-
1
-
-
80051580475
-
Photodynamic therapy of cancer: an update
-
[1] Agostinis, P., et al. Photodynamic therapy of cancer: an update. CA Cancer J. Clin. 61:4 (2011), 250–281.
-
(2011)
CA Cancer J. Clin.
, vol.61
, Issue.4
, pp. 250-281
-
-
Agostinis, P.1
-
2
-
-
84910120194
-
Functional nanomaterials for phototherapies of cancer
-
[2] Cheng, L., et al. Functional nanomaterials for phototherapies of cancer. Chem. Rev. 114:21 (2014), 10869–10939.
-
(2014)
Chem. Rev.
, vol.114
, Issue.21
, pp. 10869-10939
-
-
Cheng, L.1
-
3
-
-
84937439860
-
Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy
-
[3] Zhang, H.J., et al. Near-infrared-triggered in situ hybrid hydrogel system for synergistic cancer therapy. J. Mater. Chem. B 3:30 (2015), 6310–6326.
-
(2015)
J. Mater. Chem. B
, vol.3
, Issue.30
, pp. 6310-6326
-
-
Zhang, H.J.1
-
4
-
-
77952519831
-
Imaging and photodynamic therapy: mechanisms, monitoring, and optimization
-
[4] Celli, J.P., et al. Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem. Rev. 110:5 (2010), 2795–2838.
-
(2010)
Chem. Rev.
, vol.110
, Issue.5
, pp. 2795-2838
-
-
Celli, J.P.1
-
5
-
-
77952551346
-
Oncologic photodynamic therapy photosensitizers: a clinical review
-
[5] Allison, R.R., Sibata, C.H., Oncologic photodynamic therapy photosensitizers: a clinical review. Photodiagnosis Photodyn. Ther. 7:2 (2010), 61–75.
-
(2010)
Photodiagnosis Photodyn. Ther.
, vol.7
, Issue.2
, pp. 61-75
-
-
Allison, R.R.1
Sibata, C.H.2
-
6
-
-
0036085627
-
Porphyrins in photodynamic therapy - a search for ideal photosensitizers
-
[6] Pushpan, S.K., et al. Porphyrins in photodynamic therapy - a search for ideal photosensitizers. Curr. Med. Chem. Anticancer Agents 2:2 (2002), 187–207.
-
(2002)
Curr. Med. Chem. Anticancer Agents
, vol.2
, Issue.2
, pp. 187-207
-
-
Pushpan, S.K.1
-
7
-
-
33847421348
-
Development of phthalocyanines for photodynamic therapy
-
[7] Ogura, S.-i., et al. Development of phthalocyanines for photodynamic therapy. J. Porphyr. Phthalocyanines 10:09 (2006), 1116–1124.
-
(2006)
J. Porphyr. Phthalocyanines
, vol.10
, Issue.9
, pp. 1116-1124
-
-
Ogura, S.-I.1
-
8
-
-
77952496220
-
Activatable photosensitizers for imaging and therapy
-
[8] Lovell, J.F., et al. Activatable photosensitizers for imaging and therapy. Chem. Rev. 110:5 (2010), 2839–2857.
-
(2010)
Chem. Rev.
, vol.110
, Issue.5
, pp. 2839-2857
-
-
Lovell, J.F.1
-
9
-
-
84878240072
-
Nanophotosensitizers toward advanced photodynamic therapy of Cancer
-
[9] Lim, C.K., et al. Nanophotosensitizers toward advanced photodynamic therapy of Cancer. Cancer Lett. 334:2 (2013), 176–187.
-
(2013)
Cancer Lett.
, vol.334
, Issue.2
, pp. 176-187
-
-
Lim, C.K.1
-
10
-
-
79951879265
-
Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo
-
[10] Jang, B., et al. Gold nanorod-photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo. Acs Nano 5:2 (2011), 1086–1094.
-
(2011)
Acs Nano
, vol.5
, Issue.2
, pp. 1086-1094
-
-
Jang, B.1
-
11
-
-
84896706912
-
ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages
-
[11] Kim, H., et al. ROS-responsive activatable photosensitizing agent for imaging and photodynamic therapy of activated macrophages. Theranostics 4:1 (2013), 1–11.
-
(2013)
Theranostics
, vol.4
, Issue.1
, pp. 1-11
-
-
Kim, H.1
-
12
-
-
84903274412
-
Selective ablation of beta-galactosidase-expressing cells with a rationally designed activatable photosensitizer
-
[12] Ichikawa, Y., et al. Selective ablation of beta-galactosidase-expressing cells with a rationally designed activatable photosensitizer. Angew. Chem. Int. Ed. Engl. 53:26 (2014), 6772–6775.
-
(2014)
Angew. Chem. Int. Ed. Engl.
, vol.53
, Issue.26
, pp. 6772-6775
-
-
Ichikawa, Y.1
-
13
-
-
84941633907
-
A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics
-
[13] Tian, J., et al. A pH-activatable and aniline-substituted photosensitizer for near-infrared cancer theranostics. Chem. Sci. 6:10 (2015), 5969–5977.
-
(2015)
Chem. Sci.
, vol.6
, Issue.10
, pp. 5969-5977
-
-
Tian, J.1
-
14
-
-
84922382737
-
H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells
-
[14] Chen, H., et al. H2O2-activatable and O2-evolving nanoparticles for highly efficient and selective photodynamic therapy against hypoxic tumor cells. J. Am. Chem. Soc. 137:4 (2015), 1539–1547.
-
(2015)
J. Am. Chem. Soc.
, vol.137
, Issue.4
, pp. 1539-1547
-
-
Chen, H.1
-
15
-
-
84866261032
-
Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent
-
[15] Cho, Y., Choi, Y., Graphene oxide-photosensitizer conjugate as a redox-responsive theranostic agent. Chem. Commun. 48:79 (2012), 9912–9914.
-
(2012)
Chem. Commun.
, vol.48
, Issue.79
, pp. 9912-9914
-
-
Cho, Y.1
Choi, Y.2
-
16
-
-
84872354545
-
A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent
-
[16] Cho, Y., Kim, H., Choi, Y., A graphene oxide-photosensitizer complex as an enzyme-activatable theranostic agent. Chem. Commun. (Camb.) 49:12 (2013), 1202–1204.
-
(2013)
Chem. Commun. (Camb.)
, vol.49
, Issue.12
, pp. 1202-1204
-
-
Cho, Y.1
Kim, H.2
Choi, Y.3
-
17
-
-
84908093409
-
Photocontrolled nanoparticle delivery systems for biomedical applications
-
[17] Bansal, A., Zhang, Y., Photocontrolled nanoparticle delivery systems for biomedical applications. Acc. Chem. Res. 47:10 (2014), 3052–3060.
-
(2014)
Acc. Chem. Res.
, vol.47
, Issue.10
, pp. 3052-3060
-
-
Bansal, A.1
Zhang, Y.2
-
18
-
-
84921830340
-
Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy
-
[18] Jiang, C., et al. Hydrophobic IR780 encapsulated in biodegradable human serum albumin nanoparticles for photothermal and photodynamic therapy. Acta Biomater. 14 (2015), 61–69.
-
(2015)
Acta Biomater.
, vol.14
, pp. 61-69
-
-
Jiang, C.1
-
19
-
-
56949084877
-
Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles
-
[19] Kratz, F., Albumin as a drug carrier: design of prodrugs, drug conjugates and nanoparticles. J. Control Release 132:3 (2008), 171–183.
-
(2008)
J. Control Release
, vol.132
, Issue.3
, pp. 171-183
-
-
Kratz, F.1
-
20
-
-
84862702122
-
Clinical impact of serum proteins on drug delivery
-
[20] Kratz, F., Elsadek, B., Clinical impact of serum proteins on drug delivery. J. Control Release 161:2 (2012), 429–445.
-
(2012)
J. Control Release
, vol.161
, Issue.2
, pp. 429-445
-
-
Kratz, F.1
Elsadek, B.2
-
21
-
-
84901264280
-
Albumin-micelles via a one-pot technology platform for the delivery of drugs
-
[21] Jiang, Y., et al. Albumin-micelles via a one-pot technology platform for the delivery of drugs. Chem. Commun. (Camb.) 50:48 (2014), 6394–6397.
-
(2014)
Chem. Commun. (Camb.)
, vol.50
, Issue.48
, pp. 6394-6397
-
-
Jiang, Y.1
-
22
-
-
65249125908
-
FRET quenching of photosensitizer singlet oxygen generation
-
[22] Lovell, J.F., et al. FRET quenching of photosensitizer singlet oxygen generation. J. Phys. Chem. B 113:10 (2009), 3203–3211.
-
(2009)
J. Phys. Chem. B
, vol.113
, Issue.10
, pp. 3203-3211
-
-
Lovell, J.F.1
-
23
-
-
80053475236
-
Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy
-
[23] Jeong, H., et al. Photosensitizer-conjugated human serum albumin nanoparticles for effective photodynamic therapy. Theranostics 1 (2011), 230–239.
-
(2011)
Theranostics
, vol.1
, pp. 230-239
-
-
Jeong, H.1
-
24
-
-
84923169818
-
Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes
-
[24] Yuan, A., et al. Activatable photodynamic destruction of cancer cells by NIR dye/photosensitizer loaded liposomes. Chem. Commun. (Camb.) 51:16 (2015), 3340–3342.
-
(2015)
Chem. Commun. (Camb.)
, vol.51
, Issue.16
, pp. 3340-3342
-
-
Yuan, A.1
-
25
-
-
84930225350
-
Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy
-
[25] Chen, Q., et al. Drug-induced self-assembly of modified albumins as nano-theranostics for tumor-targeted combination therapy. ACS Nano 9 (2015), 5223–5233.
-
(2015)
ACS Nano
, vol.9
, pp. 5223-5233
-
-
Chen, Q.1
-
26
-
-
0043283159
-
Long-range resonance energy transfer in molecular systems
-
[26] Scholes, G.D., Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54 (2003), 57–87.
-
(2003)
Annu. Rev. Phys. Chem.
, vol.54
, pp. 57-87
-
-
Scholes, G.D.1
-
27
-
-
0031040996
-
Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes
-
[27] Miyata, S., et al. Accumulation of pyrraline-modified albumin in phagocytes due to reduced degradation by lysosomal enzymes. J. Biol. Chem. 272:7 (1997), 4037–4042.
-
(1997)
J. Biol. Chem.
, vol.272
, Issue.7
, pp. 4037-4042
-
-
Miyata, S.1
-
28
-
-
0023194854
-
In vivo studies on the utilization of mono-L-aspartyl chlorin (NPe6) for photodynamic therapy
-
[28] Nelson, J.S., Roberts, W.G., Berns, M.W., In vivo studies on the utilization of mono-L-aspartyl chlorin (NPe6) for photodynamic therapy. Cancer Res. 47:17 (1987), 4681–4685.
-
(1987)
Cancer Res.
, vol.47
, Issue.17
, pp. 4681-4685
-
-
Nelson, J.S.1
Roberts, W.G.2
Berns, M.W.3
-
29
-
-
0021509146
-
Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions
-
[29] Gomer, C.J., Razum, N.J., Acute skin response in albino mice following porphyrin photosensitization under oxic and anoxic conditions. Photochem. Photobiol. 40:4 (1984), 435–439.
-
(1984)
Photochem. Photobiol.
, vol.40
, Issue.4
, pp. 435-439
-
-
Gomer, C.J.1
Razum, N.J.2
|