메뉴 건너뛰기




Volumn 392, Issue , 2017, Pages 531-539

Effect of rutile TiO 2 on the photocatalytic performance of g-C 3 N 4 /brookite-TiO 2-x N y photocatalyst for NO decomposition

Author keywords

DeNOx ability; g C 3 N 4; Rutile brookite TiO 2 x N y; Z scheme photocatalyst

Indexed keywords

COMPLEXATION; OXIDE MINERALS; PHOTOCATALYSIS; PHOTOCATALYSTS;

EID: 84988529969     PISSN: 01694332     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.apsusc.2016.09.075     Document Type: Article
Times cited : (76)

References (26)
  • 3
    • 0035854541 scopus 로고    scopus 로고
    • Visible-light photocatalysis in nitrogen-doped titanium oxides
    • [3] Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., Taga, Y., Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293 (2001), 269–271.
    • (2001) Science , vol.293 , pp. 269-271
    • Asahi, R.1    Morikawa, T.2    Ohwaki, T.3    Aoki, K.4    Taga, Y.5
  • 6
    • 84869018933 scopus 로고    scopus 로고
    • Graphene-like carbon nitride nanosheets for improved photocatalytic activities
    • [6] Niu, P., Zhang, L., Liu, G., Cheng, H.-M., Graphene-like carbon nitride nanosheets for improved photocatalytic activities. Adv. Funct. Mater. 22 (2012), 4763–4770.
    • (2012) Adv. Funct. Mater. , vol.22 , pp. 4763-4770
    • Niu, P.1    Zhang, L.2    Liu, G.3    Cheng, H.-M.4
  • 8
    • 84860356245 scopus 로고    scopus 로고
    • Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis
    • [8] Zheng, Y., Liu, J., Liang, J., Jaroniec, M., Qiao, S.Z., Graphitic carbon nitride materials: controllable synthesis and applications in fuel cells and photocatalysis. Energy Environ. Sci. 5 (2012), 6717–6731.
    • (2012) Energy Environ. Sci. , vol.5 , pp. 6717-6731
    • Zheng, Y.1    Liu, J.2    Liang, J.3    Jaroniec, M.4    Qiao, S.Z.5
  • 9
    • 84862908231 scopus 로고    scopus 로고
    • 4 hybrid with enhanced photocatalytic capability under visible light irradiation
    • 4 hybrid with enhanced photocatalytic capability under visible light irradiation. J. Mater. Chem. 22 (2012), 2721–2726.
    • (2012) J. Mater. Chem. , vol.22 , pp. 2721-2726
    • Liao, G.1    Chen, S.2    Quan, X.3    Yu, H.4    Zhao, H.5
  • 10
    • 84892729694 scopus 로고    scopus 로고
    • The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride
    • [10] Wu, H.-Z., Liu, L.-M., Zhao, S.-J., The effect of water on the structural, electronic and photocatalytic properties of graphitic carbon nitride. Phys. Chem. Chem. Phys. 16 (2014), 3299–3304.
    • (2014) Phys. Chem. Chem. Phys. , vol.16 , pp. 3299-3304
    • Wu, H.-Z.1    Liu, L.-M.2    Zhao, S.-J.3
  • 11
    • 84893439261 scopus 로고    scopus 로고
    • 2 nanosheets with reactive {0 1} facets to enhance the UV- and visible-light photocatalytic activity
    • 2 nanosheets with reactive {0 1} facets to enhance the UV- and visible-light photocatalytic activity. J. Hazard. Mater. 268 (2014), 216–223.
    • (2014) J. Hazard. Mater. , vol.268 , pp. 216-223
    • Gu, L.1    Wang, J.2    Zou, Z.3    Han, X.4
  • 12
    • 84884399960 scopus 로고    scopus 로고
    • 4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities
    • 4 heterojunction photocatalysts: in situ preparation via an ionic-liquid-assisted solvent-thermal route and their visible-light photocatalytic activities. Chem. Eng. J. 234 (2013), 361–371.
    • (2013) Chem. Eng. J. , vol.234 , pp. 361-371
    • Wang, X.1    Wang, Q.2    Li, F.3    Yang, W.4    Zhao, Y.5    Hao, Y.6    Liu, S.7
  • 17
    • 0036860086 scopus 로고    scopus 로고
    • 2 ) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction
    • 2 ) nanocomposite with high photocatalytic activities for hydrogen evolution and nitrogen monoxide destruction. Solid State Ionics 151 (2002), 377–383.
    • (2002) Solid State Ionics , vol.151 , pp. 377-383
    • Yin, S.1    Maeda, D.2    Ishitsuka, M.3    Wu, J.4    Sato, T.5
  • 18
    • 84963944178 scopus 로고    scopus 로고
    • 3 composite architectures for photocatalytic treatment of hazardous organic vapor
    • 3 composite architectures for photocatalytic treatment of hazardous organic vapor. J. Hazard. Mater. 314 (2016), 22–31.
    • (2016) J. Hazard. Mater. , vol.314 , pp. 22-31
    • Lee, J.Y.1    Jo, W.-K.2
  • 19
    • 84884296291 scopus 로고    scopus 로고
    • 2 photocatalysts for the decomposition of formaldehyde in air
    • 2 photocatalysts for the decomposition of formaldehyde in air. Phys. Chem. Chem. Phys., 15, 2013, 16883.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 16883
    • Yu, J.1    Wang, S.2    Low, J.3    Xiao, W.4
  • 20
    • 84937128439 scopus 로고    scopus 로고
    • 2 photocatalysts for isoniazid degradation
    • 2 photocatalysts for isoniazid degradation. Chem. Eng. J. 281 (2015), 549–565.
    • (2015) Chem. Eng. J. , vol.281 , pp. 549-565
    • Jo, W.-K.1    Natarajan, T.S.2
  • 21
    • 84961251690 scopus 로고    scopus 로고
    • 2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light
    • 2 nanoparticles synthesized by using biological renewable nanocrystalline cellulose as template for the degradation of pollutants under visible and sun light. Chem. Eng. J. 295 (2016), 192–200.
    • (2016) Chem. Eng. J. , vol.295 , pp. 192-200
    • Chen, X.1    Kuo, D.2    Lu, D.3
  • 22
  • 24
    • 84975528624 scopus 로고    scopus 로고
    • 4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis characterizations and mechanistic study
    • 4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis characterizations and mechanistic study. Appl. Catal. B: Environ. 199 (2016), 123–133.
    • (2016) Appl. Catal. B: Environ. , vol.199 , pp. 123-133
    • Wang, Z.1    Huang, Y.2    Ho, W.3    Cao, J.4    Shen, Z.5    Lee, S.C.6


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.