-
1
-
-
84985025569
-
-
https://cloud. google. com/.
-
-
-
-
2
-
-
84984945800
-
-
https://aws. amazon. com/.
-
-
-
-
3
-
-
84985025571
-
-
https://www. csie. ntu. edu. tw/cjlin/liblinear/.
-
-
-
-
4
-
-
84984960705
-
-
https://cran. r-project.org/web/packages/glmnet/.
-
-
-
-
6
-
-
0000269759
-
Scheduling multithreaded computations by work stealing
-
Sept
-
R. D. Blumofe and C. E. Leiserson. Scheduling multithreaded computations by work stealing. J. ACM, 46(5):720-748, Sept. 1999.
-
(1999)
J. ACM
, vol.46
, Issue.5
, pp. 720-748
-
-
Blumofe, R.D.1
Leiserson, C.E.2
-
11
-
-
48849104146
-
Coordinate descent method for large-scale l2-loss linear support vector machines
-
June
-
K.-W. Chang, C.-J. Hsieh, and C.-J. Lin. Coordinate descent method for large-scale l2-loss linear support vector machines. J. Mach. Learn. Res. 9:1369-1398, June 2008.
-
(2008)
J. Mach. Learn. Res.
, vol.9
, pp. 1369-1398
-
-
Chang, K.-W.1
Hsieh, C.-J.2
Lin, C.-J.3
-
12
-
-
84937149669
-
Simple and scalable response prediction for display advertising
-
Dec
-
O. Chapelle, E. Manavoglu, and R. Rosales. Simple and scalable response prediction for display advertising. ACM Trans. Intell. Syst. Technol. 5(4):61:1-61:34, Dec. 2014.
-
(2014)
ACM Trans. Intell. Syst. Technol.
, vol.5
, Issue.4
, pp. 611-6134
-
-
Chapelle, O.1
Manavoglu, E.2
Rosales, R.3
-
13
-
-
84899798072
-
Understanding TCP incast and its implications for big data workloads
-
Y. Chen, R. Grit, D. Zats, and R. H. Katz. Understanding TCP incast and its implications for big data workloads. Technical report, DTIC Document, 2012.
-
(2012)
Technical Report, DTIC Document
-
-
Chen, Y.1
Grit, R.2
Zats, D.3
Katz, R.H.4
-
14
-
-
0036643072
-
Logistic regression, Adaboost and Bregman distances
-
Sept
-
M. Collins, R. E. Schapire, and Y. Singer. Logistic regression, Adaboost and Bregman distances. Mach. Learn. 48(1-3):253-285, Sept. 2002.
-
(2002)
Mach. Learn.
, vol.48
, Issue.1-3
, pp. 253-285
-
-
Collins, M.1
Schapire, R.E.2
Singer, Y.3
-
15
-
-
84873622276
-
The tail at scale
-
Feb
-
J. Dean and L. A. Barroso. The tail at scale. Commun. ACM, 56(2):74-80, Feb. 2013.
-
(2013)
Commun. ACM
, vol.56
, Issue.2
, pp. 74-80
-
-
Dean, J.1
Barroso, L.A.2
-
16
-
-
84877760312
-
Large scale distributed deep networks
-
J. Dean, G. Corrado, R. Monga, K. Chen, M. Devin, M. Mao, M. A. Ranzato, A. Senior, P. Tucker, K. Yang, Q. V. Le, and A. Y. Ng. Large scale distributed deep networks. In Advances in Neural Information Processing Systems 25, pages 1223-1231. 2012.
-
(2012)
Advances in Neural Information Processing Systems 25
, pp. 1223-1231
-
-
Dean, J.1
Corrado, G.2
Monga, R.3
Chen, K.4
Devin, M.5
Mao, M.6
Ranzato, M.A.7
Senior, A.8
Tucker, P.9
Yang, K.10
Le, Q.V.11
Ng, A.Y.12
-
17
-
-
37549003336
-
Mapreduce: Simpliffed data processing on large clusters
-
Jan
-
J. Dean and S. Ghemawat. Mapreduce: Simpliffed data processing on large clusters. Commun. ACM, 51(1):107-113, Jan. 2008.
-
(2008)
Commun. ACM
, vol.51
, Issue.1
, pp. 107-113
-
-
Dean, J.1
Ghemawat, S.2
-
18
-
-
77950537175
-
Regularization paths for generalized linear models via coordinate descent
-
J. Friedman, T. Hastie, and R. Tibshirani. Regularization paths for generalized linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22, 2010.
-
(2010)
Journal of Statistical Software
, vol.33
, Issue.1
, pp. 1-22
-
-
Friedman, J.1
Hastie, T.2
Tibshirani, R.3
-
19
-
-
21644437974
-
The Google le system
-
S. Ghemawat, H. Gobioff, and S.-T. Leung. The Google le system. In Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP '03, pages 29-43, 2003.
-
(2003)
Proceedings of the Nineteenth ACM Symposium on Operating Systems Principles, SOSP '03
, pp. 29-43
-
-
Ghemawat, S.1
Gobioff, H.2
Leung, S.-T.3
-
20
-
-
77956543367
-
Web-scale Bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine
-
T. Graepel, J. Q. Candela, T. Borchert, and R. Herbrich. Web-scale Bayesian click-through rate prediction for sponsored search advertising in microsoft's bing search engine. In Proceedings of the 27th International Conference on Machine Learning, pages 13-20, 2010.
-
(2010)
Proceedings of the 27th International Conference on Machine Learning
, pp. 13-20
-
-
Graepel, T.1
Candela, J.Q.2
Borchert, T.3
Herbrich, R.4
-
21
-
-
85146698994
-
Practical lessons from predicting clicks on ads at Facebook
-
X. He, J. Pan, O. Jin, T. Xu, B. Liu, T. Xu, Y. Shi, A. Atallah, R. Herbrich, S. Bowers, and J. Q. n. Candela. Practical lessons from predicting clicks on ads at Facebook. In Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD'14, pages 5:1-5:9, 2014.
-
(2014)
Proceedings of the Eighth International Workshop on Data Mining for Online Advertising, ADKDD'14
, pp. 51-59
-
-
He, X.1
Pan, J.2
Jin, O.3
Xu, T.4
Liu, B.5
Xu, T.6
Shi, Y.7
Atallah, A.8
Herbrich, R.9
Bowers, S.10
Candela J Q, N.11
-
22
-
-
84937912100
-
Scaling distributed machine learning with the parameter server
-
M. Li, D. G. Andersen, J. W. Park, A. J. Smola, A. Ahmed, V. Josifovski, J. Long, E. J. Shekita, and B.-Y. Su. Scaling distributed machine learning with the parameter server. In Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI'14, pages 583-598, 2014.
-
(2014)
Proceedings of the 11th USENIX Conference on Operating Systems Design and Implementation, OSDI'14
, pp. 583-598
-
-
Li, M.1
Andersen, D.G.2
Park, J.W.3
Smola, A.J.4
Ahmed, A.5
Josifovski, V.6
Long, J.7
Shekita, E.J.8
Su, B.-Y.9
-
24
-
-
85022224234
-
Ad click prediction: A view from the trenches
-
H. B. McMahan, G. Holt, D. Sculley, M. Young, D. Ebner, J. Grady, L. Nie, T. Phillips, E. Davydov, D. Golovin, S. Chikkerur, D. Liu, M. Wattenberg, A. M. Hrafnkelsson, T. Boulos, and J. Kubica. Ad click prediction: A view from the trenches. In Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13, pages 1222-1230, 2013.
-
(2013)
Proceedings of the 19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD '13
, pp. 1222-1230
-
-
McMahan, H.B.1
Holt, G.2
Sculley, D.3
Young, M.4
Ebner, D.5
Grady, J.6
Nie, L.7
Phillips, T.8
Davydov, E.9
Golovin, D.10
Chikkerur, S.11
Liu, D.12
Wattenberg, M.13
Hrafnkelsson, A.M.14
Boulos, T.15
Kubica, J.16
-
25
-
-
85162467517
-
Hogwild: A lock-free approach to parallelizing stochastic gradient descent
-
B. Recht, C. Re, S. Wright, and F. Niu. Hogwild: A lock-free approach to parallelizing stochastic gradient descent. In Advances in Neural Information Processing Systems 24, pages 693-701. 2011.
-
(2011)
Advances in Neural Information Processing Systems
, vol.24
, pp. 693-701
-
-
Recht, B.1
Re, C.2
Wright, S.3
Niu, F.4
-
26
-
-
79960131832
-
Stochastic methods for l1-regularized loss minimization
-
July
-
S. Shalev-Shwartz and A. Tewari. Stochastic methods for l1-regularized loss minimization. J. Mach. Learn. Res. 12:1865-1892, July 2011.
-
(2011)
J. Mach. Learn. Res.
, vol.12
, pp. 1865-1892
-
-
Shalev-Shwartz, S.1
Tewari, A.2
-
27
-
-
84929574917
-
Large-scale cluster management at Google with Borg
-
A. Verma, L. Pedrosa, M. R. Korupolu, D. Oppenheimer, E. Tune, and J. Wilkes. Large-scale cluster management at Google with Borg. In Proceedings of the European Conference on Computer Systems (EuroSys), 2015.
-
(2015)
Proceedings of the European Conference on Computer Systems (EuroSys)
-
-
Verma, A.1
Pedrosa, L.2
Korupolu, M.R.3
Oppenheimer, D.4
Tune, E.5
Wilkes, J.6
|