-2032 10.1039/C4LC00171K
-
(2014)
Lab Chip
, vol.14
, pp. 2023-2032
-
-
Erkal, J.L.1
Selimovic, A.2
Gross, B.C.3
Lockwood, S.Y.4
Walton, E.L.5
McNamara, S.6
Martin, R.S.7
Spence, D.M.8
-
6
-
-
84929643221
-
3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes
-
Bishop, G. W.; Satterwhite, J. E.; Bhakta, S.; Kadimisetty, K.; Gillette, K. M.; Chen, E.; Rusling, J. F. 3D-Printed Fluidic Devices for Nanoparticle Preparation and Flow-Injection Amperometry Using Integrated Prussian Blue Nanoparticle-Modified Electrodes Anal. Chem. 2015, 87, 5437-5443 10.1021/acs.analchem.5b00903
-
(2015)
Anal. Chem.
, vol.87
, pp. 5437-5443
-
-
Bishop, G.W.1
Satterwhite, J.E.2
Bhakta, S.3
Kadimisetty, K.4
Gillette, K.M.5
Chen, E.6
Rusling, J.F.7
-
7
-
-
84905758109
-
3D Printed Modules for Integrated Microfluidic Devices
-
Lee, K. G.; Park, K. J.; Seok, S.; Shin, S.; Kim, D. H.; Park, J. Y.; Heo, Y. S.; Lee, S. J.; Lee, T. J. 3D Printed Modules for Integrated Microfluidic Devices RSC Adv. 2014, 4, 32876-32880 10.1039/C4RA05072J
-
(2014)
RSC Adv.
, vol.4
, pp. 32876-32880
-
-
Lee, K.G.1
Park, K.J.2
Seok, S.3
Shin, S.4
Kim, D.H.5
Park, J.Y.6
Heo, Y.S.7
Lee, S.J.8
Lee, T.J.9
-
8
-
-
84879201823
-
A 3D Printed Fluidic Device that Enables Integrated Features
-
Anderson, K. B.; Lockwood, S. Y.; Martin, R. S.; Spence, D. M. A 3D Printed Fluidic Device that Enables Integrated Features Anal. Chem. 2013, 85, 5622-5626 10.1021/ac4009594
-
(2013)
Anal. Chem.
, vol.85
, pp. 5622-5626
-
-
Anderson, K.B.1
Lockwood, S.Y.2
Martin, R.S.3
Spence, D.M.4
-
9
-
-
84901939254
-
3D-printed Fluidic Devices Enable Quantitative Evaluation of Blood Components in Modified Storage Solutions for Use in Transfusion Medicine
-
Chen, C.; Wang, Y.; Lockwood, S. Y.; Spence, D. M. 3D-printed Fluidic Devices Enable Quantitative Evaluation of Blood Components in Modified Storage Solutions for Use in Transfusion Medicine Analyst 2014, 139, 3219-3226 10.1039/C3AN02357E
-
(2014)
Analyst
, vol.139
, pp. 3219-3226
-
-
Chen, C.1
Wang, Y.2
Lockwood, S.Y.3
Spence, D.M.4
-
10
-
-
85028655586
-
3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors
-
Wu, S.-Y; Yang, C.; Hsu, W.; Lin, L. 3D-Printed Microelectronics for Integrated Circuitry and Passive Wireless Sensors Microsys. & Microeng. 2015, 1, 15013 10.1038/micronano.2015.13
-
(2015)
Microsys. & Microeng.
, vol.1
, pp. 15013
-
-
Wu, S.-Y.1
Yang, C.2
Hsu, W.3
Lin, L.4
-
11
-
-
0036534546
-
Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing
-
McDonald, J. C.; Chabinyc, M. L.; Metallo, S.; Anderson, J. R.; Stroock, A. D.; Whitesides, G. M. Prototyping of Microfluidic Devices in Poly(dimethylsiloxane) Using Solid-Object Printing Anal. Chem. 2002, 74, 1537-1545 10.1021/ac010938q
-
(2002)
Anal. Chem.
, vol.74
, pp. 1537-1545
-
-
McDonald, J.C.1
Chabinyc, M.L.2
Metallo, S.3
Anderson, J.R.4
Stroock, A.D.5
Whitesides, G.M.6
-
12
-
-
85011095713
-
Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices
-
Saggiomo, V.; Velders, A. H. Simple 3D Printed Scaffold-Removal Method for the Fabrication of Intricate Microfluidic Devices Adv. Sci. 2015, 2, 1500125 10.1002/advs.201500125
-
(2015)
Adv. Sci.
, vol.2
, pp. 1500125
-
-
Saggiomo, V.1
Velders, A.H.2
-
13
-
-
84865202010
-
Configurable 3D-Printed Millifluidic and Microfluidic 'Lab on a Chip' Reactionware Devices
-
Kitson, P. J.; Rosnes, M. H.; Sans, V.; Dragone, V.; Cronin, L. Configurable 3D-Printed Millifluidic and Microfluidic 'Lab on a Chip' Reactionware Devices Lab Chip 2012, 12, 3267-3271 10.1039/c2lc40761b
-
(2012)
Lab Chip
, vol.12
, pp. 3267-3271
-
-
Kitson, P.J.1
Rosnes, M.H.2
Sans, V.3
Dragone, V.4
Cronin, L.5
-
14
-
-
84904321215
-
Low Cost Lab-on-a-Chip Prototyping with a Consumer Grade 3D printer
-
Comina, G.; Suska, A.; Filippini, D. Low Cost Lab-on-a-Chip Prototyping with a Consumer Grade 3D printer Lab Chip 2014, 14, 2978-2982 10.1039/C4LC00394B
-
(2014)
Lab Chip
, vol.14
, pp. 2978-2982
-
-
Comina, G.1
Suska, A.2
Filippini, D.3
-
15
-
-
84923793028
-
3D Printed Microfluidic Devices with Integrated Valves
-
Rogers, C. I.; Qaderi, K.; Woolley, A. T.; Nordin, G. P. 3D Printed Microfluidic Devices with Integrated Valves Biomicrofluidics 2015, 9, 016501 10.1063/1.4905840
-
(2015)
Biomicrofluidics
, vol.9
, pp. 016501
-
-
Rogers, C.I.1
Qaderi, K.2
Woolley, A.T.3
Nordin, G.P.4
-
16
-
-
84926349262
-
-
Au, A. K.; Bhattacharjee, N.; Horowitz, L. F.; Chang, T. C.; Folch, A. Lab Chip 2015, 15, 1934-1941 10.1039/C5LC00126A
-
(2015)
Lab Chip
, vol.15
, pp. 1934-1941
-
-
Au, A.K.1
Bhattacharjee, N.2
Horowitz, L.F.3
Chang, T.C.4
Folch, A.5
-
17
-
-
70349764780
-
Electrogenerated Chemiluminescence
-
Forster, R. J.; Bertoncello, P.; Keyes, T. E. Electrogenerated Chemiluminescence Annu. Rev. Anal. Chem. 2009, 2, 359-385 10.1146/annurev-anchem-060908-155305
-
(2009)
Annu. Rev. Anal. Chem.
, vol.2
, pp. 359-385
-
-
Forster, R.J.1
Bertoncello, P.2
Keyes, T.E.3
-
18
-
-
84943551927
-
3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray
-
Kadimisetty, K.; Mosa, I. M.; Malla, S.; Satterwhite-Warden, J. E.; Kuhns, T.; Faria, R. C.; Lee, N. H.; Rusling, J. F. 3D-printed supercapacitor-powered electrochemiluminescent protein immunoarray Biosens. Bioelectron. 2016, 77, 188-193 10.1016/j.bios.2015.09.017
-
(2016)
Biosens. Bioelectron.
, vol.77
, pp. 188-193
-
-
Kadimisetty, K.1
Mosa, I.M.2
Malla, S.3
Satterwhite-Warden, J.E.4
Kuhns, T.5
Faria, R.C.6
Lee, N.H.7
Rusling, J.F.8
-
19
-
-
85026437705
-
-
Zinc-plated grade 5 Steel Hex Coupling Nut: Thread Size 1/4″-28; (accessed March 17)
-
Zinc-plated grade 5 Steel Hex Coupling Nut: Thread Size 1/4″-28; http://www.mcmaster.com/#90977a140 (accessed March 17, 2015).
-
(2015)
-
-
-
22
-
-
84877132688
-
A Microfluidic Electrochemiluminescent Device for Detecting Cancer Biomarker Proteins
-
Sardesai, N.; Kadimisetty, K.; Faria, R.; Rusling, J. F. A Microfluidic Electrochemiluminescent Device for Detecting Cancer Biomarker Proteins Anal. Bioanal. Chem. 2013, 405, 3831-3838 10.1007/s00216-012-6656-5
-
(2013)
Anal. Bioanal. Chem.
, vol.405
, pp. 3831-3838
-
-
Sardesai, N.1
Kadimisetty, K.2
Faria, R.3
Rusling, J.F.4
-
23
-
-
84863205849
-
NIH Image to ImageJ: 25 years of image analysis
-
Schneider, C. A.; Rasband, W. S.; Eliceiri, K. W. NIH Image to ImageJ: 25 years of image analysis Nat. Methods 2012, 9, 671-675 10.1038/nmeth.2089
-
(2012)
Nat. Methods
, vol.9
, pp. 671-675
-
-
Schneider, C.A.1
Rasband, W.S.2
Eliceiri, K.W.3
-
25
-
-
0037473577
-
Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films
-
Dennany, L.; Forster, R. J.; Rusling, J. F. Simultaneous Direct Electrochemiluminescence and Catalytic Voltammetry Detection of DNA in Ultrathin Films J. Am. Chem. Soc. 2003, 125, 5213-5218 10.1021/ja0296529
-
(2003)
J. Am. Chem. Soc.
, vol.125
, pp. 5213-5218
-
-
Dennany, L.1
Forster, R.J.2
Rusling, J.F.3
-
26
-
-
84895514154
-
Mail-order microfluidics: Evaluation of stereolithography for the production of microfluidic devices
-
Au, A. K.; Lee, W.; Folch, A. Mail-order microfluidics: evaluation of stereolithography for the production of microfluidic devices Lab Chip 2014, 14, 1294-1301 10.1039/C3LC51360B
-
(2014)
Lab Chip
, vol.14
, pp. 1294-1301
-
-
Au, A.K.1
Lee, W.2
Folch, A.3
-
27
-
-
84925264033
-
Continuous liquid interface production of 3D objects
-
Tumbleston, J. R.; Shirvanyants, D.; Ermoshkin, N.; Janusziewicz, R.; Johnson, A. R.; Kelly, D.; Chen, K.; Pinschmidt, R.; Rolland, J. P.; Ermoshkin, A.; Samulski, E. T.; DeSimone, J. M. Continuous liquid interface production of 3D objects Science 2015, 347, 1349-1352 10.1126/science.aaa2397
-
(2015)
Science
, vol.347
, pp. 1349-1352
-
-
Tumbleston, J.R.1
Shirvanyants, D.2
Ermoshkin, N.3
Janusziewicz, R.4
Johnson, A.R.5
Kelly, D.6
Chen, K.7
Pinschmidt, R.8
Rolland, J.P.9
Ermoshkin, A.10
Samulski, E.T.11
DeSimone, J.M.12
-
28
-
-
85026489588
-
-
(accessed May, 14)
-
http://carbon3d.com/ (accessed May, 14, 2015).
-
(2015)
-
-
|