-
1
-
-
33845596140
-
Robust fragmentsbased tracking using the integral histogram
-
6
-
A. Adam, E. Rivlin, and I. Shimshoni. Robust fragmentsbased tracking using the integral histogram. In CVPR, 2006.
-
(2006)
CVPR
-
-
Adam, A.1
Rivlin, E.2
Shimshoni, I.3
-
3
-
-
3242681758
-
Support vector tracking
-
2
-
S. Avidan. Support vector tracking. TPAMI, 2004.
-
(2004)
TPAMI
-
-
Avidan, S.1
-
4
-
-
77953182319
-
Visual tracking with online multiple instance learning
-
1, 2, 6
-
B. Babenko, M. H. Yang, and S. Belongie. Visual tracking with online multiple instance learning. TPAMI, 2011.
-
(2011)
TPAMI
-
-
Babenko, B.1
Yang, M.H.2
Belongie, S.3
-
5
-
-
70350619001
-
Learning to localize objects with structured output regression
-
5
-
M. B. Blaschko and C. H. Lampert. Learning to localize objects with structured output regression. In ECCV, 2008.
-
(2008)
ECCV
-
-
Blaschko, M.B.1
Lampert, C.H.2
-
8
-
-
84892599053
-
Structured visual tracking with dynamic graph
-
6
-
Z. Cai, L. Wen, J. Yang, Z. Lei, and S. Li. Structured visual tracking with dynamic graph. In ACCV, 2012.
-
(2012)
ACCV
-
-
Cai, Z.1
Wen, L.2
Yang, J.3
Lei, Z.4
Li, S.5
-
9
-
-
84861335581
-
CPMC: Automatic object segmentation using constrained parametric min-cuts
-
4
-
J. Carreira and C. Sminchisescu. CPMC: Automatic object segmentation using constrained parametric min-cuts. TPMAI, 2012.
-
(2012)
TPMAI
-
-
Carreira, J.1
Sminchisescu, C.2
-
10
-
-
84911456915
-
BING: Binarized normed gradients for objectness estimation at 300fps
-
3, 8
-
M. Cheng, Z. Zhang, W. Lin, and P. H. S. Torr. BING: binarized normed gradients for objectness estimation at 300fps. In CVPR, 2014. 3, 8
-
(2014)
CVPR
-
-
Cheng, M.1
Zhang, Z.2
Lin, W.3
Torr, P.H.S.4
-
13
-
-
80052910974
-
Context tracker: Exploring supporters and distracters in unconstrained environments
-
2, 7
-
T. B. Dinh, N. Vo, and G. G. Medioni. Context tracker: Exploring supporters and distracters in unconstrained environments. In CVPR, 2011.
-
(2011)
CVPR
-
-
Dinh, T.B.1
Vo, N.2
Medioni, G.G.3
-
14
-
-
84921069139
-
The Pascal visual object classes challenge: A retrospective
-
3, 7, 8
-
M. Everingham, S. M. A. Eslami, L. V. Gool, C. K. I. Williams, J. M. Winn, and A. Zisserman. The Pascal visual object classes challenge: A retrospective. IJCV, 2015.
-
(2015)
IJCV
-
-
Everingham, M.1
Eslami, S.M.A.2
Gool, L.V.3
Williams, C.K.I.4
Winn, J.M.5
Zisserman, A.6
-
15
-
-
84911400494
-
Rich feature hierarchies for accurate object detection and semantic segmentation
-
3, 7
-
R. Girshick, J. Donahue, T. Darrell, and J. Malik. Rich feature hierarchies for accurate object detection and semantic segmentation. In CVPR, 2014.
-
(2014)
CVPR
-
-
Girshick, R.1
Donahue, J.2
Darrell, T.3
Malik, J.4
-
16
-
-
84856659290
-
Struck: Structured output tracking with kernels
-
1, 2, 3, 4, 5, 6, 7, 8
-
S. Hare, A. Saffari, and P. H. S. Torr. Struck: Structured output tracking with kernels. In ICCV, 2011.
-
(2011)
ICCV
-
-
Hare, S.1
Saffari, A.2
Torr, P.H.S.3
-
17
-
-
84875994858
-
Exploiting the circulant structure of tracking-by-detection with kernels
-
7
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Exploiting the circulant structure of tracking-by-detection with kernels. In ECCV, 2012.
-
(2012)
ECCV
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
18
-
-
84922907906
-
Highspeed tracking with kernelized correlation filters
-
1, 2, 6, 7, 8
-
J. F. Henriques, R. Caseiro, P. Martins, and J. Batista. Highspeed tracking with kernelized correlation filters. TPAMI, 2015.
-
(2015)
TPAMI
-
-
Henriques, J.F.1
Caseiro, R.2
Martins, P.3
Batista, J.4
-
19
-
-
85081111493
-
How good are detection proposals, really
-
3, 8
-
J. Hosang, R. Benenson, and B. Schiele. How good are detection proposals, really In BMVC, 2014.
-
(2014)
BMVC
-
-
Hosang, J.1
Benenson, R.2
Schiele, B.3
-
20
-
-
85004012518
-
Enable scale and aspect ratio adaptability in visual tracking with detection proposals
-
3
-
D. Huang, L. Luo, M. Wen, Z. Chen, and C. Zhang. Enable scale and aspect ratio adaptability in visual tracking with detection proposals. In BMVC, 2015.
-
(2015)
BMVC
-
-
Huang, D.1
Luo, L.2
Wen, M.3
Chen, Z.4
Zhang, C.5
-
21
-
-
84866725281
-
Visual tracking via adaptive structural local sparse appearance model
-
2, 7, 8
-
X. Jia, H. Lu, and M. H. Yang. Visual tracking via adaptive structural local sparse appearance model. In CVPR, 2012.
-
(2012)
CVPR
-
-
Jia, X.1
Lu, H.2
Yang, M.H.3
-
22
-
-
77956005443
-
P-N learning: Bootstrapping binary classifiers by structural constraints
-
1, 7, 8
-
Z. Kalal, J. Matas, and K. Mikolajczyk. P-N learning: Bootstrapping binary classifiers by structural constraints. In CVPR, 2010.
-
(2010)
CVPR
-
-
Kalal, Z.1
Matas, J.2
Mikolajczyk, K.3
-
24
-
-
84956693941
-
A scale adaptive kernel correlation filter tracker with feature integration
-
6
-
Y. Li and J. Zhu. A scale adaptive kernel correlation filter tracker with feature integration. In ECCV Workshop, 2014.
-
(2014)
ECCV Workshop
-
-
Li, Y.1
Zhu, J.2
-
26
-
-
84996899169
-
The visual object tracking VOT2014 challenge results
-
1, 2, 5, 6, 8
-
M. Kristan et al. The visual object tracking VOT2014 challenge results. In ECCV Workshop, 2014.
-
(2014)
ECCV Workshop
-
-
Kristan, M.1
-
28
-
-
85097586621
-
Robust visual tracking using l1 minimization
-
1
-
X. Mei and H. Ling. Robust visual tracking using l1 minimization. In ICCV, 2009.
-
(2009)
ICCV
-
-
Mei, X.1
Ling, H.2
-
29
-
-
84959245627
-
In defense of color-based model-free tracking
-
1, 2
-
H. Possegger, T. Mauthner, and H. Bischof. In defense of color-based model-free tracking. In CVPR, 2015.
-
(2015)
CVPR
-
-
Possegger, H.1
Mauthner, T.2
Bischof, H.3
-
30
-
-
39749173057
-
Incremental learning for robust visual tracking
-
1, 2
-
D. A. Ross, J. Lim, R. S. Lin, and M. H. Yang. Incremental learning for robust visual tracking. IJCV, 2008.
-
(2008)
IJCV
-
-
Ross, D.A.1
Lim, J.2
Lin, R.S.3
Yang, M.H.4
-
31
-
-
77955991676
-
Online multi-class LPBoost
-
2
-
A. Saffari, M. Godec, T. Pock, C. Leistner, and H. Bischof. Online multi-class LPBoost. In CVPR, 2010.
-
(2010)
CVPR
-
-
Saffari, A.1
Godec, M.2
Pock, T.3
Leistner, C.4
Bischof, H.5
-
32
-
-
84903121415
-
Visual tracking: An experimental survey
-
1, 3, 5, 7, 8
-
A. W. M. Smeulders, D. M. Chu, R. Cucchiara, S. Calderara, A. Dehghan, and M. Shah. Visual tracking: An experimental survey. TPMAI, 2014.
-
(2014)
TPMAI
-
-
Smeulders, A.W.M.1
Chu, D.M.2
Cucchiara, R.3
Calderara, S.4
Dehghan, A.5
Shah, M.6
-
33
-
-
51949092888
-
Learning on Lie groups for invariant detection and tracking
-
2
-
O. Tuzel, F. Porikli, and P. Meer. Learning on Lie groups for invariant detection and tracking. In CVPR, 2008.
-
(2008)
CVPR
-
-
Tuzel, O.1
Porikli, F.2
Meer, P.3
-
34
-
-
84946759339
-
Transferring rich feature hierarchies for robust visual tracking
-
1
-
N. Wang, S. Li, A. Gupta, and D. Yeung. Transferring rich feature hierarchies for robust visual tracking. CoRR, 2015.
-
(2015)
CoRR
-
-
Wang, N.1
Li, S.2
Gupta, A.3
Yeung, D.4
-
35
-
-
85009857367
-
Understanding and diagnosing visual tracking systems
-
1, 3, 4
-
N. Wang, J. Shi, D. Yeung, and J. Jia. Understanding and diagnosing visual tracking systems. CoRR, 2015.
-
(2015)
CoRR
-
-
Wang, N.1
Shi, J.2
Yeung, D.3
Jia, J.4
-
36
-
-
84898769710
-
Regionlets for generic object detection
-
3, 7
-
X. Wang, M. Yang, S. Zhu, and Y. Lin. Regionlets for generic object detection. In ICCV, 2013.
-
(2013)
ICCV
-
-
Wang, X.1
Yang, M.2
Zhu, S.3
Lin, Y.4
-
38
-
-
84939235624
-
Object tracking benchmark
-
1, 2, 5, 8
-
Y. Wu, J. Lim, and M. Yang. Object tracking benchmark. TPAMI, 2015.
-
(2015)
TPAMI
-
-
Wu, Y.1
Lim, J.2
Yang, M.3
-
39
-
-
84887348427
-
Online object tracking: A benchmark
-
1, 2, 3, 5, 8
-
Y. Wu, J. Lim, and M. H. Yang. Online object tracking: A benchmark. In CVPR, 2013.
-
(2013)
CVPR
-
-
Wu, Y.1
Lim, J.2
Yang, M.H.3
-
40
-
-
85009901660
-
MEEM: Robust tracking via multiple experts using entropy minimization
-
1, 2, 5, 6, 7, 8
-
J. Zhang, S. Ma, and S. Sclaroff. MEEM: Robust tracking via multiple experts using entropy minimization. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zhang, J.1
Ma, S.2
Sclaroff, S.3
-
41
-
-
84986310485
-
Robust tracking via convolutional networks without learning
-
1
-
K. Zhang, Q. Liu, Y. Wu, and M. Yang. Robust tracking via convolutional networks without learning. CoRR, 2015.
-
(2015)
CoRR
-
-
Zhang, K.1
Liu, Q.2
Wu, Y.3
Yang, M.4
-
43
-
-
84941425069
-
Structural sparse tracking
-
1
-
T. Zhang, S. Liu, C. Xu, S. Yan, B. Ghanem, N. Ahuja, and M. H. Yang. Structural sparse tracking. In CVPR, 2015.
-
(2015)
CVPR
-
-
Zhang, T.1
Liu, S.2
Xu, C.3
Yan, S.4
Ghanem, B.5
Ahuja, N.6
Yang, M.H.7
-
44
-
-
84866648566
-
Robust object tracking via sparsity-based collaborative model
-
2, 7, 8
-
W. Zhong, H. Lu, and M. H. Yang. Robust object tracking via sparsity-based collaborative model. In CVPR, 2012.
-
(2012)
CVPR
-
-
Zhong, W.1
Lu, H.2
Yang, M.H.3
-
45
-
-
84925382227
-
Lie-Struck: Affine tracking on Lie groups using structured SVM
-
1
-
G. Zhu, F. Porikli, Y. Ming, and H. Li. Lie-Struck: Affine tracking on Lie groups using structured SVM. In WACV, 2015.
-
(2015)
WACV
-
-
Zhu, G.1
Porikli, F.2
Ming, Y.3
Li, H.4
-
46
-
-
85009853104
-
Edge boxes: Locating object proposals from edges
-
2, 3, 4, 7, 8
-
C. L. Zitnick and P. Dollár. Edge boxes: Locating object proposals from edges. In ECCV, 2014.
-
(2014)
ECCV
-
-
Zitnick, C.L.1
Dollár, P.2
|