메뉴 건너뛰기




Volumn 2016-December, Issue , 2016, Pages 2018-2026

Supervised quantization for similarity Search

Author keywords

[No Author keywords available]

Indexed keywords

COMPUTER VISION; MATHEMATICAL TRANSFORMATIONS;

EID: 84986268753     PISSN: 10636919     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CVPR.2016.222     Document Type: Conference Paper
Times cited : (81)

References (40)
  • 2
    • 74049158146 scopus 로고    scopus 로고
    • Nus-wide: A real-world web image database from national university of Singapore
    • T.-S. Chua, J. Tang, R. Hong, H. Li, Z. Luo, and Y. Zheng. Nus-wide: a real-world web image database from national university of singapore. In CIVR, page 48, 2009.
    • (2009) CIVR , pp. 48
    • Chua, T.-S.1    Tang, J.2    Hong, R.3    Li, H.4    Luo, Z.5    Zheng, Y.6
  • 3
    • 85198028989 scopus 로고    scopus 로고
    • Imagenet: A large-scale hierarchical image database
    • J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei. Imagenet: A large-scale hierarchical image database. In CVPR, pages 248-255, 2009.
    • (2009) CVPR , pp. 248-255
    • Deng, J.1    Dong, W.2    Socher, R.3    Li, L.-J.4    Li, K.5    Fei-Fei, L.6
  • 4
    • 84959215516 scopus 로고    scopus 로고
    • Deep hashing for compact binary codes learning
    • V. Erin Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou. Deep hashing for compact binary codes learning. In CVPR, pages 2475-2483, 2015.
    • (2015) CVPR , pp. 2475-2483
    • Erin Liong, V.1    Lu, J.2    Wang, G.3    Moulin, P.4    Zhou, J.5
  • 5
    • 15044355327 scopus 로고    scopus 로고
    • Similarity search in high dimensions via hashing
    • A. Gionis, P. Indyk, R. Motwani, et al. Similarity search in high dimensions via hashing. In VLDB, volume 99, pages 518-529, 1999.
    • (1999) VLDB , vol.99 , pp. 518-529
    • Gionis, A.1    Indyk, P.2    Motwani, R.3
  • 6
    • 84887601251 scopus 로고    scopus 로고
    • Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval
    • Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin. Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. IEEE Trans. Pattern Analysis and Machine Intelligence, 35(12):2916-2929, 2013.
    • (2013) IEEE Trans. Pattern Analysis and Machine Intelligence , vol.35 , Issue.12 , pp. 2916-2929
    • Gong, Y.1    Lazebnik, S.2    Gordo, A.3    Perronnin, F.4
  • 7
    • 51949104743 scopus 로고    scopus 로고
    • Fast image search for learned metrics
    • P. Jain, B. Kulis, and K. Grauman. Fast image search for learned metrics. In CVPR, pages 1-8, 2008.
    • (2008) CVPR , pp. 1-8
    • Jain, P.1    Kulis, B.2    Grauman, K.3
  • 9
    • 84959190865 scopus 로고    scopus 로고
    • Revisiting kernelized locality-sensitive hashing for improved large-scale image retrieval
    • K. Jiang, Q. Que, and B. Kulis. Revisiting kernelized locality-sensitive hashing for improved large-scale image retrieval. In CVPR, pages 4933-4941, 2015.
    • (2015) CVPR , pp. 4933-4941
    • Jiang, K.1    Que, Q.2    Kulis, B.3
  • 10
    • 84949775463 scopus 로고    scopus 로고
    • Scalable graph hashing with feature transformation
    • Q.-Y. Jiang andW.-J. Li. Scalable graph hashing with feature transformation. In IJCAI, pages 2248-2254, 2015.
    • (2015) IJCAI , pp. 2248-2254
    • Jiang, Q.-Y.1    Li, W.-J.2
  • 11
    • 80052885236 scopus 로고    scopus 로고
    • Random maximum margin hashing
    • A. Joly and O. Buisson. Random maximum margin hashing. In CVPR, pages 873-880, 2011.
    • (2011) CVPR , pp. 873-880
    • Joly, A.1    Buisson, O.2
  • 12
    • 84877741460 scopus 로고    scopus 로고
    • Isotropic hashing
    • W. Kong and W.-J. Li. Isotropic hashing. In NIPS, pages 1646-1654, 2012.
    • (2012) NIPS , pp. 1646-1654
    • Kong, W.1    Li, W.-J.2
  • 14
    • 84876231242 scopus 로고    scopus 로고
    • Imagenet classification with deep convolutional neural networks
    • A. Krizhevsky, I. Sutskever, and G. E. Hinton. Imagenet classification with deep convolutional neural networks. In NIPS, pages 1097-1105, 2012.
    • (2012) NIPS , pp. 1097-1105
    • Krizhevsky, A.1    Sutskever, I.2    Hinton, G.E.3
  • 15
    • 84858740468 scopus 로고    scopus 로고
    • Learning to hash with binary reconstructive embeddings
    • B. Kulis and T. Darrell. Learning to hash with binary reconstructive embeddings. In NIPS, pages 1042-1050, 2009.
    • (2009) NIPS , pp. 1042-1050
    • Kulis, B.1    Darrell, T.2
  • 16
    • 77953184849 scopus 로고    scopus 로고
    • Kernelized locality-sensitive hashing for scalable image search
    • B. Kulis and K. Grauman. Kernelized locality-sensitive hashing for scalable image search. In ICCV, pages 2130-2137, 2009.
    • (2009) ICCV , pp. 2130-2137
    • Kulis, B.1    Grauman, K.2
  • 17
    • 0032203257 scopus 로고    scopus 로고
    • Gradientbased learning applied to document recognition
    • Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner. Gradientbased learning applied to document recognition. Proceedings of the IEEE, 86(11):2278-2324, 1998.
    • (1998) Proceedings of the IEEE , vol.86 , Issue.11 , pp. 2278-2324
    • LeCun, Y.1    Bottou, L.2    Bengio, Y.3    Haffner, P.4
  • 18
    • 84911393360 scopus 로고    scopus 로고
    • Fast supervised hashing with decision trees for highdimensional data
    • G. Lin, C. Shen, Q. Shi, A. van den Hengel, and D. Suter. Fast supervised hashing with decision trees for highdimensional data. In CVPR, pages 1971-1978, 2014.
    • (2014) CVPR , pp. 1971-1978
    • Lin, G.1    Shen, C.2    Shi, Q.3    Hengel Den A.Van4    Suter, D.5
  • 19
    • 84898826577 scopus 로고    scopus 로고
    • A general two-step approach to learning-based hashing
    • G. Lin, C. Shen, D. Suter, and A. van den Hengel. A general two-step approach to learning-based hashing. In ICCV, pages 2552-2559, 2013.
    • (2013) ICCV , pp. 2552-2559
    • Lin, G.1    Shen, C.2    Suter, D.3    Hengel Den A.Van4
  • 20
    • 84927125924 scopus 로고    scopus 로고
    • Discrete graph hashing
    • W. Liu, C. Mu, S. Kumar, and S.-F. Chang. Discrete graph hashing. In NIPS, pages 3419-3427, 2014.
    • (2014) NIPS , pp. 3419-3427
    • Liu, W.1    Mu, C.2    Kumar, S.3    Chang, S.-F.4
  • 24
    • 80053457714 scopus 로고    scopus 로고
    • Minimal loss hashing for compact binary codes
    • M. Norouzi and D. M. Blei. Minimal loss hashing for compact binary codes. In ICML, pages 353-360, 2011.
    • (2011) ICML , pp. 353-360
    • Norouzi, M.1    Blei, D.M.2
  • 25
    • 84877790557 scopus 로고    scopus 로고
    • Hamming distance metric learning
    • M. Norouzi, D. M. Blei, and R. R. Salakhutdinov. Hamming distance metric learning. In NIPS, pages 1061-1069, 2012.
    • (2012) NIPS , pp. 1061-1069
    • Norouzi, M.1    Blei, D.M.2    Salakhutdinov, R.R.3
  • 26
    • 84887387629 scopus 로고    scopus 로고
    • Cartesian k-means
    • M. Norouzi and D. J. Fleet. Cartesian k-means. In CVPR, pages 3017-3024, 2013.
    • (2013) CVPR , pp. 3017-3024
    • Norouzi, M.1    Fleet, D.J.2
  • 27
    • 84951869843 scopus 로고    scopus 로고
    • Supervised discrete hashing
    • F. Shen, C. Shen,W. Liu, and H. T. Shen. Supervised discrete hashing. In CVPR, pages 37-45, 2015.
    • (2015) CVPR , pp. 37-45
    • Shen, F.1    Shen, C.2    Liu, W.3    Shen, H.T.4
  • 32
    • 84898830644 scopus 로고    scopus 로고
    • Learning hash codes with listwise supervision
    • J. Wang, W. Liu, A. X. Sun, and Y.-G. Jiang. Learning hash codes with listwise supervision. In ICCV, pages 3032-3039, 2013.
    • (2013) ICCV , pp. 3032-3039
    • Wang, J.1    Liu, W.2    Sun, A.X.3    Jiang, Y.-G.4
  • 34
    • 84887428910 scopus 로고    scopus 로고
    • Order preserving hashing for approximate nearest neighbor search
    • J.Wang, J.Wang, N. Yu, and S. Li. Order preserving hashing for approximate nearest neighbor search. In ACM Multimedia, pages 133-142, 2013.
    • (2013) ACM Multimedia , pp. 133-142
    • Wang, J.1    Wang, J.2    Yu, N.3    Li, S.4
  • 35
    • 84898781018 scopus 로고    scopus 로고
    • Fast neighborhood graph search using cartesian concatenation
    • J. Wang, J. Wang, G. Zeng, R. Gan, S. Li, and B. Guo. Fast neighborhood graph search using cartesian concatenation. In ICCV, pages 2128-2135. 2013.
    • (2013) ICCV , pp. 2128-2135
    • Wang, J.1    Wang, J.2    Zeng, G.3    Gan, R.4    Li, S.5    Guo, B.6
  • 36
    • 84867875948 scopus 로고    scopus 로고
    • Multidimensional spectral hashing
    • Y. Weiss, R. Fergus, and A. Torralba. Multidimensional spectral hashing. In ECCV, pages 340-353. 2012.
    • (2012) ECCV , pp. 340-353
    • Weiss, Y.1    Fergus, R.2    Torralba, A.3
  • 37
  • 38
    • 84863036764 scopus 로고    scopus 로고
    • Complementary hashing for approximate nearest neighbor search
    • H. Xu, J. Wang, Z. Li, G. Zeng, S. Li, and N. Yu. Complementary hashing for approximate nearest neighbor search. In ICCV, pages 1631-1638, 2011.
    • (2011) ICCV , pp. 1631-1638
    • Xu, H.1    Wang, J.2    Li, Z.3    Zeng, G.4    Li, S.5    Yu, N.6
  • 39
    • 84973906749 scopus 로고    scopus 로고
    • Composite quantization for approximate nearest neighbor search
    • T. Zhang, C. Du, and J. Wang. Composite quantization for approximate nearest neighbor search. In ICML, pages 838-846, 2014.
    • (2014) ICML , pp. 838-846
    • Zhang, T.1    Du, C.2    Wang, J.3
  • 40
    • 84959240114 scopus 로고    scopus 로고
    • Deep semantic ranking based hashing for multi-label image retrieval
    • F. Zhao, Y. Huang, L.Wang, and T. Tan. Deep semantic ranking based hashing for multi-label image retrieval. In CVPR, pages 1556-1564, 2015.
    • (2015) CVPR , pp. 1556-1564
    • Zhao, F.1    Huang, Y.2    Wang, L.3    Tan, T.4


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.