-
1
-
-
33750458683
-
Powering the planet: chemical challenges in solar energy utilization
-
[1] Lewis, N.S., Nocera, D.G., Powering the planet: chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 103 (2006), 15729–15735.
-
(2006)
Proc. Natl. Acad. Sci. USA
, vol.103
, pp. 15729-15735
-
-
Lewis, N.S.1
Nocera, D.G.2
-
2
-
-
2342469952
-
Solar thermal collectors and applications
-
[2] Kalogirou, S.A., Solar thermal collectors and applications. Prog. Energy Combust. Sci. 30 (2004), 231–295.
-
(2004)
Prog. Energy Combust. Sci.
, vol.30
, pp. 231-295
-
-
Kalogirou, S.A.1
-
3
-
-
0016535202
-
Performance of a “black” liquid flat-plate solar collector
-
[3] Minardi, J.E., Chuang, H.N., Performance of a “black” liquid flat-plate solar collector. Sol. Energy 17 (1975), 179–183.
-
(1975)
Sol. Energy
, vol.17
, pp. 179-183
-
-
Minardi, J.E.1
Chuang, H.N.2
-
4
-
-
33750694638
-
Heat transfer characteristics of nanofluids: a review
-
[4] Wang, X.-Q., Mujumdar, A.S., Heat transfer characteristics of nanofluids: a review. Int. J. Therm. Sci. 46 (2007), 1–19.
-
(2007)
Int. J. Therm. Sci.
, vol.46
, pp. 1-19
-
-
Wang, X.-Q.1
Mujumdar, A.S.2
-
5
-
-
64749113545
-
Review of convective heat transfer enhancement with nanofluids
-
[5] Kakac, S., Pramuanjaroenkij, A., Review of convective heat transfer enhancement with nanofluids. Int. J. Heat Mass Transf. 52 (2009), 3187–3196.
-
(2009)
Int. J. Heat Mass Transf.
, vol.52
, pp. 3187-3196
-
-
Kakac, S.1
Pramuanjaroenkij, A.2
-
6
-
-
39649109213
-
Review and comparison of nanofluid thermal conductivity and heat transfer enhancements
-
[6] Yu, W., France, D.M., Routbort, J.L., Choi, S.U., Review and comparison of nanofluid thermal conductivity and heat transfer enhancements. Heat Transf. Eng. 29 (2008), 432–460.
-
(2008)
Heat Transf. Eng.
, vol.29
, pp. 432-460
-
-
Yu, W.1
France, D.M.2
Routbort, J.L.3
Choi, S.U.4
-
7
-
-
77249157777
-
Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids
-
[7] Nieto de Castro, C., Lourenço, M., Ribeiro, A., Langa, E., Vieira, S., Goodrich, P., Hardacre, C., Thermal properties of ionic liquids and ionanofluids of imidazolium and pyrrolidinium liquids. J. Chem. Eng. Data 55 (2009), 653–661.
-
(2009)
J. Chem. Eng. Data
, vol.55
, pp. 653-661
-
-
Nieto de Castro, C.1
Lourenço, M.2
Ribeiro, A.3
Langa, E.4
Vieira, S.5
Goodrich, P.6
Hardacre, C.7
-
8
-
-
79952592696
-
Nanofluid-based direct absorption solar collector
-
[8] Otanicar, T.P., Phelan, P.E., Prasher, R.S., Rosengarten, G., Taylor, R.A., Nanofluid-based direct absorption solar collector. J. Renew. Sustain. Energy, 2, 2010, 033102.
-
(2010)
J. Renew. Sustain. Energy
, vol.2
, pp. 033102
-
-
Otanicar, T.P.1
Phelan, P.E.2
Prasher, R.S.3
Rosengarten, G.4
Taylor, R.A.5
-
9
-
-
77955180865
-
Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
-
[9] Tyagi, H., Phelan, P., Prasher, R., Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J. Sol. Energy Eng., 131, 2009, 041004.
-
(2009)
J. Sol. Energy Eng.
, vol.131
, pp. 041004
-
-
Tyagi, H.1
Phelan, P.2
Prasher, R.3
-
10
-
-
82655187063
-
Nanofluid optical property characterization: towards efficient direct absorption solar collectors
-
[10] Taylor, R.A., Phelan, P.E., Otanicar, T.P., Adrian, R., Prasher, R., Nanofluid optical property characterization: towards efficient direct absorption solar collectors. Nanoscale Res. Lett. 6 (2011), 1–11.
-
(2011)
Nanoscale Res. Lett.
, vol.6
, pp. 1-11
-
-
Taylor, R.A.1
Phelan, P.E.2
Otanicar, T.P.3
Adrian, R.4
Prasher, R.5
-
11
-
-
65649083108
-
Optical properties of liquids for direct absorption solar thermal energy systems
-
[11] Otanicar, T.P., Phelan, P.E., Golden, J.S., Optical properties of liquids for direct absorption solar thermal energy systems. Sol. Energy 83 (2009), 969–977.
-
(2009)
Sol. Energy
, vol.83
, pp. 969-977
-
-
Otanicar, T.P.1
Phelan, P.E.2
Golden, J.S.3
-
12
-
-
84886695032
-
Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications
-
[12] Liu, J., Wang, F., Zhang, L., Fang, X., Zhang, Z., Thermodynamic properties and thermal stability of ionic liquid-based nanofluids containing graphene as advanced heat transfer fluids for medium-to-high-temperature applications. Renew. Energy 63 (2014), 519–523.
-
(2014)
Renew. Energy
, vol.63
, pp. 519-523
-
-
Liu, J.1
Wang, F.2
Zhang, L.3
Fang, X.4
Zhang, Z.5
-
13
-
-
84907218651
-
Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors
-
[13] Zhang, L., Liu, J., He, G., Ye, Z., Fang, X., Zhang, Z., Radiative properties of ionic liquid-based nanofluids for medium-to-high-temperature direct absorption solar collectors. Sol. Energy Mater. Sol. Cells 130 (2014), 521–528.
-
(2014)
Sol. Energy Mater. Sol. Cells
, vol.130
, pp. 521-528
-
-
Zhang, L.1
Liu, J.2
He, G.3
Ye, Z.4
Fang, X.5
Zhang, Z.6
-
14
-
-
84922244006
-
A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector
-
[14] Liu, J., Ye, Z., Zhang, L., Fang, X., Zhang, Z., A combined numerical and experimental study on graphene/ionic liquid nanofluid based direct absorption solar collector. Sol. Energy Mater. Sol. Cells 136 (2015), 177–186.
-
(2015)
Sol. Energy Mater. Sol. Cells
, vol.136
, pp. 177-186
-
-
Liu, J.1
Ye, Z.2
Zhang, L.3
Fang, X.4
Zhang, Z.5
-
15
-
-
84879532752
-
Applicability of graphite nanofluids in direct solar energy absorption
-
[15] Ladjevardi, S., Asnaghi, A., Izadkhast, P., Kashani, A., Applicability of graphite nanofluids in direct solar energy absorption. Sol. Energy 94 (2013), 327–334.
-
(2013)
Sol. Energy
, vol.94
, pp. 327-334
-
-
Ladjevardi, S.1
Asnaghi, A.2
Izadkhast, P.3
Kashani, A.4
-
16
-
-
84883128889
-
Investigating performance improvement of solar collectors by using nanofluids
-
[16] Javadi, F., Saidur, R., Kamalisarvestani, M., Investigating performance improvement of solar collectors by using nanofluids. Renew. Sustain. Energy Rev. 28 (2013), 232–245.
-
(2013)
Renew. Sustain. Energy Rev.
, vol.28
, pp. 232-245
-
-
Javadi, F.1
Saidur, R.2
Kamalisarvestani, M.3
-
17
-
-
80051546789
-
Potential of carbon nanohorn-based suspensions for solar thermal collectors
-
[17] Sani, E., Mercatelli, L., Barison, S., Pagura, C., Agresti, F., Colla, L., Sansoni, P., Potential of carbon nanohorn-based suspensions for solar thermal collectors. Sol. Energy Mater. Sol. Cells 95 (2011), 2994–3000.
-
(2011)
Sol. Energy Mater. Sol. Cells
, vol.95
, pp. 2994-3000
-
-
Sani, E.1
Mercatelli, L.2
Barison, S.3
Pagura, C.4
Agresti, F.5
Colla, L.6
Sansoni, P.7
-
18
-
-
82955167416
-
Optimization of nanofluid volumetric receivers for solar thermal energy conversion
-
[18] Lenert, A., Wang, E.N., Optimization of nanofluid volumetric receivers for solar thermal energy conversion. Sol. Energy 86 (2012), 253–265.
-
(2012)
Sol. Energy
, vol.86
, pp. 253-265
-
-
Lenert, A.1
Wang, E.N.2
-
19
-
-
82955203466
-
Analytical model for the design of volumetric solar flow receivers
-
[19] Veeraragavan, A., Lenert, A., Yilbas, B., Al-Dini, S., Wang, E.N., Analytical model for the design of volumetric solar flow receivers. Int. J. Heat Mass Transf. 55 (2012), 556–564.
-
(2012)
Int. J. Heat Mass Transf.
, vol.55
, pp. 556-564
-
-
Veeraragavan, A.1
Lenert, A.2
Yilbas, B.3
Al-Dini, S.4
Wang, E.N.5
-
20
-
-
0036643505
-
Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux
-
[20] Hu, X., Zhang, Y., Novel insight and numerical analysis of convective heat transfer enhancement with microencapsulated phase change material slurries: laminar flow in a circular tube with constant heat flux. Int. J. Heat Mass Transf. 45 (2002), 3163–3172.
-
(2002)
Int. J. Heat Mass Transf.
, vol.45
, pp. 3163-3172
-
-
Hu, X.1
Zhang, Y.2
-
21
-
-
0028395318
-
Laminar forced convection heat transfer in microcapsulated phase change material suspensions
-
[21] Goel, M., Roy, S., Sengupta, S., Laminar forced convection heat transfer in microcapsulated phase change material suspensions. Int. J. Heat Mass Transf. 37 (1994), 593–604.
-
(1994)
Int. J. Heat Mass Transf.
, vol.37
, pp. 593-604
-
-
Goel, M.1
Roy, S.2
Sengupta, S.3
-
22
-
-
84895924839
-
Thermal characteristics of a volumetric solar absorption system
-
[22] Siddiqui, O.K., Yilbas, B.S., Thermal characteristics of a volumetric solar absorption system. Int. J. Energy Res. 38 (2014), 581–591.
-
(2014)
Int. J. Energy Res.
, vol.38
, pp. 581-591
-
-
Siddiqui, O.K.1
Yilbas, B.S.2
-
23
-
-
84930199694
-
Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage
-
[23] Chen, Z., Wang, J., Yu, F., Zhang, Z., Gao, X., Preparation and properties of graphene oxide-modified poly (melamine-formaldehyde) microcapsules containing phase change material n-dodecanol for thermal energy storage. J. Mater. Chem. A 3 (2015), 11624–11630.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 11624-11630
-
-
Chen, Z.1
Wang, J.2
Yu, F.3
Zhang, Z.4
Gao, X.5
-
24
-
-
84896486495
-
Encapsulated phase change materials stabilized by modified graphene oxide
-
[24] Zhang, Y., Zheng, X., Wang, H., Du, Q., Encapsulated phase change materials stabilized by modified graphene oxide. J. Mater. Chem. A 2 (2014), 5304–5314.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 5304-5314
-
-
Zhang, Y.1
Zheng, X.2
Wang, H.3
Du, Q.4
-
25
-
-
0014829099
-
Raman spectrum of graphite
-
[27] Tuinstra, F., Koenig, J.L., Raman spectrum of graphite. J. Chem. Phys. 53 (1970), 1126–1130.
-
(1970)
J. Chem. Phys.
, vol.53
, pp. 1126-1130
-
-
Tuinstra, F.1
Koenig, J.L.2
-
26
-
-
74449090480
-
Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance
-
[28] Zhang, H., Wang, X., Wu, D., Silica encapsulation of n-octadecane via sol–gel process: a novel microencapsulated phase-change material with enhanced thermal conductivity and performance. J. Colloid Interface Sci. 343 (2010), 246–255.
-
(2010)
J. Colloid Interface Sci.
, vol.343
, pp. 246-255
-
-
Zhang, H.1
Wang, X.2
Wu, D.3
-
27
-
-
36149020165
-
Optical properties of graphite
-
[29] Taft, E., Philipp, H., Optical properties of graphite. Phys. Rev., 138, 1965, A197.
-
(1965)
Phys. Rev.
, vol.138
, pp. A197
-
-
Taft, E.1
Philipp, H.2
|