메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 943-951

Beyond local search: Tracking objects everywhere with instance-specific proposals

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; LOCAL SEARCH (OPTIMIZATION); PATTERN RECOGNITION; QUALITY CONTROL;

EID: 84986317433     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.108     Document Type: Conference Paper
Times cited : (257)

References (46)
  • 1
    • 33845596140 scopus 로고    scopus 로고
    • Robust fragmentsbased tracking using the integral histogram
    • 6
    • A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, 2006.
    • (2006) CVPR
    • Adam, A.1    Rivlin, E.2    Shimshoni, I.3
  • 2
    • 84866688216 scopus 로고    scopus 로고
    • Measuring the objectness of image windows
    • 4
    • B. Alexe, T. Deselaers, and V. Ferrari. Measuring the objectness of image windows. TPAMI, 2012.
    • (2012) TPAMI
    • Alexe, B.1    Deselaers, T.2    Ferrari, V.3
  • 3
    • 3242681758 scopus 로고    scopus 로고
    • Support vector tracking
    • 2
    • S. Avidan. Support vector tracking. TPAMI, 2004.
    • (2004) TPAMI
    • Avidan, S.1
  • 4
    • 77953182319 scopus 로고    scopus 로고
    • Visual tracking with online multiple instance learning
    • 1, 2, 6
    • B. Babenko, M. H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. TPAMI, 2011.
    • (2011) TPAMI
    • Babenko, B.1    Yang, M.H.2    Belongie, S.3
  • 5
    • 70350619001 scopus 로고    scopus 로고
    • Learning to localize objects with structured output regression
    • 5
    • M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008.
    • (2008) ECCV
    • Blaschko, M.B.1    Lampert, C.H.2
  • 6
    • 56449087452 scopus 로고    scopus 로고
    • Solving multiclass support vector machines with LaRank
    • 5
    • A. Bordes, L. Bottou, P. Gallinari, and J. Weston. Solving multiclass support vector machines with LaRank. In ICML, 2007.
    • (2007) ICML
    • Bordes, A.1    Bottou, L.2    Gallinari, P.3    Weston, J.4
  • 8
    • 84892599053 scopus 로고    scopus 로고
    • Structured visual tracking with dynamic graph
    • 6
    • Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Li. Structured visual tracking with dynamic graph. In ACCV, 2012.
    • (2012) ACCV
    • Cai, Z.1    Wen, L.2    Yang, J.3    Lei, Z.4    Li, S.5
  • 9
    • 84861335581 scopus 로고    scopus 로고
    • CPMC: Automatic object segmentation using constrained parametric min-cuts
    • 4
    • J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPMAI, 2012.
    • (2012) TPMAI
    • Carreira, J.1    Sminchisescu, C.2
  • 10
    • 84911456915 scopus 로고    scopus 로고
    • BING: Binarized normed gradients for objectness estimation at 300fps
    • 3, 8
    • M. Cheng, Z. Zhang, W. Lin, and P. H. S. Torr. BING: binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014. 3, 8
    • (2014) CVPR
    • Cheng, M.1    Zhang, Z.2    Lin, W.3    Torr, P.H.S.4
  • 13
    • 80052910974 scopus 로고    scopus 로고
    • Context tracker: Exploring supporters and distracters in unconstrained environments
    • 2, 7
    • T. B. Dinh, N. Vo, and G. G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011.
    • (2011) CVPR
    • Dinh, T.B.1    Vo, N.2    Medioni, G.G.3
  • 15
    • 84911400494 scopus 로고    scopus 로고
    • Rich feature hierarchies for accurate object detection and semantic segmentation
    • 3, 7
    • R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
    • (2014) CVPR
    • Girshick, R.1    Donahue, J.2    Darrell, T.3    Malik, J.4
  • 16
    • 84856659290 scopus 로고    scopus 로고
    • Struck: Structured output tracking with kernels
    • 1, 2, 3, 4, 5, 6, 7, 8
    • S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
    • (2011) ICCV
    • Hare, S.1    Saffari, A.2    Torr, P.H.S.3
  • 17
    • 84875994858 scopus 로고    scopus 로고
    • Exploiting the circulant structure of tracking-by-detection with kernels
    • 7
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
    • (2012) ECCV
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 18
    • 84922907906 scopus 로고    scopus 로고
    • Highspeed tracking with kernelized correlation filters
    • 1, 2, 6, 7, 8
    • J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. TPAMI, 2015.
    • (2015) TPAMI
    • Henriques, J.F.1    Caseiro, R.2    Martins, P.3    Batista, J.4
  • 19
    • 85081111493 scopus 로고    scopus 로고
    • How good are detection proposals, really
    • 3, 8
    • J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really In BMVC, 2014.
    • (2014) BMVC
    • Hosang, J.1    Benenson, R.2    Schiele, B.3
  • 20
    • 85004012518 scopus 로고    scopus 로고
    • Enable scale and aspect ratio adaptability in visual tracking with detection proposals
    • 3
    • D. Huang, L. Luo, M. Wen, Z. Chen, and C. Zhang. Enable scale and aspect ratio adaptability in visual tracking with detection proposals. In BMVC, 2015.
    • (2015) BMVC
    • Huang, D.1    Luo, L.2    Wen, M.3    Chen, Z.4    Zhang, C.5
  • 21
    • 84866725281 scopus 로고    scopus 로고
    • Visual tracking via adaptive structural local sparse appearance model
    • 2, 7, 8
    • X. Jia, H. Lu, and M. H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
    • (2012) CVPR
    • Jia, X.1    Lu, H.2    Yang, M.H.3
  • 22
    • 77956005443 scopus 로고    scopus 로고
    • P-N learning: Bootstrapping binary classifiers by structural constraints
    • 1, 7, 8
    • Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In CVPR, 2010.
    • (2010) CVPR
    • Kalal, Z.1    Matas, J.2    Mikolajczyk, K.3
  • 24
    • 84956693941 scopus 로고    scopus 로고
    • A scale adaptive kernel correlation filter tracker with feature integration
    • 6
    • Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV Workshop, 2014.
    • (2014) ECCV Workshop
    • Li, Y.1    Zhu, J.2
  • 25
    • 84986300306 scopus 로고    scopus 로고
    • Adaptive objectness for object tracking
    • 3
    • P. Liang, C. Liao, X. Mei, and H. Ling. Adaptive objectness for object tracking. CoRR, 2015.
    • (2015) CoRR
    • Liang, P.1    Liao, C.2    Mei, X.3    Ling, H.4
  • 26
    • 84996899169 scopus 로고    scopus 로고
    • The visual object tracking VOT2014 challenge results
    • 1, 2, 5, 6, 8
    • M. Kristan et al. The visual object tracking VOT2014 challenge results. In ECCV Workshop, 2014.
    • (2014) ECCV Workshop
    • Kristan, M.1
  • 28
    • 85097586621 scopus 로고    scopus 로고
    • Robust visual tracking using l1 minimization
    • 1
    • X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009.
    • (2009) ICCV
    • Mei, X.1    Ling, H.2
  • 29
    • 84959245627 scopus 로고    scopus 로고
    • In defense of color-based model-free tracking
    • 1, 2
    • H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-free tracking. In CVPR, 2015.
    • (2015) CVPR
    • Possegger, H.1    Mauthner, T.2    Bischof, H.3
  • 30
    • 39749173057 scopus 로고    scopus 로고
    • Incremental learning for robust visual tracking
    • 1, 2
    • D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang. Incremental learning for robust visual tracking. IJCV, 2008.
    • (2008) IJCV
    • Ross, D.A.1    Lim, J.2    Lin, R.S.3    Yang, M.H.4
  • 33
    • 51949092888 scopus 로고    scopus 로고
    • Learning on Lie groups for invariant detection and tracking
    • 2
    • O. Tuzel, F. Porikli, and P. Meer. Learning on Lie groups for invariant detection and tracking. In CVPR, 2008.
    • (2008) CVPR
    • Tuzel, O.1    Porikli, F.2    Meer, P.3
  • 34
    • 84946759339 scopus 로고    scopus 로고
    • Transferring rich feature hierarchies for robust visual tracking
    • 1
    • N. Wang, S. Li, A. Gupta, and D. Yeung. Transferring rich feature hierarchies for robust visual tracking. CoRR, 2015.
    • (2015) CoRR
    • Wang, N.1    Li, S.2    Gupta, A.3    Yeung, D.4
  • 35
    • 85009857367 scopus 로고    scopus 로고
    • Understanding and diagnosing visual tracking systems
    • 1, 3, 4
    • N. Wang, J. Shi, D. Yeung, and J. Jia. Understanding and diagnosing visual tracking systems. CoRR, 2015.
    • (2015) CoRR
    • Wang, N.1    Shi, J.2    Yeung, D.3    Jia, J.4
  • 36
    • 84898769710 scopus 로고    scopus 로고
    • Regionlets for generic object detection
    • 3, 7
    • X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.
    • (2013) ICCV
    • Wang, X.1    Yang, M.2    Zhu, S.3    Lin, Y.4
  • 37
    • 77956527572 scopus 로고    scopus 로고
    • Multi-class Pegasos on a budget
    • 5
    • Z. Wang, K. Crammer, and S. Vucetic. Multi-class Pegasos on a budget. In ICML, 2010.
    • (2010) ICML
    • Wang, Z.1    Crammer, K.2    Vucetic, S.3
  • 38
    • 84939235624 scopus 로고    scopus 로고
    • Object tracking benchmark
    • 1, 2, 5, 8
    • Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. TPAMI, 2015.
    • (2015) TPAMI
    • Wu, Y.1    Lim, J.2    Yang, M.3
  • 39
    • 84887348427 scopus 로고    scopus 로고
    • Online object tracking: A benchmark
    • 1, 2, 3, 5, 8
    • Y. Wu, J. Lim, and M. H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
    • (2013) CVPR
    • Wu, Y.1    Lim, J.2    Yang, M.H.3
  • 40
    • 85009901660 scopus 로고    scopus 로고
    • MEEM: Robust tracking via multiple experts using entropy minimization
    • 1, 2, 5, 6, 7, 8
    • J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
    • (2014) ECCV
    • Zhang, J.1    Ma, S.2    Sclaroff, S.3
  • 41
    • 84986310485 scopus 로고    scopus 로고
    • Robust tracking via convolutional networks without learning
    • 1
    • K. Zhang, Q. Liu, Y. Wu, and M. Yang. Robust tracking via convolutional networks without learning. CoRR, 2015.
    • (2015) CoRR
    • Zhang, K.1    Liu, Q.2    Wu, Y.3    Yang, M.4
  • 42
    • 84875267892 scopus 로고    scopus 로고
    • Real-time compressive tracking
    • 6
    • K. Zhang, L. Zhang, and M. H. Yang. Real-time compressive tracking. In ECCV, 2012.
    • (2012) ECCV
    • Zhang, K.1    Zhang, L.2    Yang, M.H.3
  • 44
    • 84866648566 scopus 로고    scopus 로고
    • Robust object tracking via sparsity-based collaborative model
    • 2, 7, 8
    • W. Zhong, H. Lu, and M. H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
    • (2012) CVPR
    • Zhong, W.1    Lu, H.2    Yang, M.H.3
  • 45
    • 84925382227 scopus 로고    scopus 로고
    • Lie-Struck: Affine tracking on Lie groups using structured SVM
    • 1
    • G. Zhu, F. Porikli, Y. Ming, and H. Li. Lie-Struck: Affine tracking on Lie groups using structured SVM. In WACV, 2015.
    • (2015) WACV
    • Zhu, G.1    Porikli, F.2    Ming, Y.3    Li, H.4
  • 46
    • 85009853104 scopus 로고    scopus 로고
    • Edge boxes: Locating object proposals from edges
    • 2, 3, 4, 7, 8
    • C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
    • (2014) ECCV
    • Zitnick, C.L.1    Dollár, P.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.