-
1
-
-
84885369315
-
Natural gas from shale formation—the evolution, evidences and challenges of shale gas revolution in United States
-
[1] Wang, Q., Chen, X., Jha, A.N., Rogers, H., Natural gas from shale formation—the evolution, evidences and challenges of shale gas revolution in United States. Renewable Sustainable Energy Rev. 30 (2014), 1–18.
-
(2014)
Renewable Sustainable Energy Rev.
, vol.30
, pp. 1-18
-
-
Wang, Q.1
Chen, X.2
Jha, A.N.3
Rogers, H.4
-
2
-
-
78650817486
-
An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects
-
[2] Pant, D., Singh, A., Van Bogaert, G., Gallego, Y.A., Diels, L., Vanbroekhoven, K., An introduction to the life cycle assessment (LCA) of bioelectrochemical systems (BES) for sustainable energy and product generation: relevance and key aspects. Renewable Sustainable Energy Rev. 15 (2011), 1305–1313.
-
(2011)
Renewable Sustainable Energy Rev.
, vol.15
, pp. 1305-1313
-
-
Pant, D.1
Singh, A.2
Van Bogaert, G.3
Gallego, Y.A.4
Diels, L.5
Vanbroekhoven, K.6
-
3
-
-
77951806527
-
Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells
-
[3] Foley, J., Rozendal, R., Hertle, C., Lant, P., Rabaey, K., Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44 (2010), 3629–3637.
-
(2010)
Environ. Sci. Technol.
, vol.44
, pp. 3629-3637
-
-
Foley, J.1
Rozendal, R.2
Hertle, C.3
Lant, P.4
Rabaey, K.5
-
4
-
-
84655167594
-
Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping
-
[4] Lu, C., Zhao, J., Yang, S.-T., Wei, D., Fed-batch fermentation for n-butanol production from cassava bagasse hydrolysate in a fibrous bed bioreactor with continuous gas stripping. Bioresour. Technol. 104 (2011), 380–387.
-
(2011)
Bioresour. Technol.
, vol.104
, pp. 380-387
-
-
Lu, C.1
Zhao, J.2
Yang, S.-T.3
Wei, D.4
-
5
-
-
84937146205
-
Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review
-
[5] Barca, C., Soric, A., Ranava, D., Giudici-Orticoni, M.-T., Ferrasse, J.-H., Anaerobic biofilm reactors for dark fermentative hydrogen production from wastewater: a review. Bioresour. Technol. 185 (2015), 386–398.
-
(2015)
Bioresour. Technol.
, vol.185
, pp. 386-398
-
-
Barca, C.1
Soric, A.2
Ranava, D.3
Giudici-Orticoni, M.-T.4
Ferrasse, J.-H.5
-
6
-
-
84930177424
-
Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment
-
[6] ElMekawy, A., Srikanth, S., Bajracharya, S., Hegabd, H.M., Nigam, P.S., Singh, A., Mohanh, S., Pant, D., Food and agricultural wastes as substrates for bioelectrochemical system (BES): the synchronized recovery of sustainable energy and waste treatment. Food Res. Int. 73 (2015), 213–225.
-
(2015)
Food Res. Int.
, vol.73
, pp. 213-225
-
-
ElMekawy, A.1
Srikanth, S.2
Bajracharya, S.3
Hegabd, H.M.4
Nigam, P.S.5
Singh, A.6
Mohanh, S.7
Pant, D.8
-
7
-
-
84938943565
-
Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater
-
[7] Zheng, G., Liao, W., Zhang, F., He, Z., Energy extraction from a large-scale microbial fuel cell system treating municipal wastewater. J. Power Sources 300 (2015), 260–264.
-
(2015)
J. Power Sources
, vol.300
, pp. 260-264
-
-
Zheng, G.1
Liao, W.2
Zhang, F.3
He, Z.4
-
8
-
-
84945494489
-
90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode
-
[8] Dong, Y., Qu, Y., He, W., Du, Y., Liu, J., Han, X., Feng, Y.A., 90-liter stackable baffled microbial fuel cell for brewery wastewater treatment based on energy self-sufficient mode. Bioresour. Technol. 195 (2016), 66–72.
-
(2016)
Bioresour. Technol.
, vol.195
, pp. 66-72
-
-
Dong, Y.1
Qu, Y.2
He, W.3
Du, Y.4
Liu, J.5
Han, X.6
Feng, Y.A.7
-
9
-
-
84998663114
-
Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging
-
(in press)
-
[9] Walter, X.A., Stinchcombe, A., Greenman, J., Ieropoulos, I., Urine transduction to usable energy: a modular MFC approach for smartphone and remote system charging. Appl. Energy, 2016 (in press).
-
(2016)
Appl. Energy
-
-
Walter, X.A.1
Stinchcombe, A.2
Greenman, J.3
Ieropoulos, I.4
-
10
-
-
84873663680
-
Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring
-
[10] Donovan, C., Dewan, A., Heo, D., Lewandowski, Z., Beyenal, H., Sediment microbial fuel cell powering a submersible ultrasonic receiver: new approach to remote monitoring. J. Power Sources 233 (2013), 79–85.
-
(2013)
J. Power Sources
, vol.233
, pp. 79-85
-
-
Donovan, C.1
Dewan, A.2
Heo, D.3
Lewandowski, Z.4
Beyenal, H.5
-
11
-
-
34447285505
-
A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy
-
[11] Du, Z., Li, H., Gu, T., A state of the art review on microbial fuel cells: a promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 25 (2007), 464–482.
-
(2007)
Biotechnol. Adv.
, vol.25
, pp. 464-482
-
-
Du, Z.1
Li, H.2
Gu, T.3
-
12
-
-
84925012687
-
Practical energy harvesting for microbial fuel cells: a review
-
[12] Wang, H., Park, J.-D., Ren, Z., Practical energy harvesting for microbial fuel cells: a review. Environ. Sci. Technol. 49 (2015), 3267–3277.
-
(2015)
Environ. Sci. Technol.
, vol.49
, pp. 3267-3277
-
-
Wang, H.1
Park, J.-D.2
Ren, Z.3
-
13
-
-
26944447071
-
Current status of hydrogen production techniques by steam reforming of ethanol: a review
-
[13] Haryanto, A., Fernando, S., Murali, N., Adhikari, S., Current status of hydrogen production techniques by steam reforming of ethanol: a review. Energy Fuels 19 (2005), 2098–2106.
-
(2005)
Energy Fuels
, vol.19
, pp. 2098-2106
-
-
Haryanto, A.1
Fernando, S.2
Murali, N.3
Adhikari, S.4
-
14
-
-
84858744134
-
Hydrogen as an energy carrier: prospects and challenges
-
[14] Mazloomi, K., Gomes, C., Hydrogen as an energy carrier: prospects and challenges. Renewable Sustainable Energy Rev. 16 (2012), 3024–3033.
-
(2012)
Renewable Sustainable Energy Rev.
, vol.16
, pp. 3024-3033
-
-
Mazloomi, K.1
Gomes, C.2
-
15
-
-
84924238864
-
A review of the existing and alternative methods for greener nitrogen fixation
-
[15] Cherkasov, N., Ibhadon, A., Fitzpatrick, P., A review of the existing and alternative methods for greener nitrogen fixation. Chem. Eng. Process. 90 (2015), 24–33.
-
(2015)
Chem. Eng. Process.
, vol.90
, pp. 24-33
-
-
Cherkasov, N.1
Ibhadon, A.2
Fitzpatrick, P.3
-
16
-
-
84921386041
-
Hydrogen and fuel cell technologies for heating: a review
-
[16] Dodds, P., Staffell, I., Hawkes, A.D., Li, F., Grünewal, P., McDowall, W., Hydrogen and fuel cell technologies for heating: a review. Int. J. Hydrogen Energy, 40, 2015.
-
(2015)
Int. J. Hydrogen Energy
, vol.40
-
-
Dodds, P.1
Staffell, I.2
Hawkes, A.D.3
Li, F.4
Grünewal, P.5
McDowall, W.6
-
17
-
-
84943662834
-
Explaining the price of oil 1971–2014: the need to use reliable data on oil discovery and to account for ‘mid-point’ peak
-
[17] Bentley, R., Bentley, Y., Explaining the price of oil 1971–2014: the need to use reliable data on oil discovery and to account for ‘mid-point’ peak. Energy Policy 86 (2015), 880–890.
-
(2015)
Energy Policy
, vol.86
, pp. 880-890
-
-
Bentley, R.1
Bentley, Y.2
-
18
-
-
84861960360
-
When will oil, natural gas, and coal peak?
-
[18] Maggio, Cacciola, When will oil, natural gas, and coal peak?. Fuel 98 (2012), 111–123.
-
(2012)
Fuel
, vol.98
, pp. 111-123
-
-
Maggio1
Cacciola2
-
19
-
-
36649038796
-
Comparison of environmental and economic aspects of various hydrogen production methods
-
[19] Kothari, R., Buddhi, D., Sawhney, R., Comparison of environmental and economic aspects of various hydrogen production methods. Renewable Sustainable Energy Rev. 12 (2008), 553–563.
-
(2008)
Renewable Sustainable Energy Rev.
, vol.12
, pp. 553-563
-
-
Kothari, R.1
Buddhi, D.2
Sawhney, R.3
-
20
-
-
84875966514
-
Photocatalytic Water oxidation by hematite/reduced graphene oxide composites
-
[20] Meng, F., Li, J., Cushing, S.K., Bright, J., Zhi, M., Rowley, J.D., Hong, Z., Manivannan, A., Bristow, A.D., Wu, N., Photocatalytic Water oxidation by hematite/reduced graphene oxide composites. ACS Catal. 3 (2013), 746–751.
-
(2013)
ACS Catal.
, vol.3
, pp. 746-751
-
-
Meng, F.1
Li, J.2
Cushing, S.K.3
Bright, J.4
Zhi, M.5
Rowley, J.D.6
Hong, Z.7
Manivannan, A.8
Bristow, A.D.9
Wu, N.10
-
21
-
-
84923862249
-
Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway
-
[21] Liu, J., Liu, Y., Liu, N., Han, Y., Zhang, X., Huang, H., Lifshitz, Y., Lee, S.T., Zhong, J., Kang, Z., Metal-free efficient photocatalyst for stable visible water splitting via a two-electron pathway. Science 347 (2015), 970–974.
-
(2015)
Science
, vol.347
, pp. 970-974
-
-
Liu, J.1
Liu, Y.2
Liu, N.3
Han, Y.4
Zhang, X.5
Huang, H.6
Lifshitz, Y.7
Lee, S.T.8
Zhong, J.9
Kang, Z.10
-
22
-
-
78649893093
-
Wind/hydrogen hybrid systems: opportunity for Ireland's wind resource to provide consistent sustainable energy supply
-
[22] Carton, J., Olabi, A., Wind/hydrogen hybrid systems: opportunity for Ireland's wind resource to provide consistent sustainable energy supply. Energy 35 (2010), 4536–4544.
-
(2010)
Energy
, vol.35
, pp. 4536-4544
-
-
Carton, J.1
Olabi, A.2
-
23
-
-
0344896607
-
-
Levin Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185.
-
[23] Levin Biohydrogen production: prospects and limitations to practical application. Int. J. Hydrogen Energy 29, 173–185 (2004).
-
(2004)
-
-
-
24
-
-
79957995821
-
Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production
-
[24] RenNanqi, R., GuoWanqian, G., LiuBingfeng, L., CaoGuangli, C., DingJie, D., Biological hydrogen production by dark fermentation: challenges and prospects towards scaled-up production. Curr. Opin. Biotechnol. 22 (2011), 365–370.
-
(2011)
Curr. Opin. Biotechnol.
, vol.22
, pp. 365-370
-
-
RenNanqi, R.1
GuoWanqian, G.2
LiuBingfeng, L.3
CaoGuangli, C.4
DingJie, D.5
-
25
-
-
64449086664
-
Biohydrogen production from biomass and industrial wastes by dark fermentation
-
[25] Chong, M.-L., Sabaratnam, V., Shirai, Y., Hassan, M., Biohydrogen production from biomass and industrial wastes by dark fermentation. Int. J. Hydrogen Energy 34 (2009), 3277–3287.
-
(2009)
Int. J. Hydrogen Energy
, vol.34
, pp. 3277-3287
-
-
Chong, M.-L.1
Sabaratnam, V.2
Shirai, Y.3
Hassan, M.4
-
26
-
-
84955131510
-
Biohydrogen production from lignocellulosic biomass: technology and sustainability
-
[26] Singh, A., Sevda, S., Abu Reesh, I.M., Vanbroekhoven, K., Rathore, D., Pant, D., Biohydrogen production from lignocellulosic biomass: technology and sustainability. Energies 8 (2015), 13062–13080.
-
(2015)
Energies
, vol.8
, pp. 13062-13080
-
-
Singh, A.1
Sevda, S.2
Abu Reesh, I.M.3
Vanbroekhoven, K.4
Rathore, D.5
Pant, D.6
-
27
-
-
30944443553
-
Bio-hydrogen production from waste materials
-
[27] Kapdan, I., Kargi, F., Bio-hydrogen production from waste materials. Enzyme Microb. Technol. 38 (2006), 569–582.
-
(2006)
Enzyme Microb. Technol.
, vol.38
, pp. 569-582
-
-
Kapdan, I.1
Kargi, F.2
-
28
-
-
84987927520
-
Overview of biohydrogen production technologies and application in fuel cell
-
[28] Rahman, S.N.A., Masdar, M.S., Rosli, M.I., Majlan, E.H., Husalani, T., Overview of biohydrogen production technologies and application in fuel cell. Am. J. Chem. 5 (2015), 12–23.
-
(2015)
Am. J. Chem.
, vol.5
, pp. 12-23
-
-
Rahman, S.N.A.1
Masdar, M.S.2
Rosli, M.I.3
Majlan, E.H.4
Husalani, T.5
-
29
-
-
77957147094
-
Microbial electrosynthesis—revisiting the electrical route for microbial production
-
[29] Rabaey, K., Rozendal, R., Microbial electrosynthesis—revisiting the electrical route for microbial production. Nat. Rev. Microbiol. 8 (2010), 706–716.
-
(2010)
Nat. Rev. Microbiol.
, vol.8
, pp. 706-716
-
-
Rabaey, K.1
Rozendal, R.2
-
30
-
-
70449714760
-
The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer
-
[30] Shi, L., Richardson, D.J., Wang, Z., Kerisit, S.N., Rosso, K.M., Zachara, J.M., Fredrickson, J.K., The roles of outer membrane cytochromes of Shewanella and Geobacter in extracellular electron transfer. Environ. Microbiol. Rep. 1 (2009), 220–227.
-
(2009)
Environ. Microbiol. Rep.
, vol.1
, pp. 220-227
-
-
Shi, L.1
Richardson, D.J.2
Wang, Z.3
Kerisit, S.N.4
Rosso, K.M.5
Zachara, J.M.6
Fredrickson, J.K.7
-
31
-
-
79957585496
-
Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest
-
[31] Kihara, T., Liu, X.Y., Nakamura, C., Park, K.M., Ha, S.W., Qian, D.J., Kawasaki, K., Zorin, N.A., Yasuda, S., Hata, K., Wakayama, T., Miyakea, J., Direct electron transfer to hydrogenase for catalytic hydrogen production using a single-walled carbon nanotube forest. Int. J. Hydrogen Energy 36 (2011), 7523–7529.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 7523-7529
-
-
Kihara, T.1
Liu, X.Y.2
Nakamura, C.3
Park, K.M.4
Ha, S.W.5
Qian, D.J.6
Kawasaki, K.7
Zorin, N.A.8
Yasuda, S.9
Hata, K.10
Wakayama, T.11
Miyakea, J.12
-
32
-
-
84865740492
-
Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture
-
[32] Rahimnejad, M., Najafpour, G.D., Ghoreyshi, A.A., Talebnia, F., Premier, G.C., Bakeri, G., Kim, J.R., Oh, S.E., Thionine increases electricity generation from microbial fuel cell using Saccharomyces cerevisiae and exoelectrogenic mixed culture. J. Microbiol. 50 (2012), 575–580.
-
(2012)
J. Microbiol.
, vol.50
, pp. 575-580
-
-
Rahimnejad, M.1
Najafpour, G.D.2
Ghoreyshi, A.A.3
Talebnia, F.4
Premier, G.C.5
Bakeri, G.6
Kim, J.R.7
Oh, S.E.8
-
33
-
-
34247098528
-
Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE
-
[33] Aulenta, F., Catervi, A., Majone, M., Panero, S., Reale, P., Rossetti, S., Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 41 (2007), 2554–2559.
-
(2007)
Environ. Sci. Technol.
, vol.41
, pp. 2554-2559
-
-
Aulenta, F.1
Catervi, A.2
Majone, M.3
Panero, S.4
Reale, P.5
Rossetti, S.6
-
34
-
-
0008049769
-
Electricity generation in microbial fuel cells using neutral red as an electronophore
-
[34] Park, D., Zeikus, J., Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66 (2000), 1292–1297.
-
(2000)
Appl. Environ. Microbiol.
, vol.66
, pp. 1292-1297
-
-
Park, D.1
Zeikus, J.2
-
35
-
-
70549089986
-
Electron transfer pathways in microbial oxygen biocathodes
-
[35] Freguia, S., Tsujimura, S., Kano, K., Electron transfer pathways in microbial oxygen biocathodes. Electrochim. Acta 55 (2010), 813–818.
-
(2010)
Electrochim. Acta
, vol.55
, pp. 813-818
-
-
Freguia, S.1
Tsujimura, S.2
Kano, K.3
-
36
-
-
84940794448
-
Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells
-
[36] Epifanio, M., Inguva, S., Kitching, M., Mosnier, J.-P., Marsili, E., Effects of atmospheric air plasma treatment of graphite and carbon felt electrodes on the anodic current from Shewanella attached cells. Bioelectrochemistry 106 (2015), 186–193.
-
(2015)
Bioelectrochemistry
, vol.106
, pp. 186-193
-
-
Epifanio, M.1
Inguva, S.2
Kitching, M.3
Mosnier, J.-P.4
Marsili, E.5
-
37
-
-
41749102419
-
Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells
-
[37] Qiao, Y., Li, C., Bao, S.-J., Lu, Z., Hong, Y., Direct electrochemistry and electrocatalytic mechanism of evolved Escherichia coli cells in microbial fuel cells. Chem. Commun. 0 (2008), 1290–1292.
-
(2008)
Chem. Commun.
, pp. 1290-1292
-
-
Qiao, Y.1
Li, C.2
Bao, S.-J.3
Lu, Z.4
Hong, Y.5
-
38
-
-
84896043502
-
Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges
-
[38] Zhang, Y., Angelidaki, I., Microbial electrolysis cells turning to be versatile technology: recent advances and future challenges. Water Res. 56 (2014), 11–25.
-
(2014)
Water Res.
, vol.56
, pp. 11-25
-
-
Zhang, Y.1
Angelidaki, I.2
-
39
-
-
67649237063
-
Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells
-
[39] Huang, L., Cheng, S., Rezaei, F., Logan, B., Reducing organic loads in wastewater effluents from paper recycling plants using microbial fuel cells. Environ. Technol. 30 (2009), 499–504.
-
(2009)
Environ. Technol.
, vol.30
, pp. 499-504
-
-
Huang, L.1
Cheng, S.2
Rezaei, F.3
Logan, B.4
-
40
-
-
77950913737
-
Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell
-
[40] Wen, Q., Wu, Y., Zhao, L., Sun, Q., Kong, F., Electricity generation and brewery wastewater treatment from sequential anode-cathode microbial fuel cell. J. Zhejiang Univ. Sci. B 11 (2010), 87–93.
-
(2010)
J. Zhejiang Univ. Sci. B
, vol.11
, pp. 87-93
-
-
Wen, Q.1
Wu, Y.2
Zhao, L.3
Sun, Q.4
Kong, F.5
-
41
-
-
84991747205
-
Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells—a mini review
-
[41] Song, H.-L., Zhu, Y., Li, J., Electron transfer mechanisms, characteristics and applications of biological cathode microbial fuel cells—a mini review. Arabian J. Chem., 2015, 10.1016/j.arabjc.2015.01.008.
-
(2015)
Arabian J. Chem.
-
-
Song, H.-L.1
Zhu, Y.2
Li, J.3
-
42
-
-
84930088795
-
A logical data representation framework for electricity-driven bioproduction processes
-
[42] Patil, S., Gildemyn, S., Pant, D., Zengler, K., Logane, B.E., Rabaey, Y., A logical data representation framework for electricity-driven bioproduction processes. Biotechnol. Adv. 33 (2015), 736–744.
-
(2015)
Biotechnol. Adv.
, vol.33
, pp. 736-744
-
-
Patil, S.1
Gildemyn, S.2
Pant, D.3
Zengler, K.4
Logane, B.E.5
Rabaey, Y.6
-
43
-
-
34948887836
-
Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine
-
[43] Sakai, S., Yagishita, T., Microbial production of hydrogen and ethanol from glycerol-containing wastes discharged from a biodiesel fuel production plant in a bioelectrochemical reactor with thionine. Biotechnol. Bioeng. 98 (2007), 340–348.
-
(2007)
Biotechnol. Bioeng.
, vol.98
, pp. 340-348
-
-
Sakai, S.1
Yagishita, T.2
-
44
-
-
47049085042
-
Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane
-
[44] Call, D., Logan, B.E., Hydrogen production in a single chamber microbial electrolysis cell lacking a membrane. Environ. Sci. Technol. 42:9 (2008), 3401–3406.
-
(2008)
Environ. Sci. Technol.
, vol.42
, Issue.9
, pp. 3401-3406
-
-
Call, D.1
Logan, B.E.2
-
45
-
-
84880507009
-
The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea
-
[45] Sasaki, K., Morita, M., Sasaki, D., Ohmura, N., Igarashi, Y., The membraneless bioelectrochemical reactor stimulates hydrogen fermentation by inhibiting methanogenic archaea. Appl. Microbiol. Biotechnol. 97 (2012), 7005–7013.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 7005-7013
-
-
Sasaki, K.1
Morita, M.2
Sasaki, D.3
Ohmura, N.4
Igarashi, Y.5
-
46
-
-
84862770582
-
Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system
-
[46] Sasaki, K., Morita, M., Matsumoto, N., Sasaki, D., Hirano, S., Ohmura, N., Igarashi, Y., Construction of hydrogen fermentation from garbage slurry using the membrane free bioelectrochemical system. J. Biosci. Bioeng. 114 (2012), 64–69.
-
(2012)
J. Biosci. Bioeng.
, vol.114
, pp. 64-69
-
-
Sasaki, K.1
Morita, M.2
Matsumoto, N.3
Sasaki, D.4
Hirano, S.5
Ohmura, N.6
Igarashi, Y.7
-
47
-
-
84864567797
-
Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry
-
[47] Sasaki, K., Morita, M., Sasaki, D., Igarashi, Y., Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem. Eng. J. 68 (2012), 104–108.
-
(2012)
Biochem. Eng. J.
, vol.68
, pp. 104-108
-
-
Sasaki, K.1
Morita, M.2
Sasaki, D.3
Igarashi, Y.4
-
48
-
-
57449102625
-
Microbial electrolysis cells for high yield hydrogen gas production from organic matter
-
[48] Logan, B., Call, D., Cheng, S., Hamelers, H.M.V., Sleutels, T.H.J.A., Jeremiasse, A.W., Rozendal, R.A., Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42 (2008), 8630–8640.
-
(2008)
Environ. Sci. Technol.
, vol.42
, pp. 8630-8640
-
-
Logan, B.1
Call, D.2
Cheng, S.3
Hamelers, H.M.V.4
Sleutels, T.H.J.A.5
Jeremiasse, A.W.6
Rozendal, R.A.7
-
49
-
-
65049084632
-
The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells
-
[49] Selembo, P., Merrill, M., Logan, B., The use of stainless steel and nickel alloys as low-cost cathodes in microbial electrolysis cells. J. Power Sources 190 (2009), 271–278.
-
(2009)
J. Power Sources
, vol.190
, pp. 271-278
-
-
Selembo, P.1
Merrill, M.2
Logan, B.3
-
50
-
-
33644938991
-
Principle and perspectives of hydrogen production through biocatalyzed electrolysis
-
[50] Rozendal, R.A., Hamelers, H.V.M., Euverink, G.J.W., Metz, S.J., Buisman, C.J.N., Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31 (2006), 1632–1640.
-
(2006)
Int. J. Hydrogen Energy
, vol.31
, pp. 1632-1640
-
-
Rozendal, R.A.1
Hamelers, H.V.M.2
Euverink, G.J.W.3
Metz, S.J.4
Buisman, C.J.N.5
-
51
-
-
78650848365
-
Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents
-
[51] Villano, M., Bonis, L., Rossetti, S., Aulenta, F., Majone, M., Bioelectrochemical hydrogen production with hydrogenophilic dechlorinating bacteria as electrocatalytic agents. Bioresour. Technol. 102 (2011), 3193–3199.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 3193-3199
-
-
Villano, M.1
Bonis, L.2
Rossetti, S.3
Aulenta, F.4
Majone, M.5
-
52
-
-
43949144944
-
Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion
-
[52] Picioreanu, C., Loosdrecht, M., Katuri, K., Scott, K., Head, I., Mathematical model for microbial fuel cells with anodic biofilms and anaerobic digestion. Water Sci. Technol., 57, 2008, 965.
-
(2008)
Water Sci. Technol.
, vol.57
, pp. 965
-
-
Picioreanu, C.1
Loosdrecht, M.2
Katuri, K.3
Scott, K.4
Head, I.5
-
53
-
-
84911934385
-
A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria
-
[53] Fischer, K., Batstone, D., Loosdrecht, M., Picioreanu, C., A mathematical model for electrochemically active filamentous sulfide-oxidising bacteria. Bioelectrochemistry, 102, 2015, 1020.
-
(2015)
Bioelectrochemistry
, vol.102
, pp. 1020
-
-
Fischer, K.1
Batstone, D.2
Loosdrecht, M.3
Picioreanu, C.4
-
54
-
-
58149260515
-
Petroleum refinery hydrogen production unit: exergy and production cost evaluation
-
[54] Cruz, F.E., Junior, S. de O., Petroleum refinery hydrogen production unit: exergy and production cost evaluation. Int. J. Thermodyn. 11 (2008), 187–193.
-
(2008)
Int. J. Thermodyn.
, vol.11
, pp. 187-193
-
-
Cruz, F.E.1
Junior, S.D.O.2
-
55
-
-
84892792821
-
The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells
-
[55] Santoro, C., Guilizzoni, M., Baena, J.P.C., Pasaogullari, U., Casalegno, A., Lia, B., Babanova, S., Artyushkova, K., Atanassov, P., The effects of carbon electrode surface properties on bacteria attachment and start up time of microbial fuel cells. Carbon 67 (2014), 128–139.
-
(2014)
Carbon
, vol.67
, pp. 128-139
-
-
Santoro, C.1
Guilizzoni, M.2
Baena, J.P.C.3
Pasaogullari, U.4
Casalegno, A.5
Lia, B.6
Babanova, S.7
Artyushkova, K.8
Atanassov, P.9
-
56
-
-
68149151014
-
Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes
-
[56] Tsaia, H.Y., Wub, C.C., Leec, C.Y., Shiha, E.P., Microbial fuel cell performance of multiwall carbon nanotubes on carbon cloth as electrodes. J. Power Sources 194:1 (2009), 199–205.
-
(2009)
J. Power Sources
, vol.194
, Issue.1
, pp. 199-205
-
-
Tsaia, H.Y.1
Wub, C.C.2
Leec, C.Y.3
Shiha, E.P.4
-
57
-
-
84870188327
-
Operational and technical considerations for microbial electrosynthesis
-
[57] Desloover, J., Arends, J.B., Hennebel, T., Rabaey, K., Operational and technical considerations for microbial electrosynthesis. Biochem. Soc. Trans. 40 (2012), 1233–1238.
-
(2012)
Biochem. Soc. Trans.
, vol.40
, pp. 1233-1238
-
-
Desloover, J.1
Arends, J.B.2
Hennebel, T.3
Rabaey, K.4
-
58
-
-
84872600937
-
An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell
-
[58] Kundu, A., Sahu, J., Redzwan, G., Hashim, M., An overview of cathode material and catalysts suitable for generating hydrogen in microbial electrolysis cell. Int. J. Hydrogen Energy 38 (2013), 1745–1757.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 1745-1757
-
-
Kundu, A.1
Sahu, J.2
Redzwan, G.3
Hashim, M.4
-
59
-
-
84921033053
-
Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations
-
[59] Escapa, A., San-Martín, M.I., Mateos, R., Morán, A., Scaling-up of membraneless microbial electrolysis cells (MECs) for domestic wastewater treatment: bottlenecks and limitations. Bioresour. Technol. 180 (2015), 72–78.
-
(2015)
Bioresour. Technol.
, vol.180
, pp. 72-78
-
-
Escapa, A.1
San-Martín, M.I.2
Mateos, R.3
Morán, A.4
-
60
-
-
84904753488
-
A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis
-
[60] Jourdin, L., Freguia, S., Donose, B.C., Chen, J., Wallace, G.C., Kellera, J., Flexer, V., A novel carbon nanotube modified scaffold as an efficient biocathode material for improved microbial electrosynthesis. J. Mater. Chem. A 2 (2014), 13093–13102.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 13093-13102
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.C.3
Chen, J.4
Wallace, G.C.5
Kellera, J.6
Flexer, V.7
-
61
-
-
79951575887
-
A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell
-
[61] Huang, Y.-X., Liu, X.W., Sun, X.F., Sheng, G.P., Zhang, Y.Y., Yan, G.M., Wang, S.G., Xu, A.W., Yu, H.Q., A new cathodic electrode deposit with palladium nanoparticles for cost-effective hydrogen production in a microbial electrolysis cell. Int. J. Hydrogen Energy 36 (2011), 2773–2776.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 2773-2776
-
-
Huang, Y.-X.1
Liu, X.W.2
Sun, X.F.3
Sheng, G.P.4
Zhang, Y.Y.5
Yan, G.M.6
Wang, S.G.7
Xu, A.W.8
Yu, H.Q.9
-
62
-
-
84855930827
-
Acetate enhances startup of a H2-producing microbial biocathode
-
[62] Jeremiasse, A., Hamelers, H., Croese, E., Buisman, C., Acetate enhances startup of a H2-producing microbial biocathode. Biotechnol. Bioeng. 109 (2012), 657–664.
-
(2012)
Biotechnol. Bioeng.
, vol.109
, pp. 657-664
-
-
Jeremiasse, A.1
Hamelers, H.2
Croese, E.3
Buisman, C.4
-
63
-
-
84901322574
-
Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells
-
[63] Croese, E., Jeremiasse, A.W., Marshall, I.P.G., Spormann, A.M., Euverink, G.J.W., Geelhoeda, J.S., Stams, A.J.M., Plugge, C.M., Influence of setup and carbon source on the bacterial community of biocathodes in microbial electrolysis cells. Enzyme Microb. Technol. 61–62 (2014), 67–75.
-
(2014)
Enzyme Microb. Technol.
, vol.61-62
, pp. 67-75
-
-
Croese, E.1
Jeremiasse, A.W.2
Marshall, I.P.G.3
Spormann, A.M.4
Euverink, G.J.W.5
Geelhoeda, J.S.6
Stams, A.J.M.7
Plugge, C.M.8
-
64
-
-
84908021230
-
Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome
-
[64] LaBelle, E., Marshall, C., Gilbert, J., May, H., Influence of acidic pH on hydrogen and acetate production by an electrosynthetic microbiome. PLoS One, 9, 2014.
-
(2014)
PLoS One
, vol.9
-
-
LaBelle, E.1
Marshall, C.2
Gilbert, J.3
May, H.4
-
65
-
-
84954305774
-
Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide
-
[65] Jourdin, L., Lu, Y., Flexer, V., Keller, J., Frequia, S., Biologically induced hydrogen production drives high rate/high efficiency microbial electrosynthesis of acetate from carbon dioxide. ChemElectroChem 3 (2016), 581–591.
-
(2016)
ChemElectroChem
, vol.3
, pp. 581-591
-
-
Jourdin, L.1
Lu, Y.2
Flexer, V.3
Keller, J.4
Frequia, S.5
-
66
-
-
78651406351
-
Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens
-
[66] Geelhoed, J., Stams, A., Electricity-assisted biological hydrogen production from acetate by Geobacter sulfurreducens. Environ. Sci. Technol. 45 (2011), 815–820.
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 815-820
-
-
Geelhoed, J.1
Stams, A.2
-
67
-
-
84867847236
-
Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials
-
[67] Zhang, Y., Sun, J., Hu, Y., Li, S., Xu, Q., Bio-cathode materials evaluation in microbial fuel cells: a comparison of graphite felt, carbon paper and stainless steel mesh materials. Int. J. Hydrogen Energy 37 (2012), 16935–16942.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 16935-16942
-
-
Zhang, Y.1
Sun, J.2
Hu, Y.3
Li, S.4
Xu, Q.5
-
68
-
-
0242468902
-
Surface engineering of biomaterials with plasma techniques
-
[68] Poncin-Epaillard, Legeay, Surface engineering of biomaterials with plasma techniques. J. Biomater. Sci. Polym. Ed. 14 (2003), 1005–1028.
-
(2003)
J. Biomater. Sci. Polym. Ed.
, vol.14
, pp. 1005-1028
-
-
Poncin-Epaillard Legeay1
-
69
-
-
0037192405
-
Plasma-surface modification of biomaterials
-
[69] Chu, P., Plasma-surface modification of biomaterials. Mater. Sci. Eng.: R: Rep. 36 (2002), 143–206.
-
(2002)
Mater. Sci. Eng.: R: Rep.
, vol.36
, pp. 143-206
-
-
Chu, P.1
-
70
-
-
84884227179
-
Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms
-
[70] Flexer, V., Marque, M., Donose, B., Virdis, B., Keller, J., Plasma treatment of electrodes significantly enhances the development of anodic electrochemically active biofilms. Electrochim. Acta 108 (2013), 566–574.
-
(2013)
Electrochim. Acta
, vol.108
, pp. 566-574
-
-
Flexer, V.1
Marque, M.2
Donose, B.3
Virdis, B.4
Keller, J.5
-
71
-
-
84880128528
-
Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems
-
[71] Guo, K., Freguia, S., Dennis, P.G., Chen, X., Donose, B.C., Keller, J., Goodin, J.J., Rabaey, K., Effects of surface charge and hydrophobicity on anodic biofilm formation, community composition, and current generation in bioelectrochemical systems. Environ. Sci. Technol. 47 (2013), 7563–7570.
-
(2013)
Environ. Sci. Technol.
, vol.47
, pp. 7563-7570
-
-
Guo, K.1
Freguia, S.2
Dennis, P.G.3
Chen, X.4
Donose, B.C.5
Keller, J.6
Goodin, J.J.7
Rabaey, K.8
-
72
-
-
33847607418
-
Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells tissue
-
[72] Cheng, S., Logan, B.E., Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells tissue. Electrochem. Commun. 9 (2007), 492–496.
-
(2007)
Electrochem. Commun.
, vol.9
, pp. 492-496
-
-
Cheng, S.1
Logan, B.E.2
-
73
-
-
84930377405
-
Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells
-
[73] Yang, Q., Jiang, Y., Xu, Y., Qiu, Y., Chen, Y., Zhu, S., Shen, S., Hydrogen production with polyaniline/multi-walled carbon nanotube cathode catalysts in microbial electrolysis cells. J. Chem. Technol. Biotechnol. 90:7 (2015), 1263–1269.
-
(2015)
J. Chem. Technol. Biotechnol.
, vol.90
, Issue.7
, pp. 1263-1269
-
-
Yang, Q.1
Jiang, Y.2
Xu, Y.3
Qiu, Y.4
Chen, Y.5
Zhu, S.6
Shen, S.7
-
74
-
-
84955152992
-
Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode
-
[74] Cai, W., Liu, W., Han, J., Wang, A., Enhanced hydrogen production in microbial electrolysis cell with 3D self-assembly nickel foam-graphene cathode. Biosens. Bioelectron. 80 (2016), 118–122.
-
(2016)
Biosens. Bioelectron.
, vol.80
, pp. 118-122
-
-
Cai, W.1
Liu, W.2
Han, J.3
Wang, A.4
-
75
-
-
84881404831
-
Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells
-
[75] Nie, H., Zhang, T., Cui, M., Lu, H., Lovley, D.R., Russell, T.P., Improved cathode for high efficient microbial-catalyzed reduction in microbial electrosynthesis cells. Phys. Chem. Chem. Phys. 15 (2013), 14290–14294.
-
(2013)
Phys. Chem. Chem. Phys.
, vol.15
, pp. 14290-14294
-
-
Nie, H.1
Zhang, T.2
Cui, M.3
Lu, H.4
Lovley, D.R.5
Russell, T.P.6
-
76
-
-
84929162125
-
Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems
-
[76] Yan, H., Catania, C., Bazan, G.C., Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems. Adv. Mater. 27 (2015), 2958–2973.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2958-2973
-
-
Yan, H.1
Catania, C.2
Bazan, G.C.3
-
77
-
-
84894237849
-
Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1
-
[77] Wang, V.B., Kirchhofer, N.D., Chen, X., Tan, M.Y.L., Sivakumar, K., Cao, B., Zhang, Q., Kjelleberg, S., Bazan, G.C., Loo, S.C.J., Marsili, E., Comparison of flavins and a conjugated oligoelectrolyte in stimulating extracellular electron transport from Shewanella oneidensis MR-1. Electrochem. Commun. 41 (2014), 55–58.
-
(2014)
Electrochem. Commun.
, vol.41
, pp. 55-58
-
-
Wang, V.B.1
Kirchhofer, N.D.2
Chen, X.3
Tan, M.Y.L.4
Sivakumar, K.5
Cao, B.6
Zhang, Q.7
Kjelleberg, S.8
Bazan, G.C.9
Loo, S.C.J.10
Marsili, E.11
-
78
-
-
84918517242
-
Reactor concepts for bioelectrochemical syntheses and energy conversion
-
[78] Krieg, T., Sydow, A., Schröder, U., Schrader, J., Holtmann, D., Reactor concepts for bioelectrochemical syntheses and energy conversion. Trends Biotechnol. 32 (2014), 645–655.
-
(2014)
Trends Biotechnol.
, vol.32
, pp. 645-655
-
-
Krieg, T.1
Sydow, A.2
Schröder, U.3
Schrader, J.4
Holtmann, D.5
-
79
-
-
79953668500
-
Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells
-
[79] Lu, L., Ren, N., Zhao, X., Wang, H., Wua, D., Xing, D., Hydrogen production, methanogen inhibition and microbial community structures in psychrophilic single-chamber microbial electrolysis cells. Energy Environ. Sci. 4 (2011), 1329–1336.
-
(2011)
Energy Environ. Sci.
, vol.4
, pp. 1329-1336
-
-
Lu, L.1
Ren, N.2
Zhao, X.3
Wang, H.4
Wua, D.5
Xing, D.6
-
80
-
-
84866152771
-
Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells
-
[80] Lu, L., Xing, D., Ren, N., Logan, B., Syntrophic interactions drive the hydrogen production from glucose at low temperature in microbial electrolysis cells. Bioresour. Technol., 124, 2012, 6876.
-
(2012)
Bioresour. Technol.
, vol.124
, pp. 6876
-
-
Lu, L.1
Xing, D.2
Ren, N.3
Logan, B.4
-
81
-
-
84880513592
-
Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell
-
[81] Heidrich, E., Dolfing, J., Scott, K., Edwards, S.R., Jones, C., Curtis, T.P., Production of hydrogen from domestic wastewater in a pilot-scale microbial electrolysis cell. Appl. Microbiol. Biotechnol. 97 (2012), 6979–6989.
-
(2012)
Appl. Microbiol. Biotechnol.
, vol.97
, pp. 6979-6989
-
-
Heidrich, E.1
Dolfing, J.2
Scott, K.3
Edwards, S.R.4
Jones, C.5
Curtis, T.P.6
-
82
-
-
84904753315
-
Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems
-
[82] Zhan, G., Li, D., Tao, Y., Zhu, X., Zhang, L., Wanga, Y., He, X., Ammonia as carbon-free substrate for hydrogen production in bioelectrochemical systems. Int. J. Hydrogen Energy 39 (2014), 11854–11859.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 11854-11859
-
-
Zhan, G.1
Li, D.2
Tao, Y.3
Zhu, X.4
Zhang, L.5
Wanga, Y.6
He, X.7
-
83
-
-
84864567797
-
Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry
-
[83] Saski, K., Morita, M., Sasaki, Igarashi, D., Single-chamber bioelectrochemical hydrogen fermentation from garbage slurry. Biochem. Eng. J. 68 (2012), 104–108.
-
(2012)
Biochem. Eng. J.
, vol.68
, pp. 104-108
-
-
Saski, K.1
Morita, M.2
Sasaki3
Igarashi, D.4
-
84
-
-
78650828362
-
High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing
-
[84] Cheng, S., Logan, B., High hydrogen production rate of microbial electrolysis cell (MEC) with reduced electrode spacing. Bioresour. Technol. 102 (2011), 3571–3574.
-
(2011)
Bioresour. Technol.
, vol.102
, pp. 3571-3574
-
-
Cheng, S.1
Logan, B.2
-
85
-
-
79952558400
-
Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater
-
[85] Cusick, R., Bryan, B., Parker, D.S., Merrill, M.D., Mehanna, M., Kiely, P.D., Liu, G., Logan, B.E., Performance of a pilot-scale continuous flow microbial electrolysis cell fed winery wastewater. Appl. Microbiol. Biotechnol. 89 (2011), 2053–2063.
-
(2011)
Appl. Microbiol. Biotechnol.
, vol.89
, pp. 2053-2063
-
-
Cusick, R.1
Bryan, B.2
Parker, D.S.3
Merrill, M.D.4
Mehanna, M.5
Kiely, P.D.6
Liu, G.7
Logan, B.E.8
-
86
-
-
0021324550
-
Effects of temperature on methanogenesis in a thermophilic (58 (C) anaerobic digestor
-
[86] Zinder, S.H., Anguish, T., Cardwell, S.C., Effects of temperature on methanogenesis in a thermophilic (58 (C) anaerobic digestor. Appl. Environ. Microbiol., 1984, 808–813.
-
(1984)
Appl. Environ. Microbiol.
, pp. 808-813
-
-
Zinder, S.H.1
Anguish, T.2
Cardwell, S.C.3
-
87
-
-
84872414394
-
Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production
-
[87] Gil-Carrera, L., Escapa, A., Mehta, P., Santoyo, G., Guiot, S.R., Morán, A., Tartakovsky, B., Microbial electrolysis cell scale-up for combined wastewater treatment and hydrogen production. Bioresour. Technol. 130 (2012), 584–591.
-
(2012)
Bioresour. Technol.
, vol.130
, pp. 584-591
-
-
Gil-Carrera, L.1
Escapa, A.2
Mehta, P.3
Santoyo, G.4
Guiot, S.R.5
Morán, A.6
Tartakovsky, B.7
-
88
-
-
84906951689
-
Commercial materials as cathode for hydrogen production in microbial electrolysis cell
-
[88] Farhangi, S., Ebrahimi, S., Niasar, M., Commercial materials as cathode for hydrogen production in microbial electrolysis cell. Biotechnol. Lett. 36 (2014), 1987–1992.
-
(2014)
Biotechnol. Lett.
, vol.36
, pp. 1987-1992
-
-
Farhangi, S.1
Ebrahimi, S.2
Niasar, M.3
-
89
-
-
84890859222
-
Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells
-
[89] Batlle-Vilanova, P., Puiga, S., Gonzalez-Olmosa, R., Vilajeliu-Ponsa, A., Bañerasb, L., Balaguera, M.D., Colprima, J., Assessment of biotic and abiotic graphite cathodes for hydrogen production in microbial electrolysis cells. Int. J. Hydrogen Energy 39 (2014), 1297–1305.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 1297-1305
-
-
Batlle-Vilanova, P.1
Puiga, S.2
Gonzalez-Olmosa, R.3
Vilajeliu-Ponsa, A.4
Bañerasb, L.5
Balaguera, M.D.6
Colprima, J.7
-
90
-
-
84869824633
-
Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study
-
[90] Escapa, A., Gómez, X., Tartakovsky, B., Morán, A., Estimating microbial electrolysis cell (MEC) investment costs in wastewater treatment plants: case study. Int. J. Hydrogen Energy 37 (2012), 18641–18653.
-
(2012)
Int. J. Hydrogen Energy
, vol.37
, pp. 18641-18653
-
-
Escapa, A.1
Gómez, X.2
Tartakovsky, B.3
Morán, A.4
-
91
-
-
74849126212
-
Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures
-
[91] Watson, V., Logan, B., Power production in MFCs inoculated with Shewanella oneidensis MR-1 or mixed cultures. Biotechnol. Bioeng. 105 (2010), 489–498.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 489-498
-
-
Watson, V.1
Logan, B.2
-
92
-
-
84858280027
-
Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis
-
[92] Raghavulu, S., Babu, P.S., Goud, R.K., Subhash, G.V., Srikanth, S., Mohan, S.V., Bioaugmentation of an electrochemically active strain to enhance the electron discharge of mixed culture: process evaluation through electro-kinetic analysis. RSC Adv. 2 (2011), 677–688.
-
(2011)
RSC Adv.
, vol.2
, pp. 677-688
-
-
Raghavulu, S.1
Babu, P.S.2
Goud, R.K.3
Subhash, G.V.4
Srikanth, S.5
Mohan, S.V.6
-
93
-
-
77949365653
-
Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production
-
[93] Rosenbaum, M., Cotta, M., Angenent, L., Aerated Shewanella oneidensis in continuously fed bioelectrochemical systems for power and hydrogen production. Biotechnol. Bioeng. 105 (2010), 880–888.
-
(2010)
Biotechnol. Bioeng.
, vol.105
, pp. 880-888
-
-
Rosenbaum, M.1
Cotta, M.2
Angenent, L.3
-
94
-
-
84939451803
-
Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities
-
[94] Pasupuleti, S., Srikanth, S., Mohan, S., Pant, D., Development of exoelectrogenic bioanode and study on feasibility of hydrogen production using abiotic VITO-CoRE™ and VITO-CASE™ electrodes in a single chamber microbial electrolysis cell (MEC) at low current densities. Bioresour. Technol. 195 (2015), 131–138.
-
(2015)
Bioresour. Technol.
, vol.195
, pp. 131-138
-
-
Pasupuleti, S.1
Srikanth, S.2
Mohan, S.3
Pant, D.4
-
95
-
-
84890436867
-
Methanol opportunities for electricity and hydrogen production in bioelectrochemical systems
-
[95] Montpart, N., Ribot-Llobet, E., Garlapati, V.K., Rago, L., Baeza, J.A., Guisasola, A., Methanol opportunities for electricity and hydrogen production in bioelectrochemical systems. Int. J. Hydrogen Energy 39 (2014), 770–777.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 770-777
-
-
Montpart, N.1
Ribot-Llobet, E.2
Garlapati, V.K.3
Rago, L.4
Baeza, J.A.5
Guisasola, A.6
-
96
-
-
84916629365
-
Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source
-
[96] Jourdin, L., Freguia, S., Donose, B., Keller, J., Autotrophic hydrogen-producing biofilm growth sustained by a cathode as the sole electron and energy source. Bioelectrochemistry, 102, 2015, 5663.
-
(2015)
Bioelectrochemistry
, vol.102
, pp. 5663
-
-
Jourdin, L.1
Freguia, S.2
Donose, B.3
Keller, J.4
-
97
-
-
84890887124
-
Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells
-
[97] Gao, Y., Ryu, H., Domingo, J., Lee, H.-S., Syntrophic interactions between H2-scavenging and anode-respiring bacteria can improve current density in microbial electrochemical cells. Bioresour. Technol. 153 (2013), 245–253.
-
(2013)
Bioresour. Technol.
, vol.153
, pp. 245-253
-
-
Gao, Y.1
Ryu, H.2
Domingo, J.3
Lee, H.-S.4
-
98
-
-
65649104174
-
Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system
-
[98] Sun, M., Sheng, G.P., Mu, Z.X., Liu, X.W., Chen, Y.Z., Wang, H.L., Yu, H.Q., Manipulating the hydrogen production from acetate in a microbial electrolysis cell-microbial fuel cell-coupled system. J. Power Sources 191 (2009), 338–343.
-
(2009)
J. Power Sources
, vol.191
, pp. 338-343
-
-
Sun, M.1
Sheng, G.P.2
Mu, Z.X.3
Liu, X.W.4
Chen, Y.Z.5
Wang, H.L.6
Yu, H.Q.7
-
99
-
-
20044370112
-
Electrochemically assisted microbial production of hydrogen from acetate
-
[99] Liu, H., Grot, S., Logan, B.E., Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39 (2005), 4317–4320.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 4317-4320
-
-
Liu, H.1
Grot, S.2
Logan, B.E.3
-
100
-
-
79958786650
-
Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water
-
[100] Kalathil, S., Lee, J., Cho, M., Electrochemically active biofilm-mediated synthesis of silver nanoparticles in water. Green Chem., 13, 2011, 1482.
-
(2011)
Green Chem.
, vol.13
, pp. 1482
-
-
Kalathil, S.1
Lee, J.2
Cho, M.3
-
101
-
-
84958291784
-
Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery
-
[101] Pandey, P., Shinde, V.N., Deopurkar, R.L., Kale, S.P., Patil, S.A., Pant, D., Recent advances in the use of different substrates in microbial fuel cells toward wastewater treatment and simultaneous energy recovery. Appl. Energy 168 (2016), 706–723.
-
(2016)
Appl. Energy
, vol.168
, pp. 706-723
-
-
Pandey, P.1
Shinde, V.N.2
Deopurkar, R.L.3
Kale, S.P.4
Patil, S.A.5
Pant, D.6
-
102
-
-
84904249191
-
Reduction of ammonia inhibition of organic matter degradation by turning during a laboratory-scale swine manure composting
-
[102] Kuok, F., Mimoto, H., Nakasaki, K., Reduction of ammonia inhibition of organic matter degradation by turning during a laboratory-scale swine manure composting. Int. J. Waste Resour., 3, 2015.
-
(2015)
Int. J. Waste Resour.
, vol.3
-
-
Kuok, F.1
Mimoto, H.2
Nakasaki, K.3
-
103
-
-
84892369620
-
Single chamber microbial fuel cells (SCMFCs) treating wastewater containing methanol
-
[103] Liu, B., Li, B., Single chamber microbial fuel cells (SCMFCs) treating wastewater containing methanol. Int. J. Hydrogen Energy 39 (2014), 2340–2344.
-
(2014)
Int. J. Hydrogen Energy
, vol.39
, pp. 2340-2344
-
-
Liu, B.1
Li, B.2
-
104
-
-
33947385817
-
Electricity generation and microbial community analysis of alcohol powered microbial fuel cells
-
[104] Kim, J., Jung, S., Regan, J., Logan, B., Electricity generation and microbial community analysis of alcohol powered microbial fuel cells. Bioresour. Technol. 98 (2007), 2568–2577.
-
(2007)
Bioresour. Technol.
, vol.98
, pp. 2568-2577
-
-
Kim, J.1
Jung, S.2
Regan, J.3
Logan, B.4
-
105
-
-
84949214899
-
An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction
-
[105] Mohanakrishna, G., Seelam, J., Vanbroekhoven, K., Pant, D., An enriched electroactive homoacetogenic biocathode for the microbial electrosynthesis of acetate through carbon dioxide reduction. Faraday Discuss. 183 (2015), 445–462.
-
(2015)
Faraday Discuss.
, vol.183
, pp. 445-462
-
-
Mohanakrishna, G.1
Seelam, J.2
Vanbroekhoven, K.3
Pant, D.4
-
106
-
-
18344391948
-
Microbial phenazine production enhances electron transfer in biofuel cells
-
[106] Rabaey, K., Boon, N., Höfte, M., Verstraete, W., Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39 (2005), 3401–3408.
-
(2005)
Environ. Sci. Technol.
, vol.39
, pp. 3401-3408
-
-
Rabaey, K.1
Boon, N.2
Höfte, M.3
Verstraete, W.4
-
107
-
-
84877880240
-
Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells
-
[107] Wang, V., Chua, S.L., Cao, B., Seviour, T., Nesatyy, V.J., Marsili, E., Kjelleberg, S., Givskov, M., Tolker-Nielsen, T., Song, H., Loo, J.S.C., andYang, L., Engineering PQS biosynthesis pathway for enhancement of bioelectricity production in pseudomonas aeruginosa microbial fuel cells. PLoS One, 8, 2013, e63129.
-
(2013)
PLoS One
, vol.8
, pp. e63129
-
-
Wang, V.1
Chua, S.L.2
Cao, B.3
Seviour, T.4
Nesatyy, V.J.5
Marsili, E.6
Kjelleberg, S.7
Givskov, M.8
Tolker-Nielsen, T.9
Song, H.10
Loo, J.S.C.11
andYang, L.12
-
108
-
-
41649085415
-
Shewanella secretes flavins that mediate extracellular electron transfer
-
[108] Marsili, E., Baron, D.B., Shikhare, I.D., Coursolle, D., Gralnica, J.A., Bond, D.R., Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Nat. Acad. Sci. U. S. A. 105 (2008), 3968–3973.
-
(2008)
Proc. Nat. Acad. Sci. U. S. A.
, vol.105
, pp. 3968-3973
-
-
Marsili, E.1
Baron, D.B.2
Shikhare, I.D.3
Coursolle, D.4
Gralnica, J.A.5
Bond, D.R.6
-
109
-
-
84928776576
-
Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis
-
[109] Deutzmann, J., Sahin, M., Spormann, A., Extracellular enzymes facilitate electron uptake in biocorrosion and bioelectrosynthesis. mBio 6 (2015), e00496–15.
-
(2015)
mBio
, vol.6
, pp. e00496-15
-
-
Deutzmann, J.1
Sahin, M.2
Spormann, A.3
-
110
-
-
84929162125
-
Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems
-
[110] Yan, H., Catania, C., Bazan, G., Membrane-intercalating conjugated oligoelectrolytes: impact on bioelectrochemical systems. Adv. Mater. 27 (2015), 2958–2973.
-
(2015)
Adv. Mater.
, vol.27
, pp. 2958-2973
-
-
Yan, H.1
Catania, C.2
Bazan, G.3
-
111
-
-
84958880424
-
Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4
-
[111] He, A.-Y., Yin, C.Y., Xu, H., Kong, X.P., Xue, J.W., Zhu, J., Jiang, M., Wu, H., Enhanced butanol production in a microbial electrolysis cell by Clostridium beijerinckii IB4. Bioprocess Biosyst. Eng. 39 (2016), 245–254.
-
(2016)
Bioprocess Biosyst. Eng.
, vol.39
, pp. 245-254
-
-
He, A.-Y.1
Yin, C.Y.2
Xu, H.3
Kong, X.P.4
Xue, J.W.5
Zhu, J.6
Jiang, M.7
Wu, H.8
-
112
-
-
84879759623
-
Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures
-
[112] Eerten-Jansen, M., Eerten-Jansen, V., Heijne, A.T., Grootscholten, T.I.M., Steinbusch, K.J.J., Sleutels, T.H.J.A., Hamelers, H.V.M., Buisman, C.J.N., Bioelectrochemical production of caproate and caprylate from acetate by mixed cultures. ACS Sustainable Chem. Eng. 1 (2016), 513–518.
-
(2016)
ACS Sustainable Chem. Eng.
, vol.1
, pp. 513-518
-
-
Eerten-Jansen, M.1
Eerten-Jansen, V.2
Heijne, A.T.3
Grootscholten, T.I.M.4
Steinbusch, K.J.J.5
Sleutels, T.H.J.A.6
Hamelers, H.V.M.7
Buisman, C.J.N.8
-
113
-
-
84916198682
-
Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells
-
[113] Wang, Q., Yu, H., Quan, X., Li, Y., Fan, G., Li, L., Assessment of five different cathode materials for Co(II) reduction with simultaneous hydrogen evolution in microbial electrolysis cells. Int. J. Hydrogen Energy, 40, 2015, 184196.
-
(2015)
Int. J. Hydrogen Energy
, vol.40
, pp. 184196
-
-
Wang, Q.1
Yu, H.2
Quan, X.3
Li, Y.4
Fan, G.5
Li, L.6
-
114
-
-
84875744057
-
A critical literature review on biohydrogen production by pure cultures
-
[114] Elsharnouby, O., Hafez, H., Nakhla, G., Naggar, M., A critical literature review on biohydrogen production by pure cultures. Int. J. Hydrogen Energy 38 (2013), 4945–4966.
-
(2013)
Int. J. Hydrogen Energy
, vol.38
, pp. 4945-4966
-
-
Elsharnouby, O.1
Hafez, H.2
Nakhla, G.3
Naggar, M.4
-
115
-
-
84865337641
-
A comprehensive and quantitative review of dark fermentative biohydrogen production
-
[115] Rittmann, S., Herwig, C., A comprehensive and quantitative review of dark fermentative biohydrogen production. Microb. Cell Fact., 11, 2012, 115.
-
(2012)
Microb. Cell Fact.
, vol.11
, pp. 115
-
-
Rittmann, S.1
Herwig, C.2
-
116
-
-
84937232564
-
Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution
-
[116] Zech, K., Oehmichen, K., Grasemann, E., Michaelis, J., Funke, S., Seiffert, M., Technical, economic and environmental assessment of technologies for the production of biohydrogen and its distribution. Int. J. Hydrogen Energy 40 (2015), 5487–5495.
-
(2015)
Int. J. Hydrogen Energy
, vol.40
, pp. 5487-5495
-
-
Zech, K.1
Oehmichen, K.2
Grasemann, E.3
Michaelis, J.4
Funke, S.5
Seiffert, M.6
-
117
-
-
79955479492
-
Simulating the impact of suppression of methanogenesis in continuous flow biohydrogen reactors
-
[117] Hafez, H., Elbeshbishy, E., Nakhla, G., Naggar, M., Simulating the impact of suppression of methanogenesis in continuous flow biohydrogen reactors. Int. J. Hydrogen Energy 36 (2011), 5885–5894.
-
(2011)
Int. J. Hydrogen Energy
, vol.36
, pp. 5885-5894
-
-
Hafez, H.1
Elbeshbishy, E.2
Nakhla, G.3
Naggar, M.4
-
118
-
-
2342525227
-
Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process
-
[118] Kim, I., Effect of low pH on the activity of hydrogen utilizing methanogen in bio-hydrogen process. Int. J. Hydrogen Energy 29:11 (2004), 1133–1140.
-
(2004)
Int. J. Hydrogen Energy
, vol.29
, Issue.11
, pp. 1133-1140
-
-
Kim, I.1
-
119
-
-
78049484165
-
Ni foam cathode enables high volumetric H 2 production in a microbial electrolysis cell
-
[119] Jeremiasse, A.W., Hamelers, H.V., Saakes, M., Buisman, C.J., Ni foam cathode enables high volumetric H 2 production in a microbial electrolysis cell. Int. J. Hydrogen Energy 35 (2010), 12716–12723.
-
(2010)
Int. J. Hydrogen Energy
, vol.35
, pp. 12716-12723
-
-
Jeremiasse, A.W.1
Hamelers, H.V.2
Saakes, M.3
Buisman, C.J.4
|