메뉴 건너뛰기




Volumn 373, Issue , 2016, Pages 165-182

GPU-SME-kNN: Scalable and memory efficient kNN and lazy learning using GPUs

Author keywords

CUDA; GPU; kNN

Indexed keywords

COMPUTER GRAPHICS; DATA MINING; NEAREST NEIGHBOR SEARCH; PATTERN RECOGNITION; PROGRAM PROCESSORS;

EID: 84986001335     PISSN: 00200255     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.ins.2016.08.089     Document Type: Article
Times cited : (24)

References (35)
  • 1
    • 84985941019 scopus 로고    scopus 로고
    • [1] CUDA, http://www.nvidia.com/object/cuda_home_new.html.
  • 2
    • 84985896181 scopus 로고    scopus 로고
    • [2] NVIDIA, http://www.nvidia.com/.
  • 3
    • 0004267735 scopus 로고    scopus 로고
    • Lazy Learning
    • Springer
    • [3] Aha, D.W., Lazy Learning. 1997, Springer.
    • (1997)
    • Aha, D.W.1
  • 5
    • 84865485151 scopus 로고    scopus 로고
    • GPU-FS-k NN: a software tool for fast and scalable kNN computation using GPUs
    • [5] Arefin, A.S., Riveros, C., Berretta, R., Moscato, P., GPU-FS-k NN: a software tool for fast and scalable kNN computation using GPUs. PLoS ONE, 7(8), 2012, e44000, 10.1371/2Fjournal.pone.0044000.
    • (2012) PLoS ONE , vol.7 , Issue.8 , pp. e44000
    • Arefin, A.S.1    Riveros, C.2    Berretta, R.3    Moscato, P.4
  • 6
    • 84986003168 scopus 로고    scopus 로고
    • UCI machine learning repository, URL.
    • [6] K. Bache, M. Lichman, UCI machine learning repository, 2013, URL http://archive.ics.uci.edu/ml.
    • (2013)
    • Bache, K.1    Lichman, M.2
  • 7
    • 84860223796 scopus 로고    scopus 로고
    • Improving the speed and stability of the k-nearest neighbors method
    • [7] Beliakov, G., Li, G., Improving the speed and stability of the k-nearest neighbors method. Pattern Recognit. Lett. 33:10 (2012), 1296–1301.
    • (2012) Pattern Recognit. Lett. , vol.33 , Issue.10 , pp. 1296-1301
    • Beliakov, G.1    Li, G.2
  • 8
    • 84887993058 scopus 로고    scopus 로고
    • High performance evaluation of evolutionary-mined association rules on gpus
    • [8] Cano, A., Luna, J., Ventura, S., High performance evaluation of evolutionary-mined association rules on gpus. J. Supercomput. 66:3 (2013), 1438–1461.
    • (2013) J. Supercomput. , vol.66 , Issue.3 , pp. 1438-1461
    • Cano, A.1    Luna, J.2    Ventura, S.3
  • 9
    • 84855693023 scopus 로고    scopus 로고
    • Speeding up the evaluation phase of gp classification algorithms on gpus
    • [9] Cano, A., Zafra, A., Ventura, S., Speeding up the evaluation phase of gp classification algorithms on gpus. Soft Comput. 16:2 (2012), 187–202.
    • (2012) Soft Comput. , vol.16 , Issue.2 , pp. 187-202
    • Cano, A.1    Zafra, A.2    Ventura, S.3
  • 11
    • 84926662675 scopus 로고
    • Nearest neighbor pattern classification
    • [11] Cover, T., Hart, P., Nearest neighbor pattern classification. Inf. Theory IEEE Trans. 13:1 (1967), 21–27.
    • (1967) Inf. Theory IEEE Trans. , vol.13 , Issue.1 , pp. 21-27
    • Cover, T.1    Hart, P.2
  • 12
    • 84880439002 scopus 로고    scopus 로고
    • Probabilistic characterization of nearest neighbor classifier
    • [12] Dhurandhar, A., Dobra, A., Probabilistic characterization of nearest neighbor classifier. Int. J. Mach. Learn. Cybern. 4:4 (2013), 259–272.
    • (2013) Int. J. Mach. Learn. Cybern. , vol.4 , Issue.4 , pp. 259-272
    • Dhurandhar, A.1    Dobra, A.2
  • 13
    • 0003922190 scopus 로고    scopus 로고
    • Pattern Classification
    • second ed. Wiley-Interscience
    • [13] Duda, R.O., Hart, P.E., Stork, D.G., Pattern Classification. second ed., 2000, Wiley-Interscience.
    • (2000)
    • Duda, R.O.1    Hart, P.E.2    Stork, D.G.3
  • 14
    • 33749265708 scopus 로고    scopus 로고
    • Center-based nearest neighbor classifier
    • [14] Gao, Q.-B., Wang, Z.-Z., Center-based nearest neighbor classifier. Pattern Recognit. 40:1 (2007), 346–349.
    • (2007) Pattern Recognit. , vol.40 , Issue.1 , pp. 346-349
    • Gao, Q.-B.1    Wang, Z.-Z.2
  • 17
    • 84869061183 scopus 로고
    • Algorithm 64: Quicksort
    • [17] Hoare, C.A.R., Algorithm 64: Quicksort. Commun. ACM, 4(7), 1961, 321.
    • (1961) Commun. ACM , vol.4 , Issue.7 , pp. 321
    • Hoare, C.A.R.1
  • 19
    • 84886717683 scopus 로고    scopus 로고
    • Parallel data mining techniques on graphics processing unit with compute unified device architecture (CUDA)
    • [19] Jian, L., Wang, C., Liu, Y., Liang, S., Yi, W., Shi, Y., Parallel data mining techniques on graphics processing unit with compute unified device architecture (CUDA). J. Supercomput. 64:3 (2013), 942–967.
    • (2013) J. Supercomput. , vol.64 , Issue.3 , pp. 942-967
    • Jian, L.1    Wang, C.2    Liu, Y.3    Liang, S.4    Yi, W.5    Shi, Y.6
  • 20
    • 84855248070 scopus 로고    scopus 로고
    • Multi-GPU algorithm for k-nearest neighbor problem
    • [20] Kato, K., Hosino, T., Multi-GPU algorithm for k-nearest neighbor problem. Concurrency Comput. 24:1 (2012), 45–53.
    • (2012) Concurrency Comput. , vol.24 , Issue.1 , pp. 45-53
    • Kato, K.1    Hosino, T.2
  • 21
    • 84901217952 scopus 로고    scopus 로고
    • Fast k-NNG construction with GPU-based quick multi-select
    • [21] Komarov, I., Dashti, A., D'Souza, R.M., Fast k-NNG construction with GPU-based quick multi-select. PLoS ONE, 9(5), 2014, e92409, 10.1371/2Fjournal.pone.0092409.
    • (2014) PLoS ONE , vol.9 , Issue.5 , pp. e92409
    • Komarov, I.1    Dashti, A.2    D'Souza, R.M.3
  • 24
    • 79960565655 scopus 로고    scopus 로고
    • TM architecture
    • Special Issue on Interpretable Fuzzy Systems.
    • TM architecture. Inf. Sci. 181:20 (2011), 4642–4657 Special Issue on Interpretable Fuzzy Systems.
    • (2011) Inf. Sci. , vol.181 , Issue.20 , pp. 4642-4657
    • Mussi, L.1    Daolio, F.2    Cagnoni, S.3
  • 25
    • 0842332241 scopus 로고    scopus 로고
    • A simple locally adaptive nearest neighbor rule with application to pollution forecasting
    • [25] Nock, R., Sebban, M., Bernard, D., A simple locally adaptive nearest neighbor rule with application to pollution forecasting. Int. J. Pattern Recognit. Artif. Intell. 17:8 (2003), 1369–1382.
    • (2003) Int. J. Pattern Recognit. Artif. Intell. , vol.17 , Issue.8 , pp. 1369-1382
    • Nock, R.1    Sebban, M.2    Bernard, D.3
  • 26
    • 84921060713 scopus 로고    scopus 로고
    • Gujrati character recognition using weighted k-nn and mean χ 2 distance measure
    • [26] Prasad, J.R., Kulkarni, U., Gujrati character recognition using weighted k-nn and mean χ 2 distance measure. Int. J. Mach. Learn. Cybern. 6:1 (2015), 69–82.
    • (2015) Int. J. Mach. Learn. Cybern. , vol.6 , Issue.1 , pp. 69-82
    • Prasad, J.R.1    Kulkarni, U.2
  • 28
    • 84924183918 scopus 로고    scopus 로고
    • Mining of Massive Datasets
    • Cambridge University Press
    • [28] Rajaraman, A., Ullman, J., Mining of Massive Datasets. 2011, Cambridge University Press.
    • (2011)
    • Rajaraman, A.1    Ullman, J.2
  • 29
    • 38849131252 scopus 로고    scopus 로고
    • High-throughput sequence alignment using graphics processing units
    • [29] Schatz, M., Trapnell, C., Delcher, A., Varshney, A., High-throughput sequence alignment using graphics processing units. BMC Bioinformatics 8:1 (2007), 1–10.
    • (2007) BMC Bioinformatics , vol.8 , Issue.1 , pp. 1-10
    • Schatz, M.1    Trapnell, C.2    Delcher, A.3    Varshney, A.4
  • 30
    • 33845913054 scopus 로고    scopus 로고
    • Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing)
    • MIT Press
    • [30] Shakhnarovich, G., Darrell, T., Indyk, P., Nearest-Neighbor Methods in Learning and Vision: Theory and Practice (Neural Information Processing). 2006, MIT Press.
    • (2006)
    • Shakhnarovich, G.1    Darrell, T.2    Indyk, P.3
  • 31
    • 84885624310 scopus 로고    scopus 로고
    • Parallel architectures for the k NN classifier - design of soft IP cores and FPGA implementations
    • Article number: 22
    • [31] Stamoulias, I., Manolakos, E., Parallel architectures for the k NN classifier - design of soft IP cores and FPGA implementations. Trans. Embedded Comput. Syst., 13(2), 2013, Article number: 22.
    • (2013) Trans. Embedded Comput. Syst. , vol.13 , Issue.2
    • Stamoulias, I.1    Manolakos, E.2
  • 32
    • 84901303482 scopus 로고    scopus 로고
    • Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification
    • [32] Tomašev, N., Radovanović, M., Mladenić, D., Ivanović, M., Hubness-based fuzzy measures for high-dimensional k-nearest neighbor classification. Int. J. Mach. Learn. Cybern. 5:3 (2014), 445–458.
    • (2014) Int. J. Mach. Learn. Cybern. , vol.5 , Issue.3 , pp. 445-458
    • Tomašev, N.1    Radovanović, M.2    Mladenić, D.3    Ivanović, M.4
  • 33
    • 33750796974 scopus 로고    scopus 로고
    • Improving nearest neighbor rule with a simple adaptive distance measure
    • [33] Wang, J., Neskovic, P., Cooper, L., Improving nearest neighbor rule with a simple adaptive distance measure. Pattern Recognit. Lett. 28:2 (2007), 207–213.
    • (2007) Pattern Recognit. Lett. , vol.28 , Issue.2 , pp. 207-213
    • Wang, J.1    Neskovic, P.2    Cooper, L.3
  • 34
    • 0001899045 scopus 로고    scopus 로고
    • Improved heterogeneous distance functions
    • [34] Wilson, D., Martinez, T., Improved heterogeneous distance functions. J. Artif. Intell. Res. 6 (1997), 1–34.
    • (1997) J. Artif. Intell. Res. , vol.6 , pp. 1-34
    • Wilson, D.1    Martinez, T.2
  • 35
    • 84944611438 scopus 로고    scopus 로고
    • The Top Ten Algorithms in Data Mining
    • CRC Press
    • [35] Wu, X., Kumar, V., The Top Ten Algorithms in Data Mining. 2010, CRC Press.
    • (2010)
    • Wu, X.1    Kumar, V.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.