메뉴 건너뛰기




Volumn , Issue , 2013, Pages 467-471

Deep neural network approach for the dialog state tracking challenge

Author keywords

[No Author keywords available]

Indexed keywords

DEEP NEURAL NETWORKS; DIALOG SYSTEMS; MODEL PARAMETERS; SPEECH RESEARCH; STATE TRACKING; TRACKING APPROACHES; TRACKING TECHNIQUES; TRAINING DATA;

EID: 84987895197     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: None     Document Type: Conference Paper
Times cited : (150)

References (12)
  • 3
    • 33847215211 scopus 로고
    • Stochastic gradient learning in neural networks
    • Nîmes, France
    • Léon Bottou. 1991. Stochastic gradient learning in neural networks. In Proceedings of Neuro-Nîmes 91, Nîmes, France. EC2.
    • (1991) Proceedings of Neuro-Nîmes , vol.91 , pp. EC2
    • Bottou, L.1
  • 4
    • 33745805403 scopus 로고    scopus 로고
    • A fast learning algorithm for deep belief nets
    • Geoffrey Hinton, Simon Osindero, and Yee-Whye Teh. 2006. A Fast Learning Algorithm for Deep Belief Nets. Neural computation.
    • (2006) Neural Computation
    • Hinton, G.1    Osindero, S.2    Teh, Y.3
  • 8
    • 77950862681 scopus 로고    scopus 로고
    • Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems
    • Blaise Thomson and Steve Young. 2010. Bayesian update of dialogue state: A POMDP framework for spoken dialogue systems. Computer Speech & Language.
    • (2010) Computer Speech & Language
    • Thomson, B.1    Young, S.2
  • 11
    • 84872129735 scopus 로고    scopus 로고
    • Challenges and opportunities for state tracking in statistical spoken dialog systems: Results from two public deployments
    • Jason D. Williams. 2012b. Challenges and opportunities for state tracking in statistical spoken dialog systems: Results from two public deployments. J. Sel. Topics Signal Processing, 6(8):959-970.
    • (2012) J. Sel. Topics Signal Processing , vol.6 , Issue.8 , pp. 959-970
    • Williams, J.D.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.