메뉴 건너뛰기




Volumn 64, Issue , 2014, Pages 135-160

Rotation-based ensemble classifiers for high-dimensional data

Author keywords

[No Author keywords available]

Indexed keywords


EID: 84986218314     PISSN: 21916586     EISSN: 21916594     Source Type: Book Series    
DOI: 10.1007/978-3-319-05696-8_6     Document Type: Chapter
Times cited : (22)

References (93)
  • 2
    • 32044473249 scopus 로고    scopus 로고
    • Using diversity of errors for selecting members of a committee classifier
    • Aksela M, Laaksonen J (2006) Using diversity of errors for selecting members of a committee classifier. Pattern Recogn 39(4):608-623
    • (2006) Pattern Recogn , vol.39 , Issue.4 , pp. 608-623
    • Aksela, M.1    Laaksonen, J.2
  • 3
    • 78650860354 scopus 로고    scopus 로고
    • Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains
    • Bakos KL, Gamba P (2011) Hierarchical hybrid decision tree fusion of multiple hyperspectral data processing chains. IEEE Trans Geosci Remote Sens 49(1-2):388-394
    • (2011) IEEE Trans Geosci Remote Sens , vol.49 , Issue.1-2 , pp. 388-394
    • Bakos, K.L.1    Gamba, P.2
  • 4
    • 37249003229 scopus 로고    scopus 로고
    • Multiple classifier systems in remote sensing: From basics to recent developments
    • Benediktsson JA, Chanussot J, Fauvel M (2007) Multiple classifier systems in remote sensing: from basics to recent developments. Lect Notes Comput Sci 4472:501-512
    • (2007) Lect Notes Comput Sci , vol.4472 , pp. 501-512
    • Benediktsson, J.A.1    Chanussot, J.2    Fauvel, M.3
  • 7
    • 79952315022 scopus 로고    scopus 로고
    • Multiple classifier systems for robust classifier design in adversarial environments
    • Biggio B, Fumera G, Roli F (2010) Multiple classifier systems for robust classifier design in adversarial environments. J Mach Learn Cybern 1:27-41
    • (2010) J Mach Learn Cybern , vol.1 , pp. 27-41
    • Biggio, B.1    Fumera, G.2    Roli, F.3
  • 8
    • 84861757634 scopus 로고    scopus 로고
    • Classification in high-dimensional feature spaces assessment using SVM, IVM and RVM with focus on simulated EnMap data
    • Braun AC, Weidner U, Hinz S (2012) Classification in high-dimensional feature spaces assessment using SVM, IVM and RVM with focus on simulated EnMap data. IEEE J Sel Top Appl Earth Observations Remote Sens 5(2):436-443
    • (2012) IEEE J Sel Top Appl Earth Observations Remote Sens , vol.5 , Issue.2 , pp. 436-443
    • Braun, A.C.1    Weidner, U.2    Hinz, S.3
  • 9
    • 0030211964 scopus 로고    scopus 로고
    • Bagging predictors
    • Breiman L (1996) Bagging predictors. Mach Learn 24(2):123-140
    • (1996) Mach Learn , vol.24 , Issue.2 , pp. 123-140
    • Breiman, L.1
  • 11
    • 0036821351 scopus 로고    scopus 로고
    • Multiple classifiers applied to multisource remote sensing data
    • Briem G, Benediktsson J, Sveinsson J (2002) Multiple classifiers applied to multisource remote sensing data. IEEE Trans Geosci Remote Sens 40(10):2291-2299
    • (2002) IEEE Trans Geosci Remote Sens , vol.40 , Issue.10 , pp. 2291-2299
    • Briem, G.1    Benediktsson, J.2    Sveinsson, J.3
  • 12
    • 10444221886 scopus 로고    scopus 로고
    • Diversity creation methods: A survey and categorisation
    • Brown G, Wyatt J, Harris R, Yao X (2005) Diversity creation methods: a survey and categorisation. Inf Fusion 6(1):5-20
    • (2005) Inf Fusion , vol.6 , Issue.1 , pp. 5-20
    • Brown, G.1    Wyatt, J.2    Harris, R.3    Yao, X.4
  • 13
    • 0242515926 scopus 로고    scopus 로고
    • Attribute bagging: Improving accuracy of classifier ensembles by using random feature subsets
    • Bryll RK, Gutierrez-Osuna R, Quek FKH (2003) Attribute bagging: improving accuracy of classifier ensembles by using random feature subsets. Pattern Recogn 36(6):1291-1302
    • (2003) Pattern Recogn , vol.36 , Issue.6 , pp. 1291-1302
    • Bryll, R.K.1    Gutierrez-Osuna, R.2    Quek, F.3
  • 14
    • 43949125818 scopus 로고    scopus 로고
    • Evaluation of Random Forest and AdBboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery
    • Chan JC, Paelinckx D (2008) Evaluation of Random Forest and AdBboost tree-based ensemble classification and spectral band selection for ecotope mapping using airborne hyperspectral imagery. Remote Sens Environ 112(6):2999-3011
    • (2008) Remote Sens Environ , vol.112 , Issue.6 , pp. 2999-3011
    • Chan, J.C.1    Paelinckx, D.2
  • 15
    • 32544431928 scopus 로고    scopus 로고
    • Evolving hybrid ensembles of learning machines for better generalisation
    • Chandra A, Yao X (2006) Evolving hybrid ensembles of learning machines for better generalisation. Neurocomputing 69(7-9):686-700
    • (2006) Neurocomputing , vol.69 , Issue.7-9 , pp. 686-700
    • Chandra, A.1    Yao, X.2
  • 16
    • 0242709857 scopus 로고    scopus 로고
    • Why principal component analysis is not an appropriate feature extraction method for hyperspectral data
    • Toulouse, France, 2003
    • Cheriyadat A, Bruce LM (2003) Why principal component analysis is not an appropriate feature extraction method for hyperspectral data. In: Proceedings of IEEE geoscience and remote sensing symposium (IGARSS), Toulouse, France, 2003, pp 3420-3422
    • (2003) Proceedings of IEEE Geoscience and Remote Sensing Symposium (IGARSS) , pp. 3420-3422
    • Cheriyadat, A.1    Bruce, L.M.2
  • 17
    • 84974722422 scopus 로고    scopus 로고
    • Diversity versus quality in classification ensembles based on feature selection
    • Spain, 2000
    • Cunningham P, Carney J (2000) Diversity versus quality in classification ensembles based on feature selection. In: 11th European conference on machine learning, Barcelona, Spain, 2000, pp 109-116
    • (2000) 11Th European Conference on Machine Learning, Barcelona , pp. 109-116
    • Cunningham, P.1    Carney, J.2
  • 18
    • 8344222887 scopus 로고    scopus 로고
    • Exploiting spectral and spatial information in hyperspectral urban data with high resolution
    • Dell’Acqua F, Gamba P, Ferari A, Palmason BJA, Arnason K (2004) Exploiting spectral and spatial information in hyperspectral urban data with high resolution. IEEE Geosci Remote Sens Lett 1(4):322-326
    • (2004) IEEE Geosci Remote Sens Lett , vol.1 , Issue.4 , pp. 322-326
    • Dell’Acqua, F.1    Gamba, P.2    Ferari, A.3    Palmason, B.4    Arnason, K.5
  • 19
    • 0000406788 scopus 로고
    • Solving multiclass learning problems via error-correcting output codes
    • Dietterich TG, Bakiri G (1995) Solving multiclass learning problems via error-correcting output codes. J Artif Intell Res 2(1):263-286
    • (1995) J Artif Intell Res , vol.2 , Issue.1 , pp. 263-286
    • Dietterich, T.G.1    Bakiri, G.2
  • 20
    • 34748885521 scopus 로고    scopus 로고
    • Increasing soft classification accuracy through the use of an ensemble of classifiers
    • Doan HTX, Foody GM (2007) Increasing soft classification accuracy through the use of an ensemble of classifiers. Int J Remote Sens 28(20):4609-4623
    • (2007) Int J Remote Sens , vol.28 , Issue.20 , pp. 4609-4623
    • Doan, H.1    Foody, G.M.2
  • 21
    • 84860267020 scopus 로고    scopus 로고
    • Multiple classifier system for remote sensing image classification: A review
    • Du P, Xia J, Zhang W, Tan K, Liu Y, Liu S (2012) Multiple classifier system for remote sensing image classification: a review. Sensors 12(4):4764-4792
    • (2012) Sensors , vol.12 , Issue.4 , pp. 4764-4792
    • Du, P.1    Xia, J.2    Zhang, W.3    Tan, K.4    Liu, Y.5    Liu, S.6
  • 22
    • 79955059560 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on decision level fusion
    • Du P, Zhang W, Xia J (2011) Hyperspectral remote sensing image classification based on decision level fusion. Chin Optics Lett 9(3):31002-31004
    • (2011) Chin Optics Lett , vol.9 , Issue.3 , pp. 31002-31004
    • Du, P.1    Zhang, W.2    Xia, J.3
  • 23
    • 53849115090 scopus 로고    scopus 로고
    • Hyperspectral and multiangle CHRIS-PROBA images for the generation of land cover maps
    • Duca R, Frate FD (2008) Hyperspectral and multiangle CHRIS-PROBA images for the generation of land cover maps. IEEE Trans Geosci Remote Sens 10:2857-2866
    • (2008) IEEE Trans Geosci Remote Sens , vol.10 , pp. 2857-2866
    • Duca, R.1    Frate, F.D.2
  • 24
    • 66749175769 scopus 로고    scopus 로고
    • Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas
    • Fauvel M, Chanussot J, Benediktsson JA (2009) Kernel principal component analysis for the classification of hyperspectral remote sensing data over urban areas. EURASIP J Adv Signal Process 2:1-15
    • (2009) EURASIP J Adv Signal Process , vol.2 , pp. 1-15
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 26
    • 67349093551 scopus 로고    scopus 로고
    • Classification accuracy comparison: Hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority
    • Foody GM (2009) Classification accuracy comparison: hypothesis tests and the use of confidence intervals in evaluations of difference, equivalence and non-inferiority. Remote Sens Environ 113(8):1658-1663
    • (2009) Remote Sens Environ , vol.113 , Issue.8 , pp. 1658-1663
    • Foody, G.M.1
  • 27
  • 29
    • 84870457493 scopus 로고    scopus 로고
    • A graph-based consensus maximization approach for combining multiple supervised and unsupervised models
    • Gao J, Liang F, Fan W, Sun Y, Han J (2013) A graph-based consensus maximization approach for combining multiple supervised and unsupervised models. IEEE Trans Knowl Data Eng 25(1):15-28
    • (2013) IEEE Trans Knowl Data Eng , vol.25 , Issue.1 , pp. 15-28
    • Gao, J.1    Liang, F.2    Fan, W.3    Sun, Y.4    Han, J.5
  • 30
    • 0035420134 scopus 로고    scopus 로고
    • Design of effective neural network ensembles for image classification
    • Giacinto G, Roli F (2001) Design of effective neural network ensembles for image classification. Image Vis Comput J 19(9/10):697-705
    • (2001) Image Vis Comput J , vol.19 , Issue.9-10 , pp. 697-705
    • Giacinto, G.1    Roli, F.2
  • 32
    • 0242572512 scopus 로고    scopus 로고
    • Comparison and combination of statistical and neural network algorithms for remote-sensing image classification
    • Springer, Berlin
    • Giacinto G, Roli F, Vernazza G (1997) Comparison and combination of statistical and neural network algorithms for remote-sensing image classification. Neurocomputation in remote sensing data analysis. Springer, Berlin, pp 117-124
    • (1997) Neurocomputation in Remote Sensing Data Analysis , pp. 117-124
    • Giacinto, G.1    Roli, F.2    Vernazza, G.3
  • 36
    • 14644421528 scopus 로고    scopus 로고
    • Investigation of the random forest framework for classification of hyperspectral data
    • Ham J, Chen Y, Crawford MM, Ghosh J (2005) Investigation of the random forest framework for classification of hyperspectral data. IEEE Trans Geosci Remote Sens 43(3):492-501
    • (2005) IEEE Trans Geosci Remote Sens , vol.43 , Issue.3 , pp. 492-501
    • Ham, J.1    Chen, Y.2    Crawford, M.M.3    Ghosh, J.4
  • 38
    • 13444273324 scopus 로고    scopus 로고
    • A cluster ensemble method for clustering categorical data
    • He Z, Xu X, Deng S (2005) A cluster ensemble method for clustering categorical data. Inf Fusion 6(2):143-151
    • (2005) Inf Fusion , vol.6 , Issue.2 , pp. 143-151
    • He, Z.1    Xu, X.2    Deng, S.3
  • 39
    • 0032139235 scopus 로고    scopus 로고
    • The random subspace method for constructing decision forests
    • Ho TK (1998) The random subspace method for constructing decision forests. IEEE Trans Pattern Anal Mach Intell 20(8):832-844
    • (1998) IEEE Trans Pattern Anal Mach Intell , vol.20 , Issue.8 , pp. 832-844
    • Ho, T.K.1
  • 40
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Hughes G (1968) On the mean accuracy of statistical pattern recognizers. IEEE Trans Inf Theory 14(1):55-63
    • (1968) IEEE Trans Inf Theory , vol.14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 44
    • 35648938713 scopus 로고    scopus 로고
    • Hyperspectral image classification by bootstrap AdaBoost with random decision stumps
    • Kawaguchi K, Nishii R (2007) Hyperspectral image classification by bootstrap AdaBoost with random decision stumps. IEEE Trans Geosci Remote Sens 45(11-2):3845-3851
    • (2007) IEEE Trans Geosci Remote Sens , vol.45 , Issue.11-2 , pp. 3845-3851
    • Kawaguchi, K.1    Nishii, R.2
  • 47
    • 85054435084 scopus 로고
    • Neural network ensembles, cross validation, and active learning
    • Krogh A, Vedelsby J (1995) Neural network ensembles, cross validation, and active learning. Adv Neural Inf Process Syst 7:231-238
    • (1995) Adv Neural Inf Process Syst , vol.7 , pp. 231-238
    • Krogh, A.1    Vedelsby, J.2
  • 48
    • 0036080105 scopus 로고    scopus 로고
    • Hierarchical fusion of multiple classifiers for hyper-spectral data analysis
    • Kumar S, Ghosh J, Crawford MM (2002) Hierarchical fusion of multiple classifiers for hyper-spectral data analysis. Pattern Anal Appl 5:210-220
    • (2002) Pattern Anal Appl , vol.5 , pp. 210-220
    • Kumar, S.1    Ghosh, J.2    Crawford, M.M.3
  • 51
    • 24144490154 scopus 로고    scopus 로고
    • Diversity in multiple classifier systems
    • Kuncheva LI (2005) Diversity in multiple classifier systems. Inf Fusion 6(1):3-4
    • (2005) Inf Fusion , vol.6 , Issue.1 , pp. 3-4
    • Kuncheva, L.I.1
  • 53
    • 0037403516 scopus 로고    scopus 로고
    • Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy
    • Kuncheva LI, Whitaker CJ (2003) Measures of diversity in classifier ensembles and their relationship with the ensemble accuracy. Mach Learn 51(2):181-207
    • (2003) Mach Learn , vol.51 , Issue.2 , pp. 181-207
    • Kuncheva, L.I.1    Whitaker, C.J.2
  • 55
    • 1842431416 scopus 로고    scopus 로고
    • Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis
    • Lawrence R, Bunna A, Powellb S, Zambon M (2004) Classification of remotely sensed imagery using stochastic gradient boosting as a refinement of classification tree analysis. Remote Sens Environ 90(3):331-336
    • (2004) Remote Sens Environ , vol.90 , Issue.3 , pp. 331-336
    • Lawrence, R.1    Bunna, A.2    Powellb, S.3    Zambon, M.4
  • 56
    • 33947591833 scopus 로고    scopus 로고
    • A survey of image classification methods and techniques for improving classification performance
    • Lu D, Weng Q (2007) A survey of image classification methods and techniques for improving classification performance. Int J Remote Sens 28(5):823-870
    • (2007) Int J Remote Sens , vol.28 , Issue.5 , pp. 823-870
    • Lu, D.1    Weng, Q.2
  • 58
    • 22844439516 scopus 로고    scopus 로고
    • Switching class labels to generate classification ensembles
    • Martinez-Munoz G, Suarez A (2005) Switching class labels to generate classification ensembles. Pattern Recogn 38(10):1483-1494
    • (2005) Pattern Recogn , vol.38 , Issue.10 , pp. 1483-1494
    • Martinez-Munoz, G.1    Suarez, A.2
  • 59
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Melgani F, Bruzzone L (2004) Classification of hyperspectral remote sensing images with support vector machines. IEEE Trans Geosci Remote Sens 42(8):1778-1790
    • (2004) IEEE Trans Geosci Remote Sens , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 60
    • 0035509996 scopus 로고    scopus 로고
    • The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion
    • Michail P, Benediktsson JA, Ioannis K (2002) The effect of classifier agreement on the accuracy of the combined classifier in decision level fusion. IEEE Trans Geosci Remote Sens 39(11):2539-2546
    • (2002) IEEE Trans Geosci Remote Sens , vol.39 , Issue.11 , pp. 2539-2546
    • Michail, P.1    Benediktsson, J.A.2    Ioannis, K.3
  • 61
  • 62
    • 35548987823 scopus 로고    scopus 로고
    • Ensemble methods for classification of patients for personalized medicine with high-dimensional data
    • Moon H, Ahn H, Kodell RL, Baek S, Lin C-J, Chen JJ (2007) Ensemble methods for classification of patients for personalized medicine with high-dimensional data. Artif Intell Med 41(3):197-207
    • (2007) Artif Intell Med , vol.41 , Issue.3 , pp. 197-207
    • Moon, H.1    Ahn, H.2    Kodell, R.L.3    Baek, S.4    Lin, C.-J.5    Chen, J.J.6
  • 63
    • 33749643850 scopus 로고    scopus 로고
    • Comparison of classifier fusion methods for classification in pattern recognition tasks
    • Moreno-Seco F, Inesta J, Ponce De Leon P, Mico L (2006) Comparison of classifier fusion methods for classification in pattern recognition tasks. Lect Notes Comput Sci 4109:705-713
    • (2006) Lect Notes Comput Sci , vol.4109 , pp. 705-713
    • Moreno-Seco, F.1    Inesta, J.2    Ponce De Leon, P.3    Mico, L.4
  • 64
    • 38149003544 scopus 로고    scopus 로고
    • Remote sensing applications: An overview
    • Navalgund RR, Jayaraman V, Roy PS (2007) Remote sensing applications: an overview. Current 93(12):1747-1766
    • (2007) Current , vol.93 , Issue.12 , pp. 1747-1766
    • Navalgund, R.R.1    Jayaraman, V.2    Roy, P.S.3
  • 65
    • 33846007269 scopus 로고    scopus 로고
    • Multiple support vector machines for land cover change detection: An application for mapping urban extensions
    • Nemmour H, Chibani Y (2006) Multiple support vector machines for land cover change detection: an application for mapping urban extensions. ISPRS J Photogrammetry Remote Sens 61(2):125-133
    • (2006) ISPRS J Photogrammetry Remote Sens , vol.61 , Issue.2 , pp. 125-133
    • Nemmour, H.1    Chibani, Y.2
  • 66
    • 80655127861 scopus 로고    scopus 로고
    • Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms
    • Ozcift A, Gulten A (2011) Classifier ensemble construction with rotation forest to improve medical diagnosis performance of machine learning algorithms. Comput Methods Programs Biomed 104(3):443-451
    • (2011) Comput Methods Programs Biomed , vol.104 , Issue.3 , pp. 443-451
    • Ozcift, A.1    Gulten, A.2
  • 67
    • 77951295936 scopus 로고    scopus 로고
    • Feature selection for classification of hyperspectral data by SVM
    • Pal M, Foody GM (2010) Feature selection for classification of hyperspectral data by SVM. IEEE Trans Geosci Remote Sens 48(5):2297-2307
    • (2010) IEEE Trans Geosci Remote Sens , vol.48 , Issue.5 , pp. 2297-2307
    • Pal, M.1    Foody, G.M.2
  • 68
    • 0031244715 scopus 로고    scopus 로고
    • Software diversity: Practical statistics for its measurement and exploitation
    • Partridge D, Krzanowski W (1997) Software diversity: practical statistics for its measurement and exploitation. Inf Softw Technol 39(10):707-717
    • (1997) Inf Softw Technol , vol.39 , Issue.10 , pp. 707-717
    • Partridge, D.1    Krzanowski, W.2
  • 69
    • 14644435059 scopus 로고    scopus 로고
    • Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations
    • Plaza A, Martinez P, Plaza J, Perez R (2005) Dimensionality reduction and classification of hyperspectral image data using sequences of extended morphological transformations. IEEE Trans Geosci Remote Sens 43(3):466-479
    • (2005) IEEE Trans Geosci Remote Sens , vol.43 , Issue.3 , pp. 466-479
    • Plaza, A.1    Martinez, P.2    Plaza, J.3    Perez, R.4
  • 70
    • 0033463754 scopus 로고    scopus 로고
    • Serial combination of multiple experts: A unified evaluation
    • Rahman A, Fairhurst M (1999) Serial combination of multiple experts: a unified evaluation. Pattern Anal Appl 2:292-311
    • (1999) Pattern Anal Appl , vol.2 , pp. 292-311
    • Rahman, A.1    Fairhurst, M.2
  • 71
    • 34548100943 scopus 로고    scopus 로고
    • Multi-classifier systems: Review and a roadmap for developers
    • Ranawana R, Palade V (2006) Multi-classifier systems: review and a roadmap for developers. Int J Hybrid Intell Syst 3(1):1-41
    • (2006) Int J Hybrid Intell Syst , vol.3 , Issue.1 , pp. 1-41
    • Ranawana, R.1    Palade, V.2
  • 75
    • 33646834298 scopus 로고    scopus 로고
    • Mapping white micas and their absorption wavelengths using hyperspectral band ratios
    • Ruitenbeek F, Debba P, Meer F, Cudahy T, Meijde M, Hale M (2006) Mapping white micas and their absorption wavelengths using hyperspectral band ratios. Remote Sens Environ 102 (3-4):211-222
    • (2006) Remote Sens Environ , vol.102 , Issue.3-4 , pp. 211-222
    • Ruitenbeek, F.1    Debba, P.2    Meer, F.3    Cudahy, T.4    Meijde, M.5    Hale, M.6
  • 76
    • 0005946314 scopus 로고    scopus 로고
    • An overview of classifier fusion methods
    • Ruta D, Gabrys B (2000) An overview of classifier fusion methods. Comput Inf Syst 7(1):1-10
    • (2000) Comput Inf Syst , vol.7 , Issue.1 , pp. 1-10
    • Ruta, D.1    Gabrys, B.2
  • 78
    • 0036543957 scopus 로고    scopus 로고
    • Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection
    • Smits PC (2002) Multiple classifier systems for supervised remote sensing image classification based on dynamic classifier selection. IEEE Trans Geosci Remote Sens 40:801-813
    • (2002) IEEE Trans Geosci Remote Sens , vol.40 , pp. 801-813
    • Smits, P.C.1
  • 79
    • 0034482007 scopus 로고    scopus 로고
    • Combining multiple classifiers: An application using spatial and remotely sensed information for land cover type mapping
    • Steele BM (2000) Combining multiple classifiers: an application using spatial and remotely sensed information for land cover type mapping. Remote Sens Environ 74(3):545-556
    • (2000) Remote Sens Environ , vol.74 , Issue.3 , pp. 545-556
    • Steele, B.M.1
  • 80
    • 34249086815 scopus 로고    scopus 로고
    • Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis
    • Sugiyama M (2007) Dimensionality reduction of multimodal labeled data by local fisher discriminant analysis. J Mach Learn Res 27(8):1021-1064
    • (2007) J Mach Learn Res , vol.27 , Issue.8 , pp. 1021-1064
    • Sugiyama, M.1
  • 81
    • 2542640342 scopus 로고    scopus 로고
    • A new combination rules of evidence theory (In chinese)
    • Sun Q, Ye XQ, Gu WK (2000) A new combination rules of evidence theory (in chinese). Acta Electronica Sinica 8(1):117-119
    • (2000) Acta Electronica Sinica , vol.8 , Issue.1 , pp. 117-119
    • Sun, Q.1    Ye, X.Q.2    Gu, W.K.3
  • 85
    • 77953871614 scopus 로고    scopus 로고
    • Sensitivity of support vector machines to random feature selection in classification of hyperspectral data
    • Waske B, Van Der Linden S, Benediktsson JA, Rabe A, Hostert P (2010) Sensitivity of support vector machines to random feature selection in classification of hyperspectral data. IEEE Trans Geosci Remote Sens 48(7):2880-2889
    • (2010) IEEE Trans Geosci Remote Sens , vol.48 , Issue.7 , pp. 2880-2889
    • Waske, B.1    Van Der Linden, S.2    Benediktsson, J.A.3    Rabe, A.4    Hostert, P.5
  • 88
    • 84887090067 scopus 로고    scopus 로고
    • A survey of multiple classifier systems as hybrid systems
    • Wozniak M, Grana M, Corchado E (2014) A survey of multiple classifier systems as hybrid systems. Inf Fusion 16(1):3-17
    • (2014) Inf Fusion , vol.16 , Issue.1 , pp. 3-17
    • Wozniak, M.1    Grana, M.2    Corchado, E.3
  • 89
    • 84888299612 scopus 로고    scopus 로고
    • Hyperspectral remote sensing image classification based on rotation forest
    • Xia J, Du P, He X, Chanussot J (2014) Hyperspectral remote sensing image classification based on rotation forest. IEEE Geosci Remote Sens Lett 11:239-243
    • (2014) IEEE Geosci Remote Sens Lett , vol.11 , pp. 239-243
    • Xia, J.1    Du, P.2    He, X.3    Chanussot, J.4
  • 90
    • 0026860706 scopus 로고
    • Methods of combining multiple classifiers and their applications to handwriting recognition
    • Xu L, Krzyzak A, Suen CY (1992) Methods of combining multiple classifiers and their applications to handwriting recognition. IEEE Trans Syst Man Cybern 22(3):418-435
    • (1992) IEEE Trans Syst Man Cybern , vol.22 , Issue.3 , pp. 418-435
    • Xu, L.1    Krzyzak, A.2    Suen, C.Y.3
  • 93
    • 78649594256 scopus 로고    scopus 로고
    • Ten years of technology advancement in remote sensing and the research in the crc-agip lab in gce
    • Zhang Y (2010) Ten years of technology advancement in remote sensing and the research in the crc-agip lab in gce. Geomatica 64(2):173-189
    • (2010) Geomatica , vol.64 , Issue.2 , pp. 173-189
    • Zhang, Y.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.