-
1
-
-
84861958406
-
Electrocatalyst approaches and challenges for automotive fuel cells
-
[CrossRef] [PubMed]
-
Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [CrossRef] [PubMed]
-
(2012)
Nature
, vol.486
, pp. 43-51
-
-
Debe, M.K.1
-
2
-
-
84880319257
-
Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications
-
[CrossRef] [PubMed]
-
Cui, C.-H.; Yu, S.-H. Engineering interface and surface of noble metal nanoparticle nanotubes toward enhanced catalytic activity for fuel cell applications. Acc. Chem. Res. 2013, 46, 1427–1437. [CrossRef] [PubMed]
-
(2013)
Acc. Chem. Res
, vol.46
, pp. 1427-1437
-
-
Cui, C.-H.1
Yu, S.-H.2
-
3
-
-
84904540774
-
An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells
-
[CrossRef]
-
Zhang, Z.; Liu, J.; Gu, J.; Su, L.; Cheng, L. An overview of metal oxide materials as electrocatalysts and supports for polymer electrolyte fuel cells. Energy Environ. Sci. 2014, 7, 2535–2558. [CrossRef]
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 2535-2558
-
-
Zhang, Z.1
Liu, J.2
Gu, J.3
Su, L.4
Cheng, L.5
-
4
-
-
67349258990
-
Fuel cell technology: Nano-engineered multimetallic catalysts
-
[CrossRef]
-
Zhong, C.-J.; Luo, J.; Njoki, P.N.; Mott, D.; Wanjala, B.; Loukrakpam, R.; Lim, S.; Wang, L.; Fang, B.; Xu, Z. Fuel cell technology: Nano-engineered multimetallic catalysts. Energy Environ. Sci. 2008, 1, 454–466. [CrossRef]
-
(2008)
Energy Environ. Sci
, vol.1
, pp. 454-466
-
-
Zhong, C.-J.1
Luo, J.2
Njoki, P.N.3
Mott, D.4
Wanjala, B.5
Loukrakpam, R.6
Lim, S.7
Wang, L.8
Fang, B.9
Xu, Z.10
-
5
-
-
84920720201
-
Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Cheng, N.; Banis, M.N.; Liu, J.; Riese, A.; Li, X.; Li, R.; Ye, S.; Knights, S.; Sun, X. Extremely stable platinum nanoparticles encapsulated in a zirconia nanocage by area-selective atomic layer deposition for the oxygen reduction reaction. Adv. Mater. 2015, 27, 277–281. [CrossRef] [PubMed]
-
(2015)
Adv. Mater
, vol.27
, pp. 277-281
-
-
Cheng, N.1
Banis, M.N.2
Liu, J.3
Riese, A.4
Li, X.5
Li, R.6
Ye, S.7
Knights, S.8
Sun, X.9
-
6
-
-
84928975102
-
Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts
-
[CrossRef]
-
Cheng, N.; Banis, M.N.; Liu, J.; Riese, A.; Mu, S.; Li, R.; Sham, T.-K.; Sun, X. Atomic scale enhancement of metal–support interactions between Pt and ZrC for highly stable electrocatalysts. Energy Environ. Sci. 2015, 8, 1450–1455. [CrossRef]
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 1450-1455
-
-
Cheng, N.1
Banis, M.N.2
Liu, J.3
Riese, A.4
Mu, S.5
Li, R.6
Sham, T.-K.7
Sun, X.8
-
7
-
-
84860744598
-
Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges
-
[CrossRef]
-
Rabis, A.; Rodriguez, P.; Schmidt, T.J. Electrocatalysis for polymer electrolyte fuel cells: Recent achievements and future challenges. Acs Catal. 2012, 2, 864–890. [CrossRef]
-
(2012)
Acs Catal
, vol.2
, pp. 864-890
-
-
Rabis, A.1
Rodriguez, P.2
Schmidt, T.J.3
-
8
-
-
67949089539
-
Improved lifetime of PEM fuel cell catalysts through polymer stabilization
-
[CrossRef]
-
Cheng, N.; Mu, S.; Pan, M.; Edwards, P.P. Improved lifetime of PEM fuel cell catalysts through polymer stabilization. Electrochem. Commun. 2009, 11, 1610–1614. [CrossRef]
-
(2009)
Electrochem. Commun
, vol.11
, pp. 1610-1614
-
-
Cheng, N.1
Mu, S.2
Pan, M.3
Edwards, P.P.4
-
9
-
-
79959833656
-
2 catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell
-
[CrossRef]
-
2 catalyst prepared by in situ carbonized glucose with ultrahigh stability for proton exchange membrane fuel cell. Energy Environ. Sci. 2011, 4, 2558–2566. [CrossRef]
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 2558-2566
-
-
Jiang, Z.-Z.1
Wang, Z.-B.2
Chu, Y.-Y.3
Gu, D.-M.4
Yin, G.-P.5
-
10
-
-
84926451267
-
Pt-based nanoarchitecture and catalyst design for fuel cell applications
-
[CrossRef]
-
Jung, N.; Chung, D.Y.; Ryu, J.; Yoo, S.J.; Sung, Y.-E. Pt-based nanoarchitecture and catalyst design for fuel cell applications. Nano Today 2014, 9, 433–456. [CrossRef]
-
(2014)
Nano Today
, vol.9
, pp. 433-456
-
-
Jung, N.1
Chung, D.Y.2
Ryu, J.3
Yoo, S.J.4
Sung, Y.-E.5
-
11
-
-
84927920045
-
Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Nie, Y.; Li, L.; Wei, Z. Recent advancements in Pt and Pt-free catalysts for oxygen reduction reaction. Chem. Soc. Rev. 2015, 44, 2168–2201. [CrossRef] [PubMed]
-
(2015)
Chem. Soc. Rev
, vol.44
, pp. 2168-2201
-
-
Nie, Y.1
Li, L.2
Wei, Z.3
-
12
-
-
84929377739
-
Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity
-
[CrossRef] [PubMed]
-
Wang, Y.-J.; Zhao, N.; Fang, B.; Li, H.; Bi, X.T.; Wang, H. Carbon-supported Pt-based alloy electrocatalysts for the oxygen reduction reaction in polymer electrolyte membrane fuel cells: Particle size, shape, and composition manipulation and their impact to activity. Chem. Rev. 2015, 115, 3433–3467. [CrossRef] [PubMed]
-
(2015)
Chem. Rev
, vol.115
, pp. 3433-3467
-
-
Wang, Y.-J.1
Zhao, N.2
Fang, B.3
Li, H.4
Bi, X.T.5
Wang, H.6
-
13
-
-
79953667003
-
Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes
-
[CrossRef]
-
Morozan, A.; Jousselme, B.; Palacin, S. Low-platinum and platinum-free catalysts for the oxygen reduction reaction at fuel cell cathodes. Energy Environ. Sci. 2011, 4, 1238–1254. [CrossRef]
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 1238-1254
-
-
Morozan, A.1
Jousselme, B.2
Palacin, S.3
-
14
-
-
79955451957
-
Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells
-
[CrossRef]
-
Jaouen, F.; Proietti, E.; Lefèvre, M.; Chenitz, R.; Dodelet, J.-P.; Wu, G.; Chung, H.T.; Johnston, C.M.; Zelenay, P. Recent advances in non-precious metal catalysis for oxygen-reduction reaction in polymer electrolyte fuel cells. Energy Environ. Sci. 2011, 4, 114–130. [CrossRef]
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 114-130
-
-
Jaouen, F.1
Proietti, E.2
Lefèvre, M.3
Chenitz, R.4
Dodelet, J.-P.5
Wu, G.6
Chung, H.T.7
Johnston, C.M.8
Zelenay, P.9
-
15
-
-
84971350851
-
Self-construction from 2D to 3D: One-pot layer-by-layer assembly of graphene oxide sheets held together by coordination polymers
-
[CrossRef] [PubMed]
-
Zakaria, M.B.; Li, C.; Ji, Q.; Jiang, B.; Tominaka, S.; Ide, Y.; Hill, J.P.; Ariga, K.; Yamauchi, Y. Self-construction from 2D to 3D: One-pot layer-by-layer assembly of graphene oxide sheets held together by coordination polymers. Angew. Chem. 2016, 55, 8426–8430. [CrossRef] [PubMed]
-
(2016)
Angew. Chem
, vol.55
, pp. 8426-8430
-
-
Zakaria, M.B.1
Li, C.2
Ji, Q.3
Jiang, B.4
Tominaka, S.5
Ide, Y.6
Hill, J.P.7
Ariga, K.8
Yamauchi, Y.9
-
16
-
-
84931282164
-
Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination
-
[CrossRef] [PubMed]
-
Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun. 2015, 6, 7343. [CrossRef] [PubMed]
-
(2015)
Nat. Commun
, vol.6
, pp. 7343
-
-
Strickland, K.1
Miner, E.2
Jia, Q.3
Tylus, U.4
Ramaswamy, N.5
Liang, W.6
Sougrati, M.-T.7
Jaouen, F.8
Mukerjee, S.9
-
17
-
-
84919707347
-
Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Zhao, S.; Yin, H.; Du, L.; He, L.; Zhao, K.; Chang, L.; Yin, G.; Zhao, H.; Liu, S.; Tang, Z. Carbonized nanoscale metal–organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668. [CrossRef] [PubMed]
-
(2014)
ACS Nano
, vol.8
, pp. 12660-12668
-
-
Zhao, S.1
Yin, H.2
Du, L.3
He, L.4
Zhao, K.5
Chang, L.6
Yin, G.7
Zhao, H.8
Liu, S.9
Tang, Z.10
-
18
-
-
84960187730
-
A metal–organic framework-derived bifunctional oxygen electrocatalyst
-
[CrossRef]
-
Xia, B.Y.; Yan, Y.; Li, N.; Wu, H.B.; Lou, X.W.D.; Wang, X. A metal–organic framework-derived bifunctional oxygen electrocatalyst. Nat. Energy 2016, 1, 15006. [CrossRef]
-
(2016)
Nat. Energy
, vol.1
, pp. 15006
-
-
Xia, B.Y.1
Yan, Y.2
Li, N.3
Wu, H.B.4
Lou, X.W.D.5
Wang, X.6
-
19
-
-
84919916858
-
Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Zhao, S.; Liu, J.; Li, C.; Ji, W.; Yang, M.; Huang, H.; Liu, Y.; Kang, Z. Tunable ternary (N, P, B)-doped porous nanocarbons and their catalytic properties for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2014, 6, 22297–22304. [CrossRef] [PubMed]
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 22297-22304
-
-
Zhao, S.1
Liu, J.2
Li, C.3
Ji, W.4
Yang, M.5
Huang, H.6
Liu, Y.7
Kang, Z.8
-
20
-
-
79952385496
-
High oxygen-reduction activity and durability of nitrogen-doped graphene
-
[CrossRef]
-
Geng, D.; Chen, Y.; Chen, Y.; Li, Y.; Li, R.; Sun, X.; Ye, S.; Knights, S. High oxygen-reduction activity and durability of nitrogen-doped graphene. Energy Environ. Sci. 2011, 4, 760–764. [CrossRef]
-
(2011)
Energy Environ. Sci
, vol.4
, pp. 760-764
-
-
Geng, D.1
Chen, Y.2
Chen, Y.3
Li, Y.4
Li, R.5
Sun, X.6
Ye, S.7
Knights, S.8
-
21
-
-
84947969426
-
Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity
-
[CrossRef]
-
Zhang, L.; Wang, X.; Wang, R.; Hong, M. Structural evolution from metal–organic framework to hybrids of nitrogen-doped porous carbon and carbon nanotubes for enhanced oxygen reduction activity. Chem. Mater. 2015, 27, 7610–7618. [CrossRef]
-
(2015)
Chem. Mater
, vol.27
, pp. 7610-7618
-
-
Zhang, L.1
Wang, X.2
Wang, R.3
Hong, M.4
-
22
-
-
84936943771
-
S co-doped ordered mesoporous carbon for high-performance oxygen reduction
-
[CrossRef] [PubMed]
-
Yang, W.; Yue, X.; Liu, X.; Zhai, J.; Jia, J. IL-derived N, S co-doped ordered mesoporous carbon for high-performance oxygen reduction. Nanoscale 2015, 7, 11956–11961. [CrossRef] [PubMed]
-
(2015)
Nanoscale
, vol.7
, pp. 11956-11961
-
-
Yang, W.1
Yue, X.2
Liu, X.3
Zhai, J.4
Jia, J.5
Il-Derived, N.6
-
23
-
-
84922788204
-
Nitrogen-and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction
-
[CrossRef]
-
Gong, X.; Liu, S.; Ouyang, C.; Strasser, P.; Yang, R. Nitrogen-and phosphorus-doped biocarbon with enhanced electrocatalytic activity for oxygen reduction. ACS Catal. 2015, 5, 920–927. [CrossRef]
-
(2015)
ACS Catal
, vol.5
, pp. 920-927
-
-
Gong, X.1
Liu, S.2
Ouyang, C.3
Strasser, P.4
Yang, R.5
-
24
-
-
84947327613
-
Phosphorous–nitrogen-codoped carbon materials derived from metal–organic frameworks as efficient electrocatalysts for oxygen reduction reactions
-
[CrossRef]
-
Fu, Y.; Huang, Y.; Xiang, Z.; Liu, G.; Cao, D. Phosphorous–nitrogen-codoped carbon materials derived from metal–organic frameworks as efficient electrocatalysts for oxygen reduction reactions. Eur. J. Inorg. Chem. 2016, 2016, 2100–2105. [CrossRef]
-
(2016)
Eur. J. Inorg. Chem
, vol.2016
, pp. 2100-2105
-
-
Fu, Y.1
Huang, Y.2
Xiang, Z.3
Liu, G.4
Cao, D.5
-
25
-
-
84955443544
-
Metal organic frameworks for energy storage and conversion
-
[CrossRef]
-
Zhao, Y.; Song, Z.; Li, X.; Sun, Q.; Cheng, N.; Lawes, S.; Sun, X. Metal organic frameworks for energy storage and conversion. Energy Storage Mater. 2016, 2, 35–62. [CrossRef]
-
(2016)
Energy Storage Mater
, vol.2
, pp. 35-62
-
-
Zhao, Y.1
Song, Z.2
Li, X.3
Sun, Q.4
Cheng, N.5
Lawes, S.6
Sun, X.7
-
26
-
-
84936866806
-
Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion
-
[CrossRef]
-
Xia, W.; Mahmood, A.; Zou, R.; Xu, Q. Metal–organic frameworks and their derived nanostructures for electrochemical energy storage and conversion. Energy Environ. Sci. 2015, 8, 1837–1866. [CrossRef]
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 1837-1866
-
-
Xia, W.1
Mahmood, A.2
Zou, R.3
Xu, Q.4
-
27
-
-
0042517640
-
Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4’-bipyridine
-
[CrossRef]
-
Fujita, M.; Kwon, Y.J.; Washizu, S.; Ogura, K. Preparation, clathration ability, and catalysis of a two-dimensional square network material composed of cadmium (II) and 4, 4’-bipyridine. J. Am. Chem. Soc. 1994, 116, 1151–1152. [CrossRef]
-
(1994)
J. Am. Chem. Soc
, vol.116
, pp. 1151-1152
-
-
Fujita, M.1
Kwon, Y.J.2
Washizu, S.3
Ogura, K.4
-
28
-
-
84959368346
-
Metal–organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting
-
[CrossRef]
-
Jiao, L.; Zhou, Y.-X.; Jiang, H.-L. Metal–organic framework-based CoP/reduced graphene oxide: High-performance bifunctional electrocatalyst for overall water splitting. Chem. Sci. 2016, 7, 1690–1695. [CrossRef]
-
(2016)
Chem. Sci
, vol.7
, pp. 1690-1695
-
-
Jiao, L.1
Zhou, Y.-X.2
Jiang, H.-L.3
-
29
-
-
84942193270
-
Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction
-
[CrossRef]
-
Wei, J.; Hu, Y.; Liang, Y.; Kong, B.; Zhang, J.; Song, J.; Bao, Q.; Simon, G.P.; Jiang, S.P.; Wang, H. Nitrogen-Doped Nanoporous Carbon/Graphene Nano-Sandwiches: Synthesis and Application for Efficient Oxygen Reduction. Adv. Funct. Mater. 2015, 25, 5768–5777. [CrossRef]
-
(2015)
Adv. Funct. Mater
, vol.25
, pp. 5768-5777
-
-
Wei, J.1
Hu, Y.2
Liang, Y.3
Kong, B.4
Zhang, J.5
Song, J.6
Bao, Q.7
Simon, G.P.8
Jiang, S.P.9
Wang, H.10
-
30
-
-
84923604202
-
High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction
-
[CrossRef]
-
Ge, L.; Yang, Y.; Wang, L.; Zhou, W.; De Marco, R.; Chen, Z.; Zou, J.; Zhu, Z. High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 2015, 82, 417–424. [CrossRef]
-
(2015)
Carbon
, vol.82
, pp. 417-424
-
-
Ge, L.1
Yang, Y.2
Wang, L.3
Zhou, W.4
De Marco, R.5
Chen, Z.6
Zou, J.7
Zhu, Z.8
-
31
-
-
84917706942
-
ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts
-
[CrossRef] [PubMed]
-
Zhong, H.-X.; Wang, J.; Zhang, Y.-W.; Xu, W.-L.; Xing, W.; Xu, D.; Zhang, Y.-F.; Zhang, X.-B. ZIF-8 derived graphene-based nitrogen-doped porous carbon sheets as highly efficient and durable oxygen reduction electrocatalysts. Angew. Chem. Int. Ed. 2014, 53, 14235–14239. [CrossRef] [PubMed]
-
(2014)
Angew. Chem. Int. Ed
, vol.53
, pp. 14235-14239
-
-
Zhong, H.-X.1
Wang, J.2
Zhang, Y.-W.3
Xu, W.-L.4
Xing, W.5
Xu, D.6
Zhang, Y.-F.7
Zhang, X.-B.8
-
32
-
-
84924370308
-
Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts
-
[CrossRef] [PubMed]
-
Santos, V.P.; Wezendonk, T.A.; Jaén, J.J.D.; Dugulan, A.I.; Nasalevich, M.A.; Islam, H.-U.; Chojecki, A.; Sartipi, S.; Sun, X.; Hakeem, A.A. Metal organic framework-mediated synthesis of highly active and stable Fischer-Tropsch catalysts. Nat. Commun. 2015, 6, 6451. [CrossRef] [PubMed]
-
(2015)
Nat. Commun
, vol.6
, pp. 6451
-
-
Santos, V.P.1
Wezendonk, T.A.2
Jaén, J.J.D.3
Dugulan, A.I.4
Nasalevich, M.A.5
Islam, H.-U.6
Chojecki, A.7
Sartipi, S.8
Sun, X.9
Hakeem, A.A.10
-
33
-
-
84855591828
-
Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides
-
[CrossRef] [PubMed]
-
Das, R.; Pachfule, P.; Banerjee, R.; Poddar, P. Metal and metal oxide nanoparticle synthesis from metal organic frameworks (MOFs): Finding the border of metal and metal oxides. Nanoscale 2012, 4, 591–599. [CrossRef] [PubMed]
-
(2012)
Nanoscale
, vol.4
, pp. 591-599
-
-
Das, R.1
Pachfule, P.2
Banerjee, R.3
Poddar, P.4
-
34
-
-
84867769396
-
Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties
-
[CrossRef] [PubMed]
-
Zhang, L.; Wu, H.B.; Madhavi, S.; Hng, H.H.; Lou, X.W. Formation of Fe2O3 microboxes with hierarchical shell structures from metal–organic frameworks and their lithium storage properties. J. Am. Chem. Soc. 2012, 134, 17388–17391. [CrossRef] [PubMed]
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 17388-17391
-
-
Zhang, L.1
Wu, H.B.2
Madhavi, S.3
Hng, H.H.4
Lou, X.W.5
-
35
-
-
84862540929
-
Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy
-
[CrossRef]
-
Zhao, J.; Wang, F.; Su, P.; Li, M.; Chen, J.; Yang, Q.; Li, C. Spinel ZnMn2O4 nanoplate assemblies fabricated via “escape-by-crafty-scheme” strategy. J. Mater. Chem. 2012, 22, 13328–13333. [CrossRef]
-
(2012)
J. Mater. Chem
, vol.22
, pp. 13328-13333
-
-
Zhao, J.1
Wang, F.2
Su, P.3
Li, M.4
Chen, J.5
Yang, Q.6
Li, C.7
-
36
-
-
84877753826
-
CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life
-
[CrossRef] [PubMed]
-
Hu, L.; Huang, Y.; Zhang, F.; Chen, Q. CuO/Cu2O composite hollow polyhedrons fabricated from metal–organic framework templates for lithium-ion battery anodes with a long cycling life. Nanoscale 2013, 5, 4186–4190. [CrossRef] [PubMed]
-
(2013)
Nanoscale
, vol.5
, pp. 4186-4190
-
-
Hu, L.1
Huang, Y.2
Zhang, F.3
Chen, Q.4
-
37
-
-
84901762676
-
Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions
-
[CrossRef] [PubMed]
-
Zhang, L.; Su, Z.; Jiang, F.; Yang, L.; Qian, J.; Zhou, Y.; Li, W.; Hong, M. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602. [CrossRef] [PubMed]
-
(2014)
Nanoscale
, vol.6
, pp. 6590-6602
-
-
Zhang, L.1
Su, Z.2
Jiang, F.3
Yang, L.4
Qian, J.5
Zhou, Y.6
Li, W.7
Hong, M.8
-
38
-
-
84874600133
-
A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications
-
[CrossRef]
-
Chaikittisilp, W.; Ariga, K.; Yamauchi, Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications. J. Mater. Chem. A 2013, 1, 14–19. [CrossRef]
-
(2013)
J. Mater. Chem. A
, vol.1
, pp. 14-19
-
-
Chaikittisilp, W.1
Ariga, K.2
Yamauchi, Y.3
-
39
-
-
42949152787
-
Metal-organic framework as a template for porous carbon synthesis
-
[CrossRef] [PubMed]
-
Liu, B.; Shioyama, H.; Akita, T.; Xu, Q. Metal-organic framework as a template for porous carbon synthesis. J. Am. Chem. Soc. 2008, 130, 5390–5391. [CrossRef] [PubMed]
-
(2008)
J. Am. Chem. Soc
, vol.130
, pp. 5390-5391
-
-
Liu, B.1
Shioyama, H.2
Akita, T.3
Xu, Q.4
-
40
-
-
84956889718
-
Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures
-
[CrossRef] [PubMed]
-
Zhu, C.; Li, H.; Fu, S.; Du, D.; Lin, Y. Highly efficient nonprecious metal catalysts towards oxygen reduction reaction based on three-dimensional porous carbon nanostructures. Chem. Soc. Rev. 2016, 45, 517–531. [CrossRef] [PubMed]
-
(2016)
Chem. Soc. Rev
, vol.45
, pp. 517-531
-
-
Zhu, C.1
Li, H.2
Fu, S.3
Du, D.4
Lin, Y.5
-
41
-
-
84933584555
-
Metal-free catalysts for oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Dai, L.; Xue, Y.; Qu, L.; Choi, H.-J.; Baek, J.-B. Metal-free catalysts for oxygen reduction reaction. Chem. Rev. 2015, 115, 4823–4892. [CrossRef] [PubMed]
-
(2015)
Chem. Rev
, vol.115
, pp. 4823-4892
-
-
Dai, L.1
Xue, Y.2
Qu, L.3
Choi, H.-J.4
Baek, J.-B.5
-
42
-
-
84883861691
-
Nanocarbons for the development of advanced catalysts
-
[CrossRef] [PubMed]
-
Su, D.S.; Perathoner, S.; Centi, G. Nanocarbons for the development of advanced catalysts. Chem. Rev. 2013, 113, 5782–5816. [CrossRef] [PubMed]
-
(2013)
Chem. Rev
, vol.113
, pp. 5782-5816
-
-
Su, D.S.1
Perathoner, S.2
Centi, G.3
-
43
-
-
79953013352
-
Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium
-
[CrossRef] [PubMed]
-
Liu, Z.-W.; Peng, F.; Wang, H.-J.; Yu, H.; Zheng, W.-X.; Yang, J. Phosphorus-doped graphite layers with high electrocatalytic activity for the O2 reduction in an alkaline medium. Angew. Chem. Int. Ed. 2011, 50, 3257–3261. [CrossRef] [PubMed]
-
(2011)
Angew. Chem. Int. Ed
, vol.50
, pp. 3257-3261
-
-
Liu, Z.-W.1
Peng, F.2
Wang, H.-J.3
Yu, H.4
Zheng, W.-X.5
Yang, J.6
-
44
-
-
79551637763
-
Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media
-
[CrossRef]
-
Li, H.; Liu, H.; Jong, Z.; Qu, W.; Geng, D.; Sun, X.; Wang, H. Nitrogen-doped carbon nanotubes with high activity for oxygen reduction in alkaline media. Int. J. Hydrog. Energy 2011, 36, 2258–2265. [CrossRef]
-
(2011)
Int. J. Hydrog. Energy
, vol.36
, pp. 2258-2265
-
-
Li, H.1
Liu, H.2
Jong, Z.3
Qu, W.4
Geng, D.5
Sun, X.6
Wang, H.7
-
45
-
-
34249678701
-
Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst
-
[CrossRef]
-
Wang, X.; Liu, R.; Waje, M.M.; Chen, Z.; Yan, Y.; Bozhilov, K.N.; Feng, P. Sulfonated ordered mesoporous carbon as a stable and highly active protonic acid catalyst. Chem. Mater. 2007, 19, 2395–2397. [CrossRef]
-
(2007)
Chem. Mater
, vol.19
, pp. 2395-2397
-
-
Wang, X.1
Liu, R.2
Waje, M.M.3
Chen, Z.4
Yan, Y.5
Bozhilov, K.N.6
Feng, P.7
-
46
-
-
84898012040
-
Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions
-
[CrossRef]
-
Li, J.; Chen, Y.; Tang, Y.; Li, S.; Dong, H.; Li, K.; Han, M.; Lan, Y.-Q.; Bao, J.; Dai, Z. Metal-organic framework templated nitrogen and sulfur co-doped porous carbons as highly efficient metal-free electrocatalysts for oxygen reduction reactions. J. Mater. Chem. A 2014, 2, 6316–6319. [CrossRef]
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 6316-6319
-
-
Li, J.1
Chen, Y.2
Tang, Y.3
Li, S.4
Dong, H.5
Li, K.6
Han, M.7
Lan, Y.-Q.8
Bao, J.9
Dai, Z.10
-
47
-
-
59849084114
-
Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction
-
[CrossRef] [PubMed]
-
Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [CrossRef] [PubMed]
-
(2009)
Science
, vol.323
, pp. 760-764
-
-
Gong, K.1
Du, F.2
Xia, Z.3
Durstock, M.4
Dai, L.5
-
48
-
-
77956032548
-
Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction
-
[CrossRef]
-
Liu, R.; Wu, D.; Feng, X.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. 2010, 122, 2619–2623. [CrossRef]
-
(2010)
Angew. Chem
, vol.122
, pp. 2619-2623
-
-
Liu, R.1
Wu, D.2
Feng, X.3
Müllen, K.4
-
49
-
-
78651380624
-
Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases
-
[CrossRef] [PubMed]
-
Yang, W.; Fellinger, T.; Antonietti, M. Efficient metal-free oxygen reduction in alkaline medium on high-surface-area mesoporous nitrogen-doped carbons made from ionic liquids and nucleobases. J. Am. Chem. Soc. 2010, 133, 206–209. [CrossRef] [PubMed]
-
(2010)
J. Am. Chem. Soc
, vol.133
, pp. 206-209
-
-
Yang, W.1
Fellinger, T.2
Antonietti, M.3
-
50
-
-
84890446133
-
ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction
-
[CrossRef]
-
Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D. ZIF-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450. [CrossRef]
-
(2014)
Energy Environ. Sci
, vol.7
, pp. 442-450
-
-
Zhang, P.1
Sun, F.2
Xiang, Z.3
Shen, Z.4
Yun, J.5
Cao, D.6
-
51
-
-
84896870376
-
Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction
-
[CrossRef] [PubMed]
-
Pandiaraj, S.; Aiyappa, H.B.; Banerjee, R.; Kurungot, S. Post modification of MOF derived carbon via g-C3N4 entrapment for an efficient metal-free oxygen reduction reaction. Chem. Commun. 2014, 50, 3363–3366. [CrossRef] [PubMed]
-
(2014)
Chem. Commun
, vol.50
, pp. 3363-3366
-
-
Pandiaraj, S.1
Aiyappa, H.B.2
Banerjee, R.3
Kurungot, S.4
-
52
-
-
84865589422
-
Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity
-
[CrossRef] [PubMed]
-
Choi, C.H.; Park, S.H.; Woo, S.I. Binary and ternary doping of nitrogen, boron, and phosphorus into carbon for enhancing electrochemical oxygen reduction activity. ACS Nano 2012, 6, 7084–7091. [CrossRef] [PubMed]
-
(2012)
ACS Nano
, vol.6
, pp. 7084-7091
-
-
Choi, C.H.1
Park, S.H.2
Woo, S.I.3
-
53
-
-
84908129513
-
Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems
-
[CrossRef] [PubMed]
-
Ranjbar Sahraie, N.; Paraknowitsch, J.P.; Gobel, C.; Thomas, A.; Strasser, P. Noble-metal-free electrocatalysts with enhanced ORR performance by task-specific functionalization of carbon using ionic liquid precursor systems. J. Am. Chem. Soc. 2014, 136, 14486–14497. [CrossRef] [PubMed]
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 14486-14497
-
-
Ranjbar Sahraie, N.1
Paraknowitsch, J.P.2
Gobel, C.3
Thomas, A.4
Strasser, P.5
-
54
-
-
84863775985
-
Carbon nanomaterials as metal-free catalysts in next generation fuel cells
-
[CrossRef]
-
Zhang, M.; Dai, L. Carbon nanomaterials as metal-free catalysts in next generation fuel cells. Nano Energy 2012, 1, 514–517. [CrossRef]
-
(2012)
Nano Energy
, vol.1
, pp. 514-517
-
-
Zhang, M.1
Dai, L.2
-
55
-
-
84905564134
-
MOF derived catalysts for electrochemical oxygen reduction
-
[CrossRef]
-
Wang, X.; Zhou, J.; Fu, H.; Li, W.; Fan, X.; Xin, G.; Zheng, J.; Li, X. MOF derived catalysts for electrochemical oxygen reduction. J. Mater. Chem. A 2014, 2, 14064–14070. [CrossRef]
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 14064-14070
-
-
Wang, X.1
Zhou, J.2
Fu, H.3
Li, W.4
Fan, X.5
Xin, G.6
Zheng, J.7
Li, X.8
-
56
-
-
84941025643
-
From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis
-
[CrossRef] [PubMed]
-
Chen, Y.Z.; Wang, C.; Wu, Z.Y.; Xiong, Y.; Xu, Q.; Yu, S.H.; Jiang, H.L. From Bimetallic Metal-Organic Framework to Porous Carbon: High Surface Area and Multicomponent Active Dopants for Excellent Electrocatalysis. Adv. Mater. 2015, 27, 5010–5016. [CrossRef] [PubMed]
-
(2015)
Adv. Mater
, vol.27
, pp. 5010-5016
-
-
Chen, Y.Z.1
Wang, C.2
Wu, Z.Y.3
Xiong, Y.4
Xu, Q.5
Yu, S.H.6
Jiang, H.L.7
-
57
-
-
84935012353
-
(Fe, Co)@ nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst
-
[CrossRef] [PubMed]
-
Xi, J.; Xia, Y.; Xu, Y.; Xiao, J.; Wang, S. (Fe, Co)@ nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal–organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 2015, 51, 10479–10482. [CrossRef] [PubMed]
-
(2015)
Chem. Commun
, vol.51
, pp. 10479-10482
-
-
Xi, J.1
Xia, Y.2
Xu, Y.3
Xiao, J.4
Wang, S.5
-
58
-
-
84927541955
-
Metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction
-
[CrossRef]
-
Xia, W.; Zou, R.; An, L.; Xia, D.; Guo, S. A metal-organic framework route to in situ encapsulation of Co@Co3O4@C core@bishell nanoparticles into a highly ordered porous carbon matrix for oxygen reduction. Energy Environ. Sci. 2015, 8, 568–576. [CrossRef]
-
(2015)
Energy Environ. Sci
, vol.8
, pp. 568-576
-
-
Xia, W.1
Zou, R.2
An, L.3
Xia, D.4
Guo, S.A.5
-
59
-
-
79961183037
-
Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells
-
[CrossRef] [PubMed]
-
Proietti, E.; Jaouen, F.; Lefèvre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.-P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2, 416. [CrossRef] [PubMed]
-
(2011)
Nat. Commun
, vol.2
, pp. 416
-
-
Proietti, E.1
Jaouen, F.2
Lefèvre, M.3
Larouche, N.4
Tian, J.5
Herranz, J.6
Dodelet, J.-P.7
-
60
-
-
84922680668
-
Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER
-
[CrossRef] [PubMed]
-
Li, J.-S.; Li, S.-L.; Tang, Y.-J.; Han, M.; Dai, Z.-H.; Bao, J.-C.; Lan, Y.-Q. Nitrogen-doped Fe/Fe3C@graphitic layer/carbon nanotube hybrids derived from MOFs: Efficient bifunctional electrocatalysts for ORR and OER. Chem. Commun. 2015, 51, 2710–2713. [CrossRef] [PubMed]
-
(2015)
Chem. Commun
, vol.51
, pp. 2710-2713
-
-
Li, J.-S.1
Li, S.-L.2
Tang, Y.-J.3
Han, M.4
Dai, Z.-H.5
Bao, J.-C.6
Lan, Y.-Q.7
-
61
-
-
84905739421
-
Metal-Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@ C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions
-
[CrossRef]
-
Hou, Y.; Huang, T.; Wen, Z.; Mao, S.; Cui, S.; Chen, J. Metal-Organic Framework-Derived Nitrogen-Doped Core-Shell-Structured Porous Fe/Fe3C@ C Nanoboxes Supported on Graphene Sheets for Efficient Oxygen Reduction Reactions. Adv. Energy Mater. 2014, 4, 1400337. [CrossRef]
-
(2014)
Adv. Energy Mater
, pp. 4
-
-
Hou, Y.1
Huang, T.2
Wen, Z.3
Mao, S.4
Cui, S.5
Chen, J.6
-
62
-
-
84949115415
-
Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes
-
Li, X.; Fang, Y.; Lin, X.; Tian, M.; An, X.; Fu, Y.; Li, R.; Jin, J.; Ma, J. Metal–organic framework derived hybrid Co3O4-carbon porous nanowire arrays as reversible oxygen evolution electrodes. J. Am. Chem. Soc. 2014, 136, 13925–13931.
-
(2014)
J. Am. Chem. Soc
, vol.136
, pp. 13925-13931
-
-
Li, X.1
Fang, Y.2
Lin, X.3
Tian, M.4
An, X.5
Fu, Y.6
Li, R.7
Jin, J.8
Ma, J.9
-
63
-
-
84938930272
-
4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR
-
4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR. J. Mater. Chem. A 2015, 3, 17392–17402.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 17392-17402
-
-
Xia, W.1
Zou, R.2
An, L.3
Xia, D.4
Guo, S.5
-
64
-
-
84897998206
-
Synthesis of Nanoporous Carbon–Cobalt-Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks
-
[CrossRef] [PubMed]
-
Chaikittisilp, W.; Torad, N.L.; Li, C.; Imura, M.; Suzuki, N.; Ishihara, S.; Ariga, K.; Yamauchi, Y. Synthesis of Nanoporous Carbon–Cobalt-Oxide Hybrid Electrocatalysts by Thermal Conversion of Metal–Organic Frameworks. Chem. A Eur. J. 2014, 20, 4217–4221. [CrossRef] [PubMed]
-
(2014)
Chem. a Eur. J
, vol.20
, pp. 4217-4221
-
-
Chaikittisilp, W.1
Torad, N.L.2
Li, C.3
Imura, M.4
Suzuki, N.5
Ishihara, S.6
Ariga, K.7
Yamauchi, Y.8
-
65
-
-
84925386614
-
A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells
-
[CrossRef]
-
Banham, D.; Ye, S.; Pei, K.; Ozaki, J.-i.; Kishimoto, T.; Imashiro, Y. A review of the stability and durability of non-precious metal catalysts for the oxygen reduction reaction in proton exchange membrane fuel cells. J. Power Sources 2015, 285, 334–348. [CrossRef]
-
(2015)
J. Power Sources
, vol.285
, pp. 334-348
-
-
Banham, D.1
Ye, S.2
Pei, K.3
Ozaki, J.-I.4
Kishimoto, T.5
Imashiro, Y.6
-
66
-
-
84860013277
-
Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction
-
[CrossRef] [PubMed]
-
Jahan, M.; Bao, Q.; Loh, K.P. Electrocatalytically Active Graphene–Porphyrin MOF Composite for Oxygen Reduction Reaction. J. Am. Chem. Soc. 2012, 134, 6707–6713. [CrossRef] [PubMed]
-
(2012)
J. Am. Chem. Soc
, vol.134
, pp. 6707-6713
-
-
Jahan, M.1
Bao, Q.2
Loh, K.P.3
-
67
-
-
84887848710
-
A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR
-
[CrossRef]
-
Jahan, M.; Liu, Z.; Loh, K.P. A Graphene Oxide and Copper-Centered Metal Organic Framework Composite as a Tri-Functional Catalyst for HER, OER, and ORR. Adv. Funct. Mater. 2013, 23, 5363–5372. [CrossRef]
-
(2013)
Adv. Funct. Mater
, vol.23
, pp. 5363-5372
-
-
Jahan, M.1
Liu, Z.2
Loh, K.P.3
-
68
-
-
84923238542
-
New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives
-
[CrossRef] [PubMed]
-
Lin, Q.; Bu, X.; Kong, A.; Mao, C.; Zhao, X.; Bu, F.; Feng, P. New Heterometallic Zirconium Metalloporphyrin Frameworks and Their Heteroatom-Activated High-Surface-Area Carbon Derivatives. J. Am. Chem. Soc. 2015, 137, 2235–2238. [CrossRef] [PubMed]
-
(2015)
J. Am. Chem. Soc
, vol.137
, pp. 2235-2238
-
-
Lin, Q.1
Bu, X.2
Kong, A.3
Mao, C.4
Zhao, X.5
Bu, F.6
Feng, P.7
-
69
-
-
84945346960
-
Fabrication of Cd (Ii)-MOF-based ternary photocatalytic composite materials for H 2 production via a gel-to-crystal approach
-
[CrossRef] [PubMed]
-
Zhao, C.-W.; Li, Y.-A.; Wang, X.-R.; Chen, G.-J.; Liu, Q.-K.; Ma, J.-P.; Dong, Y.-B. Fabrication of Cd (ii)-MOF-based ternary photocatalytic composite materials for H 2 production via a gel-to-crystal approach. Chem. Commun. 2015, 51, 15906–15909. [CrossRef] [PubMed]
-
(2015)
Chem. Commun
, vol.51
, pp. 15906-15909
-
-
Zhao, C.-W.1
Li, Y.-A.2
Wang, X.-R.3
Chen, G.-J.4
Liu, Q.-K.5
Ma, J.-P.6
Dong, Y.-B.7
-
70
-
-
84897104849
-
Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces
-
[CrossRef] [PubMed]
-
Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H.L.; Snyder, J.D.; Li, D.; Herron, J.A.; Mavrikakis, M. Highly crystalline multimetallic nanoframes with three-dimensional electrocatalytic surfaces. Science 2014, 343, 1339–1343. [CrossRef] [PubMed]
-
(2014)
Science
, vol.343
, pp. 1339-1343
-
-
Chen, C.1
Kang, Y.2
Huo, Z.3
Zhu, Z.4
Huang, W.5
Xin, H.L.6
Snyder, J.D.7
Li, D.8
Herron, J.A.9
Mavrikakis, M.10
-
71
-
-
84942244060
-
Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving
-
[CrossRef] [PubMed]
-
Li, Z.; Yu, R.; Huang, J.; Shi, Y.; Zhang, D.; Zhong, X.; Wang, D.; Wu, Y.; Li, Y. Platinum-nickel frame within metal-organic framework fabricated in situ for hydrogen enrichment and molecular sieving. Nat. Commun. 2015, 6, 8248. [CrossRef] [PubMed]
-
(2015)
Nat. Commun
, vol.6
, pp. 8248
-
-
Li, Z.1
Yu, R.2
Huang, J.3
Shi, Y.4
Zhang, D.5
Zhong, X.6
Wang, D.7
Wu, Y.8
Li, Y.9
-
72
-
-
84861622715
-
Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks
-
[CrossRef]
-
Mao, J.; Yang, L.; Yu, P.; Wei, X.; Mao, L. Electrocatalytic four-electron reduction of oxygen with Copper (II)-based metal-organic frameworks. Electrochem. Commun. 2012, 19, 29–31. [CrossRef]
-
(2012)
Electrochem. Commun
, vol.19
, pp. 29-31
-
-
Mao, J.1
Yang, L.2
Yu, P.3
Wei, X.4
Mao, L.5
-
73
-
-
84955255831
-
Polyoxometalate-based metal-organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction
-
[CrossRef]
-
Li, J.-S.; Tang, Y.-J.; Liu, C.-H.; Li, S.-L.; Li, R.-H.; Dong, L.-Z.; Dai, Z.-H.; Bao, J.-C.; Lan, Y.-Q. Polyoxometalate-based metal-organic framework-derived hybrid electrocatalysts for highly efficient hydrogen evolution reaction. J. Mater. Chem. A 2016, 4, 1202–1207. [CrossRef]
-
(2016)
J. Mater. Chem. A
, vol.4
, pp. 1202-1207
-
-
Li, J.-S.1
Tang, Y.-J.2
Liu, C.-H.3
Li, S.-L.4
Li, R.-H.5
Dong, L.-Z.6
Dai, Z.-H.7
Bao, J.-C.8
Lan, Y.-Q.9
-
74
-
-
84944769055
-
Porous Molybdenum-Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution
-
[CrossRef] [PubMed]
-
Tang, Y.J.; Gao, M.R.; Liu, C.H.; Li, S.L.; Jiang, H.L.; Lan, Y.Q.; Han, M.; Yu, S.H. Porous Molybdenum-Based Hybrid Catalysts for Highly Efficient Hydrogen Evolution. Angew. Chem. Int. Ed. 2015, 54, 12928–12932. [CrossRef] [PubMed]
-
(2015)
Angew. Chem. Int. Ed
, vol.54
, pp. 12928-12932
-
-
Tang, Y.J.1
Gao, M.R.2
Liu, C.H.3
Li, S.L.4
Jiang, H.L.5
Lan, Y.Q.6
Han, M.7
Yu, S.H.8
|