메뉴 건너뛰기




Volumn 9887 LNCS, Issue , 2016, Pages 423-430

Sms spam filtering using probabilistic topic modelling and stacked denoising autoencoder

Author keywords

[No Author keywords available]

Indexed keywords

MACHINE LEARNING; STATISTICS;

EID: 84988353671     PISSN: 03029743     EISSN: 16113349     Source Type: Book Series    
DOI: 10.1007/978-3-319-44781-0_50     Document Type: Conference Paper
Times cited : (20)

References (21)
  • 2
    • 84856976954 scopus 로고    scopus 로고
    • Facing the spammers: A very effective approach to avoid junk e-mails
    • Almeida, T.A., Yamakami, A.: Facing the spammers: a very effective approach to avoid junk e-mails. Expert Syst. Appl. 39(7), 6557–6561 (2012)
    • (2012) Expert Syst. Appl , vol.39 , Issue.7 , pp. 6557-6561
    • Almeida, T.A.1    Yamakami, A.2
  • 5
    • 84859217714 scopus 로고    scopus 로고
    • Sms spam filtering: Methods and data
    • Delany, S.J., Buckley, M., Greene, D.: Sms spam filtering: methods and data. Expert Syst. Appl. 39(10), 9899–9908 (2012)
    • (2012) Expert Syst. Appl , vol.39 , Issue.10 , pp. 9899-9908
    • Delany, S.J.1    Buckley, M.2    Greene, D.3
  • 7
    • 84988340037 scopus 로고    scopus 로고
    • SMS spams and mobile messaging attacks-introduction, trends and examples
    • Groupe Speciale Mobile Association (GSMA): SMS spams and mobile messaging attacks-introduction, trends and examples (2011)
    • (2011)
  • 9
    • 67349246464 scopus 로고    scopus 로고
    • A review of machine learning approaches to spam filtering
    • Guzella, T.S., Caminhas, W.M.: A review of machine learning approaches to spam filtering. Expert Syst. Appl. 36(7), 10206–10222 (2009)
    • (2009) Expert Syst. Appl , vol.36 , Issue.7 , pp. 10206-10222
    • Guzella, T.S.1    Caminhas, W.M.2
  • 10
    • 84864859588 scopus 로고    scopus 로고
    • Outlier detection using replicator neural networks
    • Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.), Springer, Heidelberg
    • Hawkins, S., He, H., Williams, G.J., Baxter, R.A.: Outlier detection using replicator neural networks. In: Kambayashi, Y., Winiwarter, W., Arikawa, M. (eds.) DaWaK 2002. LNCS, vol. 2454, pp. 170–180. Springer, Heidelberg (2002)
    • (2002) Dawak 2002. LNCS , vol.2454 , pp. 170-180
    • Hawkins, S.1    He, H.2    Williams, G.J.3    Baxter, R.A.4
  • 11
    • 84890085450 scopus 로고    scopus 로고
    • An assessment of case base reasoning for short text message classification
    • Healy, M., Delany, S.J., Zamolotskikh, A.: An assessment of case base reasoning for short text message classification. In: Conference papers, p. 42 (2004)
    • (2004) Conference Papers
    • Healy, M.1    Delany, S.J.2    Zamolotskikh, A.3
  • 14
    • 84988377910 scopus 로고    scopus 로고
    • PortioResearch: Mobile Messaging Futures 2013–2017 (2013)
    • (2013)
  • 17
    • 84856205971 scopus 로고    scopus 로고
    • The contribution of stylistic information to content-based mobile spam filtering
    • Association for Computational Linguistics
    • Sohn, D.N., Lee, J.T., Rim, H.C.: The contribution of stylistic information to content-based mobile spam filtering. In: Proceedings of the ACL-IJCNLP 2009 Conference Short Papers, pp. 321–324. Association for Computational Linguistics (2009)
    • (2009) Proceedings of the ACL-IJCNLP 2009 Conference Short Papers , pp. 321-324
    • Sohn, D.N.1    Lee, J.T.2    Rim, H.C.3
  • 19
    • 79551480483 scopus 로고    scopus 로고
    • Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion
    • Vincent, P., Larochelle, H., Lajoie, I., Bengio, Y., Manzagol, P.A.: Stacked denoising autoencoders: Learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. 11, 3371–3408 (2010)
    • (2010) J. Mach. Learn. Res , vol.11 , pp. 3371-3408
    • Vincent, P.1    Larochelle, H.2    Lajoie, I.3    Bengio, Y.4    Manzagol, P.A.5
  • 21
    • 84866458840 scopus 로고    scopus 로고
    • A survey on unsupervised outlier detection in high-dimensional numerical data
    • Zimek, A., Schubert, E., Kriegel, H.P.: A survey on unsupervised outlier detection in high-dimensional numerical data. Stat. Anal. Data Min. 5(5), 363–387 (2012)
    • (2012) Stat. Anal. Data Min , vol.5 , Issue.5 , pp. 363-387
    • Zimek, A.1    Schubert, E.2    Kriegel, H.P.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.