-
1
-
-
84919496435
-
World Food Situation
-
Retrieved May 5, 2015 from
-
[1] Food and Agriculture Organization of the United Nations, World Food Situation. 2015 Retrieved May 5, 2015 from http://www.fao.org/worldfoodsituation/csdb/en/.
-
(2015)
-
-
Food and Agriculture Organization of the United Nations1
-
2
-
-
84987894173
-
Bioproducts: Diversifying Farmers Income. How a Bioproduct Industry Will Affect the EU27 Agriculture Sector
-
Retrieved July 6, 2015 from
-
[2] Bloomberg New Energy Finance, Bioproducts: Diversifying Farmers Income. How a Bioproduct Industry Will Affect the EU27 Agriculture Sector. 2011 Retrieved July 6, 2015 from http://www.novozymes.com/en/sustainability/benefits-for-the-world/biobased-economy/white-papers-on-biofuels/Documents/2011%20-%20bnef%20-%20diversifying%20famers%20income%20%20-%20slides.pdf.
-
(2011)
-
-
Bloomberg New Energy Finance1
-
3
-
-
1642527943
-
Global potential bioethanol production from wasted crops and crop residues
-
[3] Kim, S., Dale, B., Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 26 (2004), 361–375.
-
(2004)
Biomass Bioenergy
, vol.26
, pp. 361-375
-
-
Kim, S.1
Dale, B.2
-
4
-
-
49649093960
-
Lignin in straw of herbaceous crops
-
[4] Buranov, A.U., Mazza, G., Lignin in straw of herbaceous crops. Ind. Crops Prod. 28 (2008), 237–259.
-
(2008)
Ind. Crops Prod.
, vol.28
, pp. 237-259
-
-
Buranov, A.U.1
Mazza, G.2
-
5
-
-
84955185848
-
Lignocellulosic ethanol: technology design and its impact on process efficiency
-
[5] Paulová, L., Patáková, P., Branská, B., Rychtera, M., Melzoch, K., Lignocellulosic ethanol: technology design and its impact on process efficiency. Biotechnol. Adv. 33:6 (2015), 1091–1107.
-
(2015)
Biotechnol. Adv.
, vol.33
, Issue.6
, pp. 1091-1107
-
-
Paulová, L.1
Patáková, P.2
Branská, B.3
Rychtera, M.4
Melzoch, K.5
-
6
-
-
84955179415
-
Production of 2nd generation of liquid biofuels
-
Z. Fang InTech
-
[6] Paulová, L., Patáková, P., Rychtera, M., Melzoch, K., Production of 2nd generation of liquid biofuels. Fang, Z., (eds.) Liquid, Gaseous and Solid Biofuels – Conversion Techniques, 2013, InTech, 47–78.
-
(2013)
Liquid, Gaseous and Solid Biofuels – Conversion Techniques
, pp. 47-78
-
-
Paulová, L.1
Patáková, P.2
Rychtera, M.3
Melzoch, K.4
-
7
-
-
84988879994
-
Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium
-
[7] Zeng, J., Singh, D., Gao, D., Chen, S., Effects of lignin modification on wheat straw cell wall deconstruction by Phanerochaete chrysosporium. Biotechnol. Biofuels, 7(1), 2014, 161.
-
(2014)
Biotechnol. Biofuels
, vol.7
, Issue.1
, pp. 161
-
-
Zeng, J.1
Singh, D.2
Gao, D.3
Chen, S.4
-
8
-
-
84859902277
-
The use of high-solids loadings in biomass pretreatment – a review
-
[8] Modenbach, A.A., Nokes, S.E., The use of high-solids loadings in biomass pretreatment – a review. Biotechnol. Bioenergy 109 (2012), 1430–1442.
-
(2012)
Biotechnol. Bioenergy
, vol.109
, pp. 1430-1442
-
-
Modenbach, A.A.1
Nokes, S.E.2
-
9
-
-
84886654049
-
Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations
-
article ID 719607
-
[9] Bensah, E.C., Mensah, M., Chemical pretreatment methods for the production of cellulosic ethanol: technologies and innovations. Int. J. Chem. Eng., 2013, 21 article ID 719607.
-
(2013)
Int. J. Chem. Eng.
, pp. 21
-
-
Bensah, E.C.1
Mensah, M.2
-
10
-
-
84872814927
-
Bioconversion of lignocellulose: inhibitors and detoxification
-
[10] Jönsson, L.J., Alriksson, B., Nilvebrant, N.-O., Bioconversion of lignocellulose: inhibitors and detoxification. Biotechnol. Biofuels 6:16 (2013), 1–6.
-
(2013)
Biotechnol. Biofuels
, vol.6
, Issue.16
, pp. 1-6
-
-
Jönsson, L.J.1
Alriksson, B.2
Nilvebrant, N.-O.3
-
11
-
-
69149100202
-
Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods
-
[11] Wang, G.S., Pan, X.J., Zhu, J.Y., Gleisner, R., Rockwood, D., Sulfite pretreatment to overcome recalcitrance of lignocellulose (SPORL) for robust enzymatic saccharification of hardwoods. Biotechnol. Prog. 25 (2009), 1086–1093.
-
(2009)
Biotechnol. Prog.
, vol.25
, pp. 1086-1093
-
-
Wang, G.S.1
Pan, X.J.2
Zhu, J.Y.3
Gleisner, R.4
Rockwood, D.5
-
12
-
-
58549107993
-
Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine
-
[12] Zhu, J.Y., Pan, X.J., Wang, G.S., Gleisner, R., Sulfite pretreatment (SPORL) for robust enzymatic saccharification of spruce and red pine. Bioresour. Technol. 100 (2009), 2411–2418.
-
(2009)
Bioresour. Technol.
, vol.100
, pp. 2411-2418
-
-
Zhu, J.Y.1
Pan, X.J.2
Wang, G.S.3
Gleisner, R.4
-
13
-
-
84920934451
-
Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation
-
[13] Zhu, J.Y., Chandra, M.S., Gu, F., Gleisner, R., Reiner, R., Sessions, J., Marrs, G., Gabo, J., Anderson, D., Using sulfite chemistry for robust bioconversion of Douglas-fir forest residue to bioethanol at high titer and lignosulfonate: a pilot-scale evaluation. Bioresour. Technol. 179 (2015), 390–397.
-
(2015)
Bioresour. Technol.
, vol.179
, pp. 390-397
-
-
Zhu, J.Y.1
Chandra, M.S.2
Gu, F.3
Gleisner, R.4
Reiner, R.5
Sessions, J.6
Marrs, G.7
Gabo, J.8
Anderson, D.9
-
14
-
-
84878298601
-
pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses
-
[14] Lou, H., Zhu, J.Y., Lan, T.Q., Lai, H., Qiu, X., pH-Induced lignin surface modification to reduce nonspecific cellulase binding and enhance enzymatic saccharification of lignocelluloses. ChemSusChem 6 (2013), 919–927.
-
(2013)
ChemSusChem
, vol.6
, pp. 919-927
-
-
Lou, H.1
Zhu, J.Y.2
Lan, T.Q.3
Lai, H.4
Qiu, X.5
-
15
-
-
74649083421
-
Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production
-
[15] Shuai, L., Yang, Q., Zhu, J.Y., Lu, F.C., Weimer, P.J., Ralph, J., et al. Comparative study of SPORL and dilute-acid pretreatments of spruce for cellulosic ethanol production. Bioresour. Technol. 101:9 (2010), 3106–3114.
-
(2010)
Bioresour. Technol.
, vol.101
, Issue.9
, pp. 3106-3114
-
-
Shuai, L.1
Yang, Q.2
Zhu, J.Y.3
Lu, F.C.4
Weimer, P.J.5
Ralph, J.6
-
16
-
-
84857056043
-
Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments
-
[16] Wang, Z.J., Zhu, J.Y., Zalesny, R.S., Chen, K.F., Ethanol production from poplar wood through enzymatic saccharification and fermentation by dilute acid and SPORL pretreatments. Fuel 95 (2012), 606–614.
-
(2012)
Fuel
, vol.95
, pp. 606-614
-
-
Wang, Z.J.1
Zhu, J.Y.2
Zalesny, R.S.3
Chen, K.F.4
-
17
-
-
78650841518
-
Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production
-
[17] Cheng, K.K., Wang, W., Zhang, J.A., Zhao, Q., Li, J.P., Xue, J.W., Statistical optimization of sulfite pretreatment of corncob residues for high concentration ethanol production. Bioresour. Technol. 102:3 (2011), 3014–3019.
-
(2011)
Bioresour. Technol.
, vol.102
, Issue.3
, pp. 3014-3019
-
-
Cheng, K.K.1
Wang, W.2
Zhang, J.A.3
Zhao, Q.4
Li, J.P.5
Xue, J.W.6
-
18
-
-
79953751817
-
Optimizing sulfite pretreatment for saccharification of wheat straw using orthogonal design
-
[18] Yang, J., Wang, G., Qi, L., Xu, J., Optimizing sulfite pretreatment for saccharification of wheat straw using orthogonal design. BioResources 6 (2011), 1414–1427.
-
(2011)
BioResources
, vol.6
, pp. 1414-1427
-
-
Yang, J.1
Wang, G.2
Qi, L.3
Xu, J.4
-
19
-
-
84987866222
-
-
Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory. Retrieved March 25, 2015 from.
-
[19] Sluiter A, Hames B, Ruiz R, Scarlata C, Sluiter J, Templeton D, Crocker D. Determination of Structural Carbohydrates and Lignin in Biomass. National Renewable Energy Laboratory. Retrieved March 25, 2015 from http://www.nrel.gov/docs/gen/fy13/42618.pdf.
-
-
-
Sluiter, A.1
Hames, B.2
Ruiz, R.3
Scarlata, C.4
Sluiter, J.5
Templeton, D.6
Crocker, D.7
-
20
-
-
0034233432
-
-
Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16:637–641. doi:10.1021/bp0000508.
-
[20] Martinez A, Rodriguez ME, York SW, Preston JF, Ingram LO. Use of UV absorbance to monitor furans in dilute acid hydrolysates of biomass. Biotechnol. Prog. 16:637–641. doi:10.1021/bp0000508.
-
-
-
Martinez, A.1
Rodriguez, M.E.2
York, S.W.3
Preston, J.F.4
Ingram, L.O.5
-
21
-
-
74849131121
-
Optimization of the dilute maleic acid pretreatment of wheat straw
-
[21] Koostra, A.M.J., Beeftink, J.H., Scott, E.L., Sanders, J.P.M., Optimization of the dilute maleic acid pretreatment of wheat straw. Biotechnol. Biofuels, 2, 2009, 31.
-
(2009)
Biotechnol. Biofuels
, vol.2
, pp. 31
-
-
Koostra, A.M.J.1
Beeftink, J.H.2
Scott, E.L.3
Sanders, J.P.M.4
-
22
-
-
84908681939
-
Comparison of dilute acid and sulfite pretreatments on Acacia confusa for biofuel application and the influence of its extractives
-
[22] Yeh, T.F., Chang, M.J., Chang, W.J., Comparison of dilute acid and sulfite pretreatments on Acacia confusa for biofuel application and the influence of its extractives. J. Agric. Food Chem. 62:44 (2014), 10768–10775.
-
(2014)
J. Agric. Food Chem.
, vol.62
, Issue.44
, pp. 10768-10775
-
-
Yeh, T.F.1
Chang, M.J.2
Chang, W.J.3
-
23
-
-
84900653698
-
Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir
-
[23] Zhang, C., Houtman, C.J., Zhu, J.Y., Using low temperature to balance enzymatic saccharification and furan formation during SPORL pretreatment of Douglas-fir. Process Biochem. 49 (2014), 466–473.
-
(2014)
Process Biochem.
, vol.49
, pp. 466-473
-
-
Zhang, C.1
Houtman, C.J.2
Zhu, J.Y.3
-
24
-
-
79955814435
-
Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw
-
[24] Pedersen, M., Johansen, K.S., Meyer, A.S., Low temperature lignocellulose pretreatment: effects and interactions of pretreatment pH are critical for maximizing enzymatic monosaccharide yields from wheat straw. Biotechnol. Biofuels, 4, 2011, 11.
-
(2011)
Biotechnol. Biofuels
, vol.4
, pp. 11
-
-
Pedersen, M.1
Johansen, K.S.2
Meyer, A.S.3
-
25
-
-
77954819668
-
Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment
-
[25] Pedersen, M., Viksø-Nielsen, A., Meyer, A.S., Monosaccharide yields and lignin removal from wheat straw in response to catalyst type and pH during mild thermal pretreatment. Process Biochem. 45 (2010), 1181–1186.
-
(2010)
Process Biochem.
, vol.45
, pp. 1181-1186
-
-
Pedersen, M.1
Viksø-Nielsen, A.2
Meyer, A.S.3
-
26
-
-
78649515474
-
Lignocellulose pretreatment severity - relating pH to biomatrix opening
-
[26] Pedersen, M., Meyer, A.S., Lignocellulose pretreatment severity - relating pH to biomatrix opening. New Biotechnol. 27:6 (2010), 739–750.
-
(2010)
New Biotechnol.
, vol.27
, Issue.6
, pp. 739-750
-
-
Pedersen, M.1
Meyer, A.S.2
-
27
-
-
84870814565
-
Bioresource Technology Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification
-
[27] Zhang, D.S., Yang, Q., Zhu, J.Y., Pan, X.J., Bioresource Technology Sulfite (SPORL) pretreatment of switchgrass for enzymatic saccharification. Bioresour. Technol. 129 (2013), 127–134.
-
(2013)
Bioresour. Technol.
, vol.129
, pp. 127-134
-
-
Zhang, D.S.1
Yang, Q.2
Zhu, J.Y.3
Pan, X.J.4
-
28
-
-
81555208661
-
Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass
-
[28] Tao, L., Aden, A., Elander, R.T., Pallapolu, V.R., Lee, Y.Y., Garlock, R.J., et al. Process and technoeconomic analysis of leading pretreatment technologies for lignocellulosic ethanol production using switchgrass. Bioresour. Technol. 102 (2011), 11105–11114.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 11105-11114
-
-
Tao, L.1
Aden, A.2
Elander, R.T.3
Pallapolu, V.R.4
Lee, Y.Y.5
Garlock, R.J.6
-
29
-
-
84872786974
-
Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments
-
[29] Pu, Y., Hu, F., Huang, F., Davison, B.H., Ragauskas, A.J., Assessing the molecular structure basis for biomass recalcitrance during dilute acid and hydrothermal pretreatments. Biotechnol. Biofuels, 6, 2013, 15.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 15
-
-
Pu, Y.1
Hu, F.2
Huang, F.3
Davison, B.H.4
Ragauskas, A.J.5
-
30
-
-
84887345585
-
Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification
-
[30] Li, Z., Jiang, Z., Fei, B., Cai, Z., Pan, X., Comparison of bamboo green, timber and yellow in sulfite, sulfuric acid and sodium hydroxide pretreatments for enzymatic saccharification. Bioresour. Technol. 151 (2014), 91–99.
-
(2014)
Bioresour. Technol.
, vol.151
, pp. 91-99
-
-
Li, Z.1
Jiang, Z.2
Fei, B.3
Cai, Z.4
Pan, X.5
-
31
-
-
84878306139
-
Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses
-
[31] Wang, Z.J., Lan, T.Q., Zhu, J.Y., Lignosulfonate and elevated pH can enhance enzymatic saccharification of lignocelluloses. Biotechnol. Biofuels, 6, 2013, 9.
-
(2013)
Biotechnol. Biofuels
, vol.6
, pp. 9
-
-
Wang, Z.J.1
Lan, T.Q.2
Zhu, J.Y.3
|