메뉴 건너뛰기




Volumn 96, Issue , 2017, Pages 1-13

Microbial bioelectrosynthesis of hydrogen: Current challenges and scale-up

Author keywords

Bioelectroreactors; Bioelectrosynthesis; Biofilms; Hydrogen; Microbial electrolysis cells

Indexed keywords

BIOFILMS; ELECTROLYSIS; ELECTROLYTIC CELLS; FOSSIL FUELS; FUELS; HYDROGEN; HYDROGEN PRODUCTION; REGENERATIVE FUEL CELLS; STEAM REFORMING;

EID: 84987858590     PISSN: 01410229     EISSN: 18790909     Source Type: Journal    
DOI: 10.1016/j.enzmictec.2016.09.002     Document Type: Review
Times cited : (49)

References (119)
  • 1
    • 84885369315 scopus 로고    scopus 로고
    • Natural gas from shale formation—the evolution, evidences and challenges of shale gas revolution in United States
    • [1] Wang, Q., Chen, X., Jha, A.N., Rogers, H., Natural gas from shale formation—the evolution, evidences and challenges of shale gas revolution in United States. Renewable Sustainable Energy Rev. 30 (2014), 1–18.
    • (2014) Renewable Sustainable Energy Rev. , vol.30 , pp. 1-18
    • Wang, Q.1    Chen, X.2    Jha, A.N.3    Rogers, H.4
  • 2
    • 78650817486 scopus 로고    scopus 로고
    • An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects
    • [2] Pant, D., Singh, A., Van Bogaert, G., Gallego, Y.A., Diels, L., Vanbroekhoven, K., An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renewable Sustainable Energy Rev. 15 (2011), 1305–1313.
    • (2011) Renewable Sustainable Energy Rev. , vol.15 , pp. 1305-1313
    • Pant, D.1    Singh, A.2    Van Bogaert, G.3    Gallego, Y.A.4    Diels, L.5    Vanbroekhoven, K.6
  • 3
    • 77951806527 scopus 로고    scopus 로고
    • Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
    • [3] Foley, J., Rozendal, R., Hertle, C., Lant, P., Rabaey, K., Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44 (2010), 3629–3637.
    • (2010) Environ. Sci. Technol. , vol.44 , pp. 3629-3637
    • Foley, J.1    Rozendal, R.2    Hertle, C.3    Lant, P.4    Rabaey, K.5
  • 4
    • 84655167594 scopus 로고    scopus 로고
    • Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping
    • [4] Lu, C., Zhao, J., Yang, S.-T., Wei, D., Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour. Technol. 104 (2011), 380–387.
    • (2011) Bioresour. Technol. , vol.104 , pp. 380-387
    • Lu, C.1    Zhao, J.2    Yang, S.-T.3    Wei, D.4
  • 5
    • 84937146205 scopus 로고    scopus 로고
    • Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review
    • [5] Barca, C., Soric, A., Ranava, D., Giudici-Orticoni, M.-T., Ferrasse, J.-H., Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review. Bioresour. Technol. 185 (2015), 386–398.
    • (2015) Bioresour. Technol. , vol.185 , pp. 386-398
    • Barca, C.1    Soric, A.2    Ranava, D.3    Giudici-Orticoni, M.-T.4    Ferrasse, J.-H.5
  • 6
    • 84930177424 scopus 로고    scopus 로고
    • Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment
    • [6] ElMekawy, A., Srikanth, S., Bajracharya, S., Hegabd, H.M., Nigam, P.S., Singh, A., Mohanh, S., Pant, D., Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res. Int. 73 (2015), 213–225.
    • (2015) Food Res. Int. , vol.73 , pp. 213-225
    • ElMekawy, A.1    Srikanth, S.2    Bajracharya, S.3    Hegabd, H.M.4    Nigam, P.S.5    Singh, A.6    Mohanh, S.7    Pant, D.8
  • 7
    • 84938943565 scopus 로고    scopus 로고
    • Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater
    • [7] Zheng, G., Liao, W., Zhang, F., He, Z., Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J. Power Sources 300 (2015), 260–264.
    • (2015) J. Power Sources , vol.300 , pp. 260-264
    • Zheng, G.1    Liao, W.2    Zhang, F.3    He, Z.4
  • 8
    • 84945494489 scopus 로고    scopus 로고
    • 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode
    • [8] Dong, Y., Qu, Y., He, W., Du, Y., Liu, J., Han, X., Feng, Y.A., 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour. Technol. 195 (2016), 66–72.
    • (2016) Bioresour. Technol. , vol.195 , pp. 66-72
    • Dong, Y.1    Qu, Y.2    He, W.3    Du, Y.4    Liu, J.5    Han, X.6    Feng, Y.A.7
  • 9
    • 84998663114 scopus 로고    scopus 로고
    • Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging
    • (in press)
    • [9] Walter, X.A., Stinchcombe, A., Greenman, J., Ieropoulos, I., Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl. Energy, 2016 (in press).
    • (2016) Appl. Energy
    • Walter, X.A.1    Stinchcombe, A.2    Greenman, J.3    Ieropoulos, I.4
  • 10
    • 84873663680 scopus 로고    scopus 로고
    • Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring
    • [10] Donovan, C., Dewan, A., Heo, D., Lewandowski, Z., Beyenal, H., Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J. Power Sources 233 (2013), 79–85.
    • (2013) J. Power Sources , vol.233 , pp. 79-85
    • Donovan, C.1    Dewan, A.2    Heo, D.3    Lewandowski, Z.4    Beyenal, H.5
  • 11
    • 34447285505 scopus 로고    scopus 로고
    • A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
    • [11] Du, Z., Li, H., Gu, T., A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25 (2007), 464–482.
    • (2007) Biotechnol. Adv. , vol.25 , pp. 464-482
    • Du, Z.1    Li, H.2    Gu, T.3
  • 12
    • 84925012687 scopus 로고    scopus 로고
    • Practical energy harvesting for microbial fuel cells: a review
    • [12] Wang, H., Park, J.-D., Ren, Z., Practical energy harvesting for microbial fuel cells: a review. Environ. Sci. Technol. 49 (2015), 3267–3277.
    • (2015) Environ. Sci. Technol. , vol.49 , pp. 3267-3277
    • Wang, H.1    Park, J.-D.2    Ren, Z.3
  • 13
    • 26944447071 scopus 로고    scopus 로고
    • Current status of hydrogen production techniques by steam reforming of ethanol: a review
    • [13] Haryanto, A., Fernando, S., Murali, N., Adhikari, S., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19 (2005), 2098–2106.
    • (2005) Energy Fuels , vol.19 , pp. 2098-2106
    • Haryanto, A.1    Fernando, S.2    Murali, N.3    Adhikari, S.4
  • 14
    • 84858744134 scopus 로고    scopus 로고
    • Hydrogen as an energy carrier: prospects and challenges
    • [14] Mazloomi, K., Gomes, C., Hydrogen as an energy carrier: prospects and challenges. Renewable Sustainable Energy Rev. 16 (2012), 3024–3033.
    • (2012) Renewable Sustainable Energy Rev. , vol.16 , pp. 3024-3033
    • Mazloomi, K.1    Gomes, C.2
  • 15
    • 84924238864 scopus 로고    scopus 로고
    • A review of the existing and alternative methods for greener nitrogen fixation
    • [15] Cherkasov, N., Ibhadon, A., Fitzpatrick, P., A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 90 (2015), 24–33.
    • (2015) Chem. Eng. Process. , vol.90 , pp. 24-33
    • Cherkasov, N.1    Ibhadon, A.2    Fitzpatrick, P.3
  • 17
    • 84943662834 scopus 로고    scopus 로고
    • Explaining the price of oil 1971–2014: the need to use reliable data on oil discovery and to account for ‘mid-point’ peak
    • [17] Bentley, R., Bentley, Y., Explaining the price of oil 1971–2014: the need to use reliable data on oil discovery and to account for ‘mid-point’ peak. Energy Policy 86 (2015), 880–890.
    • (2015) Energy Policy , vol.86 , pp. 880-890
    • Bentley, R.1    Bentley, Y.2
  • 18
    • 84861960360 scopus 로고    scopus 로고
    • When will oil, natural gas, and coal peak?
    • [18] Maggio, Cacciola, When will oil, natural gas, and coal peak?. Fuel 98 (2012), 111–123.
    • (2012) Fuel , vol.98 , pp. 111-123
    • Maggio1    Cacciola2
  • 19
    • 36649038796 scopus 로고    scopus 로고
    • Comparison of environmental and economic aspects of various hydrogen production methods
    • [19] Kothari, R., Buddhi, D., Sawhney, R., Comparison of environmental and economic aspects of various hydrogen production methods. Renewable Sustainable Energy Rev. 12 (2008), 553–563.
    • (2008) Renewable Sustainable Energy Rev. , vol.12 , pp. 553-563
    • Kothari, R.1    Buddhi, D.2    Sawhney, R.3
  • 21
    • 84923862249 scopus 로고    scopus 로고
    • Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
    • [21] Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.T., Zhong, J., Kang, Z., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347 (2015), 970–974.
    • (2015) Science , vol.347 , pp. 970-974
    • Liu, J.1    Liu, Y.2    Liu, N.3    Han, Y.4    Zhang, X.5    Huang, H.6    Lifshitz, Y.7    Lee, S.T.8    Zhong, J.9    Kang, Z.10
  • 22
    • 78649893093 scopus 로고    scopus 로고
    • Wind/hydrogen hybrid systems: opportunity for Ireland's wind resource to provide consistent sustainable energy supply
    • [22] Carton, J., Olabi, A., Wind/hydrogen hybrid systems: opportunity for Ireland's wind resource to provide consistent sustainable energy supply. Energy 35 (2010), 4536–4544.
    • (2010) Energy , vol.35 , pp. 4536-4544
    • Carton, J.1    Olabi, A.2
  • 23
    • 0344896607 scopus 로고    scopus 로고
    • Levin Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185.
    • [23] Levin Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185 (2004).
    • (2004)
  • 24
    • 79957995821 scopus 로고    scopus 로고
    • Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production
    • [24] RenNanqi, R., GuoWanqian, G., LiuBingfeng, L., CaoGuangli, C., DingJie, D., Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr. Opin. Biotechnol. 22 (2011), 365–370.
    • (2011) Curr. Opin. Biotechnol. , vol.22 , pp. 365-370
    • RenNanqi, R.1    GuoWanqian, G.2    LiuBingfeng, L.3    CaoGuangli, C.4    DingJie, D.5
  • 25
    • 64449086664 scopus 로고    scopus 로고
    • Biohydrogen production from biomass and industrial wastes by dark fermentation
    • [25] Chong, M.-L., Sabaratnam, V., Shirai, Y., Hassan, M., Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy 34 (2009), 3277–3287.
    • (2009) Int. J. Hydrogen Energy , vol.34 , pp. 3277-3287
    • Chong, M.-L.1    Sabaratnam, V.2    Shirai, Y.3    Hassan, M.4
  • 26
    • 84955131510 scopus 로고    scopus 로고
    • Biohydrogen production from lignocellulosic biomass: technology and sustainability
    • [26] Singh, A., Sevda, S., Abu Reesh, I.M., Vanbroekhoven, K., Rathore, D., Pant, D., Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies 8 (2015), 13062–13080.
    • (2015) Energies , vol.8 , pp. 13062-13080
    • Singh, A.1    Sevda, S.2    Abu Reesh, I.M.3    Vanbroekhoven, K.4    Rathore, D.5    Pant, D.6
  • 27
    • 30944443553 scopus 로고    scopus 로고
    • Bio-hydrogen production from waste materials
    • [27] Kapdan, I., Kargi, F., Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38 (2006), 569–582.
    • (2006) Enzyme Microb. Technol. , vol.38 , pp. 569-582
    • Kapdan, I.1    Kargi, F.2
  • 28
    • 84987927520 scopus 로고    scopus 로고
    • Overview of biohydrogen production technologies and application in fuel cell
    • [28] Rahman, S.N.A., Masdar, M.S., Rosli, M.I., Majlan, E.H., Husalani, T., Overview of biohydrogen production technologies and application in fuel cell. Am. J. Chem. 5 (2015), 12–23.
    • (2015) Am. J. Chem. , vol.5 , pp. 12-23
    • Rahman, S.N.A.1    Masdar, M.S.2    Rosli, M.I.3    Majlan, E.H.4    Husalani, T.5
  • 29
    • 77957147094 scopus 로고    scopus 로고
    • Microbial electrosynthesis—revisiting the electrical route for microbial production
    • [29] Rabaey, K., Rozendal, R., Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
    • (2010) Nat. Rev. Microbiol. , vol.8 , pp. 706-716
    • Rabaey, K.1    Rozendal, R.2
  • 32
    • 84865740492 scopus 로고    scopus 로고
    • Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture
    • [32] Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Talebnia, F., Premier, G.C., Bakeri, G., Kim, J.R., Oh, S.E., Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 50 (2012), 575–580.
    • (2012) J. Microbiol. , vol.50 , pp. 575-580
    • Rahimnejad, M.1    Najafpour, G.D.2    Ghoreyshi, A.A.3    Talebnia, F.4    Premier, G.C.5    Bakeri, G.6    Kim, J.R.7    Oh, S.E.8
  • 33
    • 34247098528 scopus 로고    scopus 로고
    • Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE
    • [33] Aulenta, F., Catervi, A., Majone, M., Panero, S., Reale, P., Rossetti, S., Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 41 (2007), 2554–2559.
    • (2007) Environ. Sci. Technol. , vol.41 , pp. 2554-2559
    • Aulenta, F.1    Catervi, A.2    Majone, M.3    Panero, S.4    Reale, P.5    Rossetti, S.6
  • 34
    • 0008049769 scopus 로고    scopus 로고
    • Electricity generation in microbial fuel cells using neutral red as an electronophore
    • [34] Park, D., Zeikus, J., Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66 (2000), 1292–1297.
    • (2000) Appl. Environ. Microbiol. , vol.66 , pp. 1292-1297
    • Park, D.1    Zeikus, J.2
  • 35
    • 70549089986 scopus 로고    scopus 로고
    • Electron transfer pathways in microbial oxygen biocathodes
    • [35] Freguia, S., Tsujimura, S., Kano, K., Electron transfer pathways in microbial oxygen biocathodes. Electrochim. Acta 55 (2010), 813–818.
    • (2010) Electrochim. Acta , vol.55 , pp. 813-818
    • Freguia, S.1    Tsujimura, S.2    Kano, K.3
  • 36
    • 84940794448 scopus 로고    scopus 로고
    • Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells
    • [36] Epifanio, M., Inguva, S., Kitching, M., Mosnier, J.-P., Marsili, E., Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry 106 (2015), 186–193.
    • (2015) Bioelectrochemistry , vol.106 , pp. 186-193
    • Epifanio, M.1    Inguva, S.2    Kitching, M.3    Mosnier, J.-P.4    Marsili, E.5
  • 37
    • 41749102419 scopus 로고    scopus 로고
    • Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells
    • [37] Qiao, Y., Li, C., Bao, S.-J., Lu, Z., Hong, Y., Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 0 (2008), 1290–1292.
    • (2008) Chem. Commun. , pp. 1290-1292
    • Qiao, Y.1    Li, C.2    Bao, S.-J.3    Lu, Z.4    Hong, Y.5
  • 38
    • 84896043502 scopus 로고    scopus 로고
    • Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges
    • [38] Zhang, Y., Angelidaki, I., Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 56 (2014), 11–25.
    • (2014) Water Res. , vol.56 , pp. 11-25
    • Zhang, Y.1    Angelidaki, I.2
  • 39
    • 67649237063 scopus 로고    scopus 로고
    • Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells
    • [39] Huang, L., Cheng, S., Rezaei, F., Logan, B., Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ. Technol. 30 (2009), 499–504.
    • (2009) Environ. Technol. , vol.30 , pp. 499-504
    • Huang, L.1    Cheng, S.2    Rezaei, F.3    Logan, B.4
  • 40
    • 77950913737 scopus 로고    scopus 로고
    • Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell
    • [40] Wen, Q., Wu, Y., Zhao, L., Sun, Q., Kong, F., Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J. Zhejiang Univ. Sci. B 11 (2010), 87–93.
    • (2010) J. Zhejiang Univ. Sci. B , vol.11 , pp. 87-93
    • Wen, Q.1    Wu, Y.2    Zhao, L.3    Sun, Q.4    Kong, F.5
  • 41
    • 84991747205 scopus 로고    scopus 로고
    • Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells—a mini review
    • [41] Song, H.-L., Zhu, Y., Li, J., Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells—a mini review. Arabian J. Chem., 2015, 10.1016/j.arabjc.2015.01.008.
    • (2015) Arabian J. Chem.
    • Song, H.-L.1    Zhu, Y.2    Li, J.3
  • 42
    • 84930088795 scopus 로고    scopus 로고
    • A logical data representation framework for electricity-driven bioproduction processes
    • [42] Patil, S., Gildemyn, S., Pant, D., Zengler, K., Logane, B.E., Rabaey, Y., A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 33 (2015), 736–744.
    • (2015) Biotechnol. Adv. , vol.33 , pp. 736-744
    • Patil, S.1    Gildemyn, S.2    Pant, D.3    Zengler, K.4    Logane, B.E.5    Rabaey, Y.6
  • 43
    • 34948887836 scopus 로고    scopus 로고
    • Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine
    • [43] Sakai, S., Yagishita, T., Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol. Bioeng. 98 (2007), 340–348.
    • (2007) Biotechnol. Bioeng. , vol.98 , pp. 340-348
    • Sakai, S.1    Yagishita, T.2
  • 44
    • 47049085042 scopus 로고    scopus 로고
    • Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
    • [44] Call, D., Logan, B.E., Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42:9 (2008), 3401–3406.
    • (2008) Environ. Sci. Technol. , vol.42 , Issue.9 , pp. 3401-3406
    • Call, D.1    Logan, B.E.2
  • 45
    • 84880507009 scopus 로고    scopus 로고
    • The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea
    • [45] Sasaki, K., Morita, M., Sasaki, D., Ohmura, N., Igarashi, Y., The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea. Appl. Microbiol. Biotechnol. 97 (2012), 7005–7013.
    • (2012) Appl. Microbiol. Biotechnol. , vol.97 , pp. 7005-7013
    • Sasaki, K.1    Morita, M.2    Sasaki, D.3    Ohmura, N.4    Igarashi, Y.5
  • 46
    • 84862770582 scopus 로고    scopus 로고
    • Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system
    • [46] Sasaki, K., Morita, M., Matsumoto, N., Sasaki, D., Hirano, S., Ohmura, N., Igarashi, Y., Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system. J. Biosci. Bioeng. 114 (2012), 64–69.
    • (2012) J. Biosci. Bioeng. , vol.114 , pp. 64-69
    • Sasaki, K.1    Morita, M.2    Matsumoto, N.3    Sasaki, D.4    Hirano, S.5    Ohmura, N.6    Igarashi, Y.7
  • 47
    • 84864567797 scopus 로고    scopus 로고
    • Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry
    • [47] Sasaki, K., Morita, M., Sasaki, D., Igarashi, Y., Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem. Eng. J. 68 (2012), 104–108.
    • (2012) Biochem. Eng. J. , vol.68 , pp. 104-108
    • Sasaki, K.1    Morita, M.2    Sasaki, D.3    Igarashi, Y.4
  • 49
    • 65049084632 scopus 로고    scopus 로고
    • The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells
    • [49] Selembo, P., Merrill, M., Logan, B., The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources 190 (2009), 271–278.
    • (2009) J. Power Sources , vol.190 , pp. 271-278
    • Selembo, P.1    Merrill, M.2    Logan, B.3
  • 51
    • 78650848365 scopus 로고    scopus 로고
    • Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents
    • [51] Villano, M., Bonis, L., Rossetti, S., Aulenta, F., Majone, M., Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour. Technol. 102 (2011), 3193–3199.
    • (2011) Bioresour. Technol. , vol.102 , pp. 3193-3199
    • Villano, M.1    Bonis, L.2    Rossetti, S.3    Aulenta, F.4    Majone, M.5
  • 52
    • 43949144944 scopus 로고    scopus 로고
    • Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
    • [52] Picioreanu, C., Loosdrecht, M., Katuri, K., Scott, K., Head, I., Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci. Technol., 57, 2008, 965.
    • (2008) Water Sci. Technol. , vol.57 , pp. 965
    • Picioreanu, C.1    Loosdrecht, M.2    Katuri, K.3    Scott, K.4    Head, I.5
  • 53
    • 84911934385 scopus 로고    scopus 로고
    • A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria
    • [53] Fischer, K., Batstone, D., Loosdrecht, M., Picioreanu, C., A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria. Bioelectrochemistry, 102, 2015, 1020.
    • (2015) Bioelectrochemistry , vol.102 , pp. 1020
    • Fischer, K.1    Batstone, D.2    Loosdrecht, M.3    Picioreanu, C.4
  • 54
    • 58149260515 scopus 로고    scopus 로고
    • Petroleum refinery hydrogen production unit: exergy and production cost evaluation
    • [54] Cruz, F.E., Junior, S. de O., Petroleum refinery hydrogen production unit: exergy and production cost evaluation. Int. J. Thermodyn. 11 (2008), 187–193.
    • (2008) Int. J. Thermodyn. , vol.11 , pp. 187-193
    • Cruz, F.E.1    Junior, S.D.O.2
  • 56
    • 68149151014 scopus 로고    scopus 로고
    • Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes
    • [56] Tsaia, H.Y., Wub, C.C., Leec, C.Y., Shiha, E.P., Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 194:1 (2009), 199–205.
    • (2009) J. Power Sources , vol.194 , Issue.1 , pp. 199-205
    • Tsaia, H.Y.1    Wub, C.C.2    Leec, C.Y.3    Shiha, E.P.4
  • 57
    • 84870188327 scopus 로고    scopus 로고
    • Operational and technical considerations for microbial electrosynthesis
    • [57] Desloover, J., Arends, J.B., Hennebel, T., Rabaey, K., Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40 (2012), 1233–1238.
    • (2012) Biochem. Soc. Trans. , vol.40 , pp. 1233-1238
    • Desloover, J.1    Arends, J.B.2    Hennebel, T.3    Rabaey, K.4
  • 58
    • 84872600937 scopus 로고    scopus 로고
    • An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell
    • [58] Kundu, A., Sahu, J., Redzwan, G., Hashim, M., An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrogen Energy 38 (2013), 1745–1757.
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 1745-1757
    • Kundu, A.1    Sahu, J.2    Redzwan, G.3    Hashim, M.4
  • 59
    • 84921033053 scopus 로고    scopus 로고
    • Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations
    • [59] Escapa, A., San-Martín, M.I., Mateos, R., Morán, A., Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour. Technol. 180 (2015), 72–78.
    • (2015) Bioresour. Technol. , vol.180 , pp. 72-78
    • Escapa, A.1    San-Martín, M.I.2    Mateos, R.3    Morán, A.4
  • 60
    • 84904753488 scopus 로고    scopus 로고
    • A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
    • [60] Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.C., Kellera, J., Flexer, V., A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2 (2014), 13093–13102.
    • (2014) J. Mater. Chem. A , vol.2 , pp. 13093-13102
    • Jourdin, L.1    Freguia, S.2    Donose, B.C.3    Chen, J.4    Wallace, G.C.5    Kellera, J.6    Flexer, V.7
  • 61
    • 79951575887 scopus 로고    scopus 로고
    • A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell
    • [61] Huang, Y.-X., Liu, X.W., Sun, X.F., Sheng, G.P., Zhang, Y.Y., Yan, G.M., Wang, S.G., Xu, A.W., Yu, H.Q., A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int. J. Hydrogen Energy 36 (2011), 2773–2776.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 2773-2776
    • Huang, Y.-X.1    Liu, X.W.2    Sun, X.F.3    Sheng, G.P.4    Zhang, Y.Y.5    Yan, G.M.6    Wang, S.G.7    Xu, A.W.8    Yu, H.Q.9
  • 62
    • 84855930827 scopus 로고    scopus 로고
    • Acetate enhances startup of a H2-producing microbial biocathode
    • [62] Jeremiasse, A., Hamelers, H., Croese, E., Buisman, C., Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol. Bioeng. 109 (2012), 657–664.
    • (2012) Biotechnol. Bioeng. , vol.109 , pp. 657-664
    • Jeremiasse, A.1    Hamelers, H.2    Croese, E.3    Buisman, C.4
  • 64
    • 84908021230 scopus 로고    scopus 로고
    • Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
    • [64] LaBelle, E., Marshall, C., Gilbert, J., May, H., Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One, 9, 2014.
    • (2014) PLoS One , vol.9
    • LaBelle, E.1    Marshall, C.2    Gilbert, J.3    May, H.4
  • 65
    • 84954305774 scopus 로고    scopus 로고
    • Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
    • [65] Jourdin, L., Lu, Y., Flexer, V., Keller, J., Frequia, S., Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3 (2016), 581–591.
    • (2016) ChemElectroChem , vol.3 , pp. 581-591
    • Jourdin, L.1    Lu, Y.2    Flexer, V.3    Keller, J.4    Frequia, S.5
  • 66
    • 78651406351 scopus 로고    scopus 로고
    • Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens
    • [66] Geelhoed, J., Stams, A., Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environ. Sci. Technol. 45 (2011), 815–820.
    • (2011) Environ. Sci. Technol. , vol.45 , pp. 815-820
    • Geelhoed, J.1    Stams, A.2
  • 67
    • 84867847236 scopus 로고    scopus 로고
    • Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials
    • [67] Zhang, Y., Sun, J., Hu, Y., Li, S., Xu, Q., Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy 37 (2012), 16935–16942.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 16935-16942
    • Zhang, Y.1    Sun, J.2    Hu, Y.3    Li, S.4    Xu, Q.5
  • 68
    • 0242468902 scopus 로고    scopus 로고
    • Surface engineering of biomaterials with plasma techniques
    • [68] Poncin-Epaillard, Legeay, Surface engineering of biomaterials with plasma techniques. J. Biomater. Sci. Polym. Ed. 14 (2003), 1005–1028.
    • (2003) J. Biomater. Sci. Polym. Ed. , vol.14 , pp. 1005-1028
    • Poncin-Epaillard Legeay1
  • 69
    • 0037192405 scopus 로고    scopus 로고
    • Plasma-surface modification of biomaterials
    • [69] Chu, P., Plasma-surface modification of biomaterials. Mater. Sci. Eng.: R: Rep. 36 (2002), 143–206.
    • (2002) Mater. Sci. Eng.: R: Rep. , vol.36 , pp. 143-206
    • Chu, P.1
  • 70
    • 84884227179 scopus 로고    scopus 로고
    • Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms
    • [70] Flexer, V., Marque, M., Donose, B., Virdis, B., Keller, J., Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochim. Acta 108 (2013), 566–574.
    • (2013) Electrochim. Acta , vol.108 , pp. 566-574
    • Flexer, V.1    Marque, M.2    Donose, B.3    Virdis, B.4    Keller, J.5
  • 71
    • 84880128528 scopus 로고    scopus 로고
    • Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems
    • [71] Guo, K., Freguia, S., Dennis, P.G., Chen, X., Donose, B.C., Keller, J., Goodin, J.J., Rabaey, K., Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47 (2013), 7563–7570.
    • (2013) Environ. Sci. Technol. , vol.47 , pp. 7563-7570
    • Guo, K.1    Freguia, S.2    Dennis, P.G.3    Chen, X.4    Donose, B.C.5    Keller, J.6    Goodin, J.J.7    Rabaey, K.8
  • 72
    • 33847607418 scopus 로고    scopus 로고
    • Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells tissue
    • [72] Cheng, S., Logan, B.E., Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells tissue. Electrochem. Commun. 9 (2007), 492–496.
    • (2007) Electrochem. Commun. , vol.9 , pp. 492-496
    • Cheng, S.1    Logan, B.E.2
  • 73
    • 84930377405 scopus 로고    scopus 로고
    • Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells
    • [73] Yang, Q., Jiang, Y., Xu, Y., Qiu, Y., Chen, Y., Zhu, S., Shen, S., Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells. J. Chem. Technol. Biotechnol. 90:7 (2015), 1263–1269.
    • (2015) J. Chem. Technol. Biotechnol. , vol.90 , Issue.7 , pp. 1263-1269
    • Yang, Q.1    Jiang, Y.2    Xu, Y.3    Qiu, Y.4    Chen, Y.5    Zhu, S.6    Shen, S.7
  • 74
    • 84955152992 scopus 로고    scopus 로고
    • Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode
    • [74] Cai, W., Liu, W., Han, J., Wang, A., Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosens. Bioelectron. 80 (2016), 118–122.
    • (2016) Biosens. Bioelectron. , vol.80 , pp. 118-122
    • Cai, W.1    Liu, W.2    Han, J.3    Wang, A.4
  • 75
    • 84881404831 scopus 로고    scopus 로고
    • Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
    • [75] Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D.R., Russell, T.P., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15 (2013), 14290–14294.
    • (2013) Phys. Chem. Chem. Phys. , vol.15 , pp. 14290-14294
    • Nie, H.1    Zhang, T.2    Cui, M.3    Lu, H.4    Lovley, D.R.5    Russell, T.P.6
  • 76
    • 84929162125 scopus 로고    scopus 로고
    • Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems
    • [76] Yan, H., Catania, C., Bazan, G.C., Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems. Adv. Mater. 27 (2015), 2958–2973.
    • (2015) Adv. Mater. , vol.27 , pp. 2958-2973
    • Yan, H.1    Catania, C.2    Bazan, G.C.3
  • 78
    • 84918517242 scopus 로고    scopus 로고
    • Reactor concepts for bioelectrochemical syntheses and energy conversion
    • [78] Krieg, T., Sydow, A., Schröder, U., Schrader, J., Holtmann, D., Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32 (2014), 645–655.
    • (2014) Trends Biotechnol. , vol.32 , pp. 645-655
    • Krieg, T.1    Sydow, A.2    Schröder, U.3    Schrader, J.4    Holtmann, D.5
  • 79
    • 79953668500 scopus 로고    scopus 로고
    • Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells
    • [79] Lu, L., Ren, N., Zhao, X., Wang, H., Wua, D., Xing, D., Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ. Sci. 4 (2011), 1329–1336.
    • (2011) Energy Environ. Sci. , vol.4 , pp. 1329-1336
    • Lu, L.1    Ren, N.2    Zhao, X.3    Wang, H.4    Wua, D.5    Xing, D.6
  • 80
    • 84866152771 scopus 로고    scopus 로고
    • Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells
    • [80] Lu, L., Xing, D., Ren, N., Logan, B., Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour. Technol., 124, 2012, 6876.
    • (2012) Bioresour. Technol. , vol.124 , pp. 6876
    • Lu, L.1    Xing, D.2    Ren, N.3    Logan, B.4
  • 82
    • 84904753315 scopus 로고    scopus 로고
    • Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems
    • [82] Zhan, G., Li, D., Tao, Y., Zhu, X., Zhang, L., Wanga, Y., He, X., Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems. Int. J. Hydrogen Energy 39 (2014), 11854–11859.
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 11854-11859
    • Zhan, G.1    Li, D.2    Tao, Y.3    Zhu, X.4    Zhang, L.5    Wanga, Y.6    He, X.7
  • 83
    • 84864567797 scopus 로고    scopus 로고
    • Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry
    • [83] Saski, K., Morita, M., Sasaki, Igarashi, D., Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem. Eng. J. 68 (2012), 104–108.
    • (2012) Biochem. Eng. J. , vol.68 , pp. 104-108
    • Saski, K.1    Morita, M.2    Sasaki3    Igarashi, D.4
  • 84
    • 78650828362 scopus 로고    scopus 로고
    • High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
    • [84] Cheng, S., Logan, B., High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour. Technol. 102 (2011), 3571–3574.
    • (2011) Bioresour. Technol. , vol.102 , pp. 3571-3574
    • Cheng, S.1    Logan, B.2
  • 86
    • 0021324550 scopus 로고
    • Effects of temperature on methanogenesis in a thermophilic (58 (C) anaerobic digestor
    • [86] Zinder, S.H., Anguish, T., Cardwell, S.C., Effects of temperature on methanogenesis in a thermophilic (58 (C) anaerobic digestor. Appl. Environ. Microbiol., 1984, 808–813.
    • (1984) Appl. Environ. Microbiol. , pp. 808-813
    • Zinder, S.H.1    Anguish, T.2    Cardwell, S.C.3
  • 88
    • 84906951689 scopus 로고    scopus 로고
    • Commercial materials as cathode for hydrogen production in microbial electrolysis cell
    • [88] Farhangi, S., Ebrahimi, S., Niasar, M., Commercial materials as cathode for hydrogen production in microbial electrolysis cell. Biotechnol. Lett. 36 (2014), 1987–1992.
    • (2014) Biotechnol. Lett. , vol.36 , pp. 1987-1992
    • Farhangi, S.1    Ebrahimi, S.2    Niasar, M.3
  • 90
    • 84869824633 scopus 로고    scopus 로고
    • Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study
    • [90] Escapa, A., Gómez, X., Tartakovsky, B., Morán, A., Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int. J. Hydrogen Energy 37 (2012), 18641–18653.
    • (2012) Int. J. Hydrogen Energy , vol.37 , pp. 18641-18653
    • Escapa, A.1    Gómez, X.2    Tartakovsky, B.3    Morán, A.4
  • 91
    • 74849126212 scopus 로고    scopus 로고
    • Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
    • [91] Watson, V., Logan, B., Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105 (2010), 489–498.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 489-498
    • Watson, V.1    Logan, B.2
  • 92
    • 84858280027 scopus 로고    scopus 로고
    • Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis
    • [92] Raghavulu, S., Babu, P.S., Goud, R.K., Subhash, G.V., Srikanth, S., Mohan, S.V., Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Adv. 2 (2011), 677–688.
    • (2011) RSC Adv. , vol.2 , pp. 677-688
    • Raghavulu, S.1    Babu, P.S.2    Goud, R.K.3    Subhash, G.V.4    Srikanth, S.5    Mohan, S.V.6
  • 93
    • 77949365653 scopus 로고    scopus 로고
    • Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production
    • [93] Rosenbaum, M., Cotta, M., Angenent, L., Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol. Bioeng. 105 (2010), 880–888.
    • (2010) Biotechnol. Bioeng. , vol.105 , pp. 880-888
    • Rosenbaum, M.1    Cotta, M.2    Angenent, L.3
  • 94
    • 84939451803 scopus 로고    scopus 로고
    • Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities
    • [94] Pasupuleti, S., Srikanth, S., Mohan, S., Pant, D., Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Bioresour. Technol. 195 (2015), 131–138.
    • (2015) Bioresour. Technol. , vol.195 , pp. 131-138
    • Pasupuleti, S.1    Srikanth, S.2    Mohan, S.3    Pant, D.4
  • 96
    • 84916629365 scopus 로고    scopus 로고
    • Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source
    • [96] Jourdin, L., Freguia, S., Donose, B., Keller, J., Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry, 102, 2015, 5663.
    • (2015) Bioelectrochemistry , vol.102 , pp. 5663
    • Jourdin, L.1    Freguia, S.2    Donose, B.3    Keller, J.4
  • 97
    • 84890887124 scopus 로고    scopus 로고
    • Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells
    • [97] Gao, Y., Ryu, H., Domingo, J., Lee, H.-S., Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells. Bioresour. Technol. 153 (2013), 245–253.
    • (2013) Bioresour. Technol. , vol.153 , pp. 245-253
    • Gao, Y.1    Ryu, H.2    Domingo, J.3    Lee, H.-S.4
  • 98
    • 65649104174 scopus 로고    scopus 로고
    • Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system
    • [98] Sun, M., Sheng, G.P., Mu, Z.X., Liu, X.W., Chen, Y.Z., Wang, H.L., Yu, H.Q., Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J. Power Sources 191 (2009), 338–343.
    • (2009) J. Power Sources , vol.191 , pp. 338-343
    • Sun, M.1    Sheng, G.P.2    Mu, Z.X.3    Liu, X.W.4    Chen, Y.Z.5    Wang, H.L.6    Yu, H.Q.7
  • 99
    • 20044370112 scopus 로고    scopus 로고
    • Electrochemically assisted microbial production of hydrogen from acetate
    • [99] Liu, H., Grot, S., Logan, B.E., Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39 (2005), 4317–4320.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 4317-4320
    • Liu, H.1    Grot, S.2    Logan, B.E.3
  • 100
    • 79958786650 scopus 로고    scopus 로고
    • Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water
    • [100] Kalathil, S., Lee, J., Cho, M., Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem., 13, 2011, 1482.
    • (2011) Green Chem. , vol.13 , pp. 1482
    • Kalathil, S.1    Lee, J.2    Cho, M.3
  • 101
    • 84958291784 scopus 로고    scopus 로고
    • Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery
    • [101] Pandey, P., Shinde, V.N., Deopurkar, R.L., Kale, S.P., Patil, S.A., Pant, D., Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168 (2016), 706–723.
    • (2016) Appl. Energy , vol.168 , pp. 706-723
    • Pandey, P.1    Shinde, V.N.2    Deopurkar, R.L.3    Kale, S.P.4    Patil, S.A.5    Pant, D.6
  • 102
    • 84904249191 scopus 로고    scopus 로고
    • Reduction of ammonia inhibition of organic matter degradation by turning during a laboratory-scale swine manure composting
    • [102] Kuok, F., Mimoto, H., Nakasaki, K., Reduction of ammonia inhibition of organic matter degradation by turning during a laboratory-scale swine manure composting. Int. J. Waste Resour., 3, 2015.
    • (2015) Int. J. Waste Resour. , vol.3
    • Kuok, F.1    Mimoto, H.2    Nakasaki, K.3
  • 103
    • 84892369620 scopus 로고    scopus 로고
    • Single chamber microbial fuel cells (SCMFCs) treating wastewater containing methanol
    • [103] Liu, B., Li, B., Single chamber microbial fuel cells (SCMFCs) treating wastewater containing methanol. Int. J. Hydrogen Energy 39 (2014), 2340–2344.
    • (2014) Int. J. Hydrogen Energy , vol.39 , pp. 2340-2344
    • Liu, B.1    Li, B.2
  • 104
    • 33947385817 scopus 로고    scopus 로고
    • Electricity generation and microbial community analysis of alcohol powered microbial fuel cells
    • [104] Kim, J., Jung, S., Regan, J., Logan, B., Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98 (2007), 2568–2577.
    • (2007) Bioresour. Technol. , vol.98 , pp. 2568-2577
    • Kim, J.1    Jung, S.2    Regan, J.3    Logan, B.4
  • 105
    • 84949214899 scopus 로고    scopus 로고
    • An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction
    • [105] Mohanakrishna, G., Seelam, J., Vanbroekhoven, K., Pant, D., An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. 183 (2015), 445–462.
    • (2015) Faraday Discuss. , vol.183 , pp. 445-462
    • Mohanakrishna, G.1    Seelam, J.2    Vanbroekhoven, K.3    Pant, D.4
  • 106
    • 18344391948 scopus 로고    scopus 로고
    • Microbial phenazine production enhances electron transfer in biofuel cells
    • [106] Rabaey, K., Boon, N., Höfte, M., Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39 (2005), 3401–3408.
    • (2005) Environ. Sci. Technol. , vol.39 , pp. 3401-3408
    • Rabaey, K.1    Boon, N.2    Höfte, M.3    Verstraete, W.4
  • 109
    • 84928776576 scopus 로고    scopus 로고
    • Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
    • [109] Deutzmann, J., Sahin, M., Spormann, A., Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6 (2015), e00496–15.
    • (2015) mBio , vol.6 , pp. e00496-15
    • Deutzmann, J.1    Sahin, M.2    Spormann, A.3
  • 110
    • 84929162125 scopus 로고    scopus 로고
    • Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems
    • [110] Yan, H., Catania, C., Bazan, G., Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems. Adv. Mater. 27 (2015), 2958–2973.
    • (2015) Adv. Mater. , vol.27 , pp. 2958-2973
    • Yan, H.1    Catania, C.2    Bazan, G.3
  • 111
    • 84958880424 scopus 로고    scopus 로고
    • Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4
    • [111] He, A.-Y., Yin, C.Y., Xu, H., Kong, X.P., Xue, J.W., Zhu, J., Jiang, M., Wu, H., Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess Biosyst. Eng. 39 (2016), 245–254.
    • (2016) Bioprocess Biosyst. Eng. , vol.39 , pp. 245-254
    • He, A.-Y.1    Yin, C.Y.2    Xu, H.3    Kong, X.P.4    Xue, J.W.5    Zhu, J.6    Jiang, M.7    Wu, H.8
  • 113
    • 84916198682 scopus 로고    scopus 로고
    • Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells
    • [113] Wang, Q., Yu, H., Quan, X., Li, Y., Fan, G., Li, L., Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int. J. Hydrogen Energy, 40, 2015, 184196.
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 184196
    • Wang, Q.1    Yu, H.2    Quan, X.3    Li, Y.4    Fan, G.5    Li, L.6
  • 114
    • 84875744057 scopus 로고    scopus 로고
    • A critical literature review on biohydrogen production by pure cultures
    • [114] Elsharnouby, O., Hafez, H., Nakhla, G., Naggar, M., A critical literature review on biohydrogen production by pure cultures. Int. J. Hydrogen Energy 38 (2013), 4945–4966.
    • (2013) Int. J. Hydrogen Energy , vol.38 , pp. 4945-4966
    • Elsharnouby, O.1    Hafez, H.2    Nakhla, G.3    Naggar, M.4
  • 115
    • 84865337641 scopus 로고    scopus 로고
    • A comprehensive and quantitative review of dark fermentative biohydrogen production
    • [115] Rittmann, S., Herwig, C., A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb. Cell Fact., 11, 2012, 115.
    • (2012) Microb. Cell Fact. , vol.11 , pp. 115
    • Rittmann, S.1    Herwig, C.2
  • 116
    • 84937232564 scopus 로고    scopus 로고
    • Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution
    • [116] Zech, K., Oehmichen, K., Grasemann, E., Michaelis, J., Funke, S., Seiffert, M., Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution. Int. J. Hydrogen Energy 40 (2015), 5487–5495.
    • (2015) Int. J. Hydrogen Energy , vol.40 , pp. 5487-5495
    • Zech, K.1    Oehmichen, K.2    Grasemann, E.3    Michaelis, J.4    Funke, S.5    Seiffert, M.6
  • 117
    • 79955479492 scopus 로고    scopus 로고
    • Simulating the impact of suppression of methanogenesis in continuous flow biohydrogen reactors
    • [117] Hafez, H., Elbeshbishy, E., Nakhla, G., Naggar, M., Simulating the impact of suppression of methanogenesis in continuous flow biohydrogen reactors. Int. J. Hydrogen Energy 36 (2011), 5885–5894.
    • (2011) Int. J. Hydrogen Energy , vol.36 , pp. 5885-5894
    • Hafez, H.1    Elbeshbishy, E.2    Nakhla, G.3    Naggar, M.4
  • 118
    • 2342525227 scopus 로고    scopus 로고
    • Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process
    • [118] Kim, I., Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 29:11 (2004), 1133–1140.
    • (2004) Int. J. Hydrogen Energy , vol.29 , Issue.11 , pp. 1133-1140
    • Kim, I.1
  • 119
    • 78049484165 scopus 로고    scopus 로고
    • Ni foam cathode enables high volumetric H 2 production in a microbial electrolysis cell
    • [119] Jeremiasse, A.W., Hamelers, H.V., Saakes, M., Buisman, C.J., Ni foam cathode enables high volumetric H 2 production in a microbial electrolysis cell. Int. J. Hydrogen Energy 35 (2010), 12716–12723.
    • (2010) Int. J. Hydrogen Energy , vol.35 , pp. 12716-12723
    • Jeremiasse, A.W.1    Hamelers, H.V.2    Saakes, M.3    Buisman, C.J.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.