메뉴 건너뛰기




Volumn 63, Issue 9, 2016, Pages 1850-1861

Fast Multiclass Dictionaries Learning with Geometrical Directions in MRI Reconstruction

Author keywords

Compressed sensing (CS); dictionary learning; magnetic resonance imaging (MRI); sparse representation

Indexed keywords

BRAIN MAPPING; COMPRESSED SENSING; DATA ACQUISITION; IMAGE PROCESSING; LEARNING SYSTEMS; MAGNETIC LEVITATION VEHICLES; MAGNETIC RESONANCE IMAGING; MAGNETISM; NEUROIMAGING; RESONANCE;

EID: 84984813507     PISSN: 00189294     EISSN: 15582531     Source Type: Journal    
DOI: 10.1109/TBME.2015.2503756     Document Type: Article
Times cited : (204)

References (65)
  • 1
    • 31744440684 scopus 로고    scopus 로고
    • Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information
    • Feb
    • E. J. Candes et al., "Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information, " IEEE Trans. Inf. Theory, vol. 52, no. 2, pp. 489-509, Feb. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.2 , pp. 489-509
    • Candes, E.J.1
  • 2
    • 33645712892 scopus 로고    scopus 로고
    • Compressed sensing
    • Apr
    • D. L. Donoho, "Compressed sensing, " IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289-1306, Apr. 2006.
    • (2006) IEEE Trans. Inf. Theory , vol.52 , Issue.4 , pp. 1289-1306
    • Donoho, D.L.1
  • 3
    • 36849088522 scopus 로고    scopus 로고
    • Sparse MRI: The application of compressed sensing for rapid MR imaging
    • Dec
    • M. Lustig et al., "Sparse MRI: The application of compressed sensing for rapid MR imaging, " Magn. Reson. Med., vol. 58, pp. 1182-1195, Dec. 2007.
    • (2007) Magn. Reson. Med , vol.58 , pp. 1182-1195
    • Lustig, M.1
  • 4
    • 73149123165 scopus 로고    scopus 로고
    • Accelerating SENSE using compressed sensing
    • Dec
    • D. Liang et al., "Accelerating SENSE using compressed sensing, " Magn. Reson. Med., vol. 62, pp. 1574-1584, Dec. 2009.
    • (2009) Magn. Reson. Med , vol.62 , pp. 1574-1584
    • Liang, D.1
  • 5
    • 84894076345 scopus 로고    scopus 로고
    • Augmented lagrangian with variable splitting for faster non-cartesian L1-SPIRiT MR image reconstruction
    • Feb
    • D. S. Weller et al., "Augmented lagrangian with variable splitting for faster non-cartesian L1-SPIRiT MR image reconstruction, " IEEE Trans. Med. Imag., vol. 33, no. 2, pp. 351-361, Feb. 2014.
    • (2014) IEEE Trans. Med. Imag , vol.33 , Issue.2 , pp. 351-361
    • Weller, D.S.1
  • 6
    • 84861844027 scopus 로고    scopus 로고
    • Fast L1-SPIRiT compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically feasible runtime
    • Jun
    • M. Murphy et al., "Fast L1-SPIRiT compressed sensing parallel imaging MRI: Scalable parallel implementation and clinically feasible runtime, " IEEE Trans. Med. Imag., vol. 31, no. 6, pp. 1250-1262, Jun. 2012.
    • (2012) IEEE Trans. Med. Imag , vol.31 , Issue.6 , pp. 1250-1262
    • Murphy, M.1
  • 7
    • 77955586915 scopus 로고    scopus 로고
    • Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI
    • Sep
    • R. Otazo et al., "Combination of compressed sensing and parallel imaging for highly accelerated first-pass cardiac perfusion MRI, " Magn. Reson. Med., vol. 64, pp. 767-776, Sep. 2010.
    • (2010) Magn. Reson. Med , vol.64 , pp. 767-776
    • Otazo, R.1
  • 8
    • 77957311066 scopus 로고    scopus 로고
    • A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: Self-feeding sparse SENSE
    • Oct
    • F. Huang et al., "A rapid and robust numerical algorithm for sensitivity encoding with sparsity constraints: Self-feeding sparse SENSE, " Magn. Reson. Med., vol. 64, pp. 1078-1088, Oct. 2010.
    • (2010) Magn. Reson. Med , vol.64 , pp. 1078-1088
    • Huang, F.1
  • 9
    • 77957294832 scopus 로고    scopus 로고
    • Compressed sensing MRI with multichannel data using multicore processors
    • Oct
    • C. H. Chang and J. Ji, "Compressed sensing MRI with multichannel data using multicore processors, " Magn. Reson. Med., vol. 64, pp. 1135-1139, Oct. 2010.
    • (2010) Magn. Reson. Med , vol.64 , pp. 1135-1139
    • Chang, C.H.1    Ji, J.2
  • 10
    • 34248396720 scopus 로고    scopus 로고
    • Projection reconstruction MR imaging using FOCUSS
    • Apr
    • J. C. Ye et al., "Projection reconstruction MR imaging using FOCUSS, " Magn. Reson. Med., vol. 57, pp. 764-775, Apr. 2007.
    • (2007) Magn. Reson. Med , vol.57 , pp. 764-775
    • Ye, J.C.1
  • 11
    • 34250320137 scopus 로고    scopus 로고
    • Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint
    • Jun
    • K. T. Block et al., "Undersampled radial MRI with multiple coils. Iterative image reconstruction using a total variation constraint, " Magn. Reson. Med., vol. 57, pp. 1086-1098, Jun. 2007.
    • (2007) Magn. Reson. Med , vol.57 , pp. 1086-1098
    • Block, K.T.1
  • 12
    • 60549090085 scopus 로고    scopus 로고
    • Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging
    • Feb
    • G. Adluru et al., "Acquisition and reconstruction of undersampled radial data for myocardial perfusion magnetic resonance imaging, " J. Magn. Reson. Imag., vol. 29, pp. 466-473, Feb. 2009.
    • (2009) J. Magn. Reson. Imag , vol.29 , pp. 466-473
    • Adluru, G.1
  • 13
    • 84867496074 scopus 로고    scopus 로고
    • Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints
    • Sep
    • B. Zhao et al., "Image reconstruction from highly undersampled (k, t)-space data with joint partial separability and sparsity constraints, " IEEE Trans. Med. Imag., vol. 31, no. 9, pp. 1809-1820, Sep. 2012.
    • (2012) IEEE Trans. Med. Imag , vol.31 , Issue.9 , pp. 1809-1820
    • Zhao, B.1
  • 14
    • 84886659209 scopus 로고    scopus 로고
    • High-resolution cardiovascular MRI by integrating parallel imaging with low-rank and sparsemodeling
    • Nov
    • A. G. Christodoulou et al., "High-resolution cardiovascular MRI by integrating parallel imaging with low-rank and sparsemodeling, " IEEE Trans. Biomed. Eng., vol. 60, no. 11, pp. 3083-3092, Nov. 2013.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , Issue.11 , pp. 3083-3092
    • Christodoulou, A.G.1
  • 15
    • 79955624809 scopus 로고    scopus 로고
    • Accelerated dynamic MRI exploiting sparsity and low-rank structure: K-T SLR
    • May
    • S. G. Lingala et al., "Accelerated dynamic MRI exploiting sparsity and low-rank structure: k-T SLR, " IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1042-1054, May. 2011.
    • (2011) IEEE Trans. Med. Imag , vol.30 , Issue.5 , pp. 1042-1054
    • Lingala, S.G.1
  • 16
    • 58049195322 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction via homotopic L0-minimization
    • Jan
    • J. Trzasko and A. Manduca, "Highly undersampled magnetic resonance image reconstruction via homotopic L0-minimization, " IEEE Trans. Med. Imag., vol. 28, no. 1, pp. 106-121, Jan. 2009.
    • (2009) IEEE Trans. Med. Imag , vol.28 , Issue.1 , pp. 106-121
    • Trzasko, J.1    Manduca, A.2
  • 17
    • 84880192815 scopus 로고    scopus 로고
    • Sparse reconstruction of breastMRI using homotopic L0 minimization in a regional sparsified domain
    • Mar
    • A. Wong et al., "Sparse reconstruction of breastMRI using homotopic L0 minimization in a regional sparsified domain, " IEEE Trans. Biomed. Eng., vol. 60, no. 3, pp. 743-752, Mar. 2013.
    • (2013) IEEE Trans. Biomed. Eng , vol.60 , Issue.3 , pp. 743-752
    • Wong, A.1
  • 18
    • 84885041479 scopus 로고    scopus 로고
    • Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization
    • Nov
    • B. Ning et al., "Magnetic resonance image reconstruction using trained geometric directions in 2D redundant wavelets domain and non-convex optimization, " Magn. Reson. Imag., vol. 31, pp. 1611-1622, Nov. 2013.
    • (2013) Magn. Reson. Imag , vol.31 , pp. 1611-1622
    • Ning, B.1
  • 19
    • 84870508185 scopus 로고    scopus 로고
    • Compressed sensing based real-Time dynamic MRI reconstruction
    • Dec
    • A. Majumdar et al., "Compressed sensing based real-Time dynamic MRI reconstruction, " IEEE Trans. Med. Imag., vol. 31, no. 12, pp. 2253-2266, Dec. 2012.
    • (2012) IEEE Trans. Med. Imag , vol.31 , Issue.12 , pp. 2253-2266
    • Majumdar, A.1
  • 20
    • 79955633431 scopus 로고    scopus 로고
    • MR image reconstruction from highly undersampled k-space data by dictionary learning
    • May
    • S. Ravishankar and Y. Bresler, "MR image reconstruction from highly undersampled k-space data by dictionary learning, " IEEE Trans. Med. Imag., vol. 30, no. 5, pp. 1028-1041, May 2011.
    • (2011) IEEE Trans. Med. Imag , vol.30 , Issue.5 , pp. 1028-1041
    • Ravishankar, S.1    Bresler, Y.2
  • 21
    • 84864021180 scopus 로고    scopus 로고
    • Undersampled MRI reconstruction with patch-based directional wavelets
    • X. Qu et al., "Undersampled MRI reconstruction with patch-based directional wavelets, " Magn. Reson. Imag., vol. 30, pp. 964-977, 2012.
    • (2012) Magn. Reson. Imag , vol.30 , pp. 964-977
    • Qu, X.1
  • 22
    • 77955457545 scopus 로고    scopus 로고
    • Iterative thresholding compressed sensing MRI based on contourlet transform
    • Aug
    • X. Qu et al., "Iterative thresholding compressed sensing MRI based on contourlet transform, " Inverse Probl. Sci. Eng., vol. 18, pp. 737-758, Aug. 2010.
    • (2010) Inverse Probl. Sci. Eng , vol.18 , pp. 737-758
    • Qu, X.1
  • 23
    • 33748423853 scopus 로고    scopus 로고
    • Bandelet image approximation and compression
    • Jul
    • P. E. L. Penner and S. Mallat, "Bandelet image approximation and compression, " Multiscale Model. Simul., vol. 4, pp. 992-1039, Jul. 2006.
    • (2006) Multiscale Model. Simul , vol.4 , pp. 992-1039
    • Penner, P.E.L.1    Mallat, S.2
  • 24
    • 77949941159 scopus 로고    scopus 로고
    • Combined sparsifying transforms for compressed sensing MRI
    • Jan
    • X. Qu et al., "Combined sparsifying transforms for compressed sensing MRI, " Electron. Lett., vol. 46, pp. 121-122, Jan. 2010.
    • (2010) Electron. Lett , vol.46 , pp. 121-122
    • Qu, X.1
  • 25
    • 84914151853 scopus 로고    scopus 로고
    • Artifact suppressed dictionary learning for low-dose CT image processing
    • Dec
    • Y. Chen et al., "Artifact suppressed dictionary learning for low-dose CT image processing, " IEEE Trans. Med. Imag., vol. 33, no. 12, pp. 2271-2292, Dec. 2014.
    • (2014) IEEE Trans. Med. Imag , vol.33 , Issue.12 , pp. 2271-2292
    • Chen, Y.1
  • 26
    • 84867561335 scopus 로고    scopus 로고
    • Low-dose X-ray CT reconstruction via dictionary learning
    • Sep
    • Q. Xu et al., "Low-dose X-ray CT reconstruction via dictionary learning, " IEEE Trans. Med. Imag., vol. 31, no. 9, pp. 1682-1697, Sep. 2012.
    • (2012) IEEE Trans. Med. Imag , vol.31 , Issue.9 , pp. 1682-1697
    • Xu, Q.1
  • 27
    • 84894456165 scopus 로고    scopus 로고
    • Reconstruction of magnetic resonance imaging by threedimensional dual-dictionary learning
    • Mar
    • Y. Song et al., "Reconstruction of magnetic resonance imaging by threedimensional dual-dictionary learning, " Magn. Reson. Med., vol. 71, pp. 1285-1298, Mar. 2013.
    • (2013) Magn. Reson. Med , vol.71 , pp. 1285-1298
    • Song, Y.1
  • 28
    • 84901691549 scopus 로고    scopus 로고
    • Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator
    • Aug
    • X. Qu et al., "Magnetic resonance image reconstruction from undersampled measurements using a patch-based nonlocal operator, " Med. Image Anal., vol. 18, pp. 843-856, Aug. 2014.
    • (2014) Med. Image Anal , vol.18 , pp. 843-856
    • Qu, X.1
  • 29
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • Nov
    • M. Aharon et al., "K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation, " IEEE Trans. Signal Process., vol. 54, no. 11, pp. 4311-4322, Nov. 2006.
    • (2006) IEEE Trans. Signal Process , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1
  • 30
    • 84880195831 scopus 로고    scopus 로고
    • Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating
    • Jul
    • Q. Liu et al., "Highly undersampled magnetic resonance image reconstruction using two-level Bregman method with dictionary updating, " IEEE Trans. Med. Imag., vol. 32, no. 7, pp. 1290-1301, Jul. 2013.
    • (2013) IEEE Trans. Med. Imag , vol.32 , Issue.7 , pp. 1290-1301
    • Liu, Q.1
  • 31
    • 84901689154 scopus 로고    scopus 로고
    • A computationally efficient method for reconstructing sequences ofMRimages from undersampled k-space data
    • Aug
    • D. Zonoobi and A. A. Kassim, "A computationally efficient method for reconstructing sequences ofMRimages from undersampled k-space data, " Med. Image Anal., vol. 18, pp. 857-865, Aug. 2014.
    • (2014) Med. Image Anal , vol.18 , pp. 857-865
    • Zonoobi, D.1    Kassim, A.A.2
  • 32
    • 84897392875 scopus 로고    scopus 로고
    • Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary
    • Apr
    • Y. Wang and L. Ying, "Compressed sensing dynamic cardiac cine MRI using learned spatiotemporal dictionary, " IEEE Trans. Biomed. Eng., vol. 61, no. 4, pp. 1109-1120, Apr. 2014.
    • (2014) IEEE Trans. Biomed. Eng , vol.61 , Issue.4 , pp. 1109-1120
    • Wang, Y.1    Ying, L.2
  • 33
    • 84898005304 scopus 로고    scopus 로고
    • Dictionary learning and time sparsity for dynamicMR data reconstruction
    • Mar
    • J. Caballero et al., "Dictionary learning and time sparsity for dynamicMR data reconstruction, " IEEE Trans. Med. Imag., vol. 33, no. 4, pp. 979-994, Mar. 2014.
    • (2014) IEEE Trans. Med. Imag , vol.33 , Issue.4 , pp. 979-994
    • Caballero, J.1
  • 34
    • 77954609148 scopus 로고    scopus 로고
    • A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data
    • May
    • Y. M. Chen et al., "A novel method and fast algorithm for MR image reconstruction with significantly under-sampled data, " Inverse Probl. Imag., vol. 4, pp. 223-240, May 2010.
    • (2010) Inverse Probl. Imag , vol.4 , pp. 223-240
    • Chen, Y.M.1
  • 35
    • 78349258863 scopus 로고    scopus 로고
    • Double sparsity: Learning sparse dictionaries for sparse signal approximation
    • Mar
    • R. Rubinstein et al., "Double sparsity: Learning sparse dictionaries for sparse signal approximation, " IEEE Trans. Signal Process., vol. 58, no. 3, pp. 1553-1564, Mar. 2010.
    • (2010) IEEE Trans. Signal Process , vol.58 , Issue.3 , pp. 1553-1564
    • Rubinstein, R.1
  • 36
    • 80052341119 scopus 로고    scopus 로고
    • Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit
    • Apr
    • R. Rubinstein et al., "Efficient implementation of the K-SVD algorithm using batch orthogonal matching pursuit, " Tech. Rep.-CS Tech, vol. 40, no. 8, pp. 1-15, Apr. 2008.
    • (2008) Tech. Rep.-CS Tech , vol.40 , Issue.8 , pp. 1-15
    • Rubinstein, R.1
  • 38
    • 84900531042 scopus 로고    scopus 로고
    • Data-driven tight frame construction and image denoising
    • Jul
    • J. F. Cai et al., "Data-driven tight frame construction and image denoising, " Appl. Comput. Harmon. Anal., vol. 37, pp. 89-105, Jul. 2014.
    • (2014) Appl. Comput. Harmon. Anal , vol.37 , pp. 89-105
    • Cai, J.F.1
  • 39
    • 85030562394 scopus 로고    scopus 로고
    • S. Ravishankar and Y. Bresler (2015, Oct.). Efficient blind compressed sensing using sparsifying transforms with convergence guarantees and application to MRI.To be published. [Online]. Available: http://arxiv.org/abs/1501.02923
  • 40
    • 84870486964 scopus 로고    scopus 로고
    • Simultaneous codeword optimization (SimCO) for dictionary update and learning
    • Dec
    • D. Wei et al., "Simultaneous codeword optimization (SimCO) for dictionary update and learning, " IEEE Trans. Signal Process., vol. 60, no. 12, pp. 6340-6353, Dec. 2012.
    • (2012) IEEE Trans. Signal Process , vol.60 , Issue.12 , pp. 6340-6353
    • Wei, D.1
  • 41
    • 84870874964 scopus 로고    scopus 로고
    • Improving dictionary learning: Multiple dictionary updates and coefficient reuse
    • Jan
    • L. N. Smith and M. Elad, "Improving dictionary learning: Multiple dictionary updates and coefficient reuse, " IEEE Signal Process Lett., vol. 20, no. 1, pp. 79-82, Jan. 2013.
    • (2013) IEEE Signal Process Lett , vol.20 , Issue.1 , pp. 79-82
    • Smith, L.N.1    Elad, M.2
  • 42
    • 66849115117 scopus 로고    scopus 로고
    • Dictionary learning for sparse approximations with the majorization method
    • Jun
    • M. Yaghoobi et al., "Dictionary learning for sparse approximations with the majorization method, " IEEE Trans. Signal Process., vol. 57, no. 6, pp. 2178-2191, Jun. 2009.
    • (2009) IEEE Trans. Signal Process , vol.57 , Issue.6 , pp. 2178-2191
    • Yaghoobi, M.1
  • 43
    • 84886676569 scopus 로고    scopus 로고
    • Dictionary learning for sparse representation: A novel approach
    • Dec
    • M. Sadeghi et al., "Dictionary learning for sparse representation: A novel approach, " IEEE Signal Process. Lett., vol. 20, no. 12, pp. 1195-1198, Dec. 2013.
    • (2013) IEEE Signal Process. Lett , vol.20 , Issue.12 , pp. 1195-1198
    • Sadeghi, M.1
  • 44
    • 84898778269 scopus 로고    scopus 로고
    • Fast sparsity-based orthogonal dictionary learning for image restoration
    • C. L. Bao et al., "Fast sparsity-based orthogonal dictionary learning for image restoration, " in Proc. IEEE Int. Conf. Comput. Vis., 2013, pp. 3384-3391.
    • (2013) Proc IEEE Int. Conf. Comput. Vis , pp. 3384-3391
    • Bao, C.L.1
  • 46
    • 84927591259 scopus 로고    scopus 로고
    • L0 sparsifying transform learning with efficient optimal updates and convergence guarantees
    • May
    • S. Ravishankar and Y. Bresler, "L0 sparsifying transform learning with efficient optimal updates and convergence guarantees, " IEEE Trans. Signal Process., vol. 63, no. 9, pp. 2389-2404, May 2015.
    • (2015) IEEE Trans. Signal Process , vol.63 , Issue.9 , pp. 2389-2404
    • Ravishankar, S.1    Bresler, Y.2
  • 47
    • 84929299727 scopus 로고    scopus 로고
    • Online sparsifying transform learning-Part I: Algorithms
    • Jun
    • S. Ravishankar et al., "Online sparsifying transform learning-Part I: Algorithms, " IEEE J. Sel. Topics Signal Process., vol. 9, no. 4, pp. 625-636, Jun. 2015.
    • (2015) IEEE J. Sel. Topics Signal Process , vol.9 , Issue.4 , pp. 625-636
    • Ravishankar, S.1
  • 48
    • 84884838010 scopus 로고    scopus 로고
    • Learning doubly sparse transforms for images
    • Dec
    • S. Ravishankar and Y. Bresler, "Learning doubly sparse transforms for images, " IEEE Trans. Image Process., vol. 22, no. 12, pp. 4598-4612, Dec. 2013.
    • (2013) IEEE Trans. Image Process , vol.22 , Issue.12 , pp. 4598-4612
    • Ravishankar, S.1    Bresler, Y.2
  • 49
    • 84939567002 scopus 로고    scopus 로고
    • Structured overcomplete sparsifying transform learning with convergence guarantees and applications
    • Oct
    • B. Wen et al., "Structured overcomplete sparsifying transform learning with convergence guarantees and applications, " Int. J. Comput. Vis., vol. 114, pp. 1-31, Oct. 2014.
    • (2014) Int. J. Comput. Vis , vol.114 , pp. 1-31
    • Wen, B.1
  • 50
    • 84881654671 scopus 로고    scopus 로고
    • Sparsifying transform learning for compressed sensing MRI
    • S. Ravishankar and Y. Bresler, "Sparsifying transform learning for compressed sensing MRI, " in Proc. IEEE Int. Symp. Biomed. Imag., 2013, pp. 17-20.
    • (2013) Proc IEEE Int. Symp. Biomed. Imag , pp. 17-20
    • Ravishankar, S.1    Bresler, Y.2
  • 51
    • 77955994663 scopus 로고    scopus 로고
    • Classification and clustering via dictionary learning with structured incoherence and shared features
    • I. Ramirez et al., "Classification and clustering via dictionary learning with structured incoherence and shared features, " in Proc. IEEE Comput. Vis. Pattern Recog. Conf., 2010, pp. 3501-3508.
    • (2010) Proc IEEE Comput. Vis. Pattern Recog. Conf , pp. 3501-3508
    • Ramirez, I.1
  • 52
    • 84925290196 scopus 로고    scopus 로고
    • Convergence analysis for iterative data-driven tight frame construction scheme
    • May
    • C. Bao et al., "Convergence analysis for iterative data-driven tight frame construction scheme, " Appl. Comput. Harmon. Anal., vol. 38, pp. 510-523, May 2015.
    • (2015) Appl. Comput. Harmon. Anal , vol.38 , pp. 510-523
    • Bao, C.1
  • 53
    • 77952921188 scopus 로고    scopus 로고
    • Split Bregman methods and frame based image restoration
    • Dec
    • J. F. Cai et al., "Split Bregman methods and frame based image restoration, " Multiscale Model. Simul., vol. 8, pp. 337-369, Dec. 2009.
    • (2009) Multiscale Model. Simul , vol.8 , pp. 337-369
    • Cai, J.F.1
  • 54
    • 80051762104 scopus 로고    scopus 로고
    • Distributed optimization and statistical learning via the alternating direction method of multipliers
    • Jan
    • S. Boyd et al., "Distributed optimization and statistical learning via the alternating direction method of multipliers, " Found. Trends Mach. Learn., vol. 3, pp. 1-122, Jan. 2011.
    • (2011) Found. Trends Mach. Learn , vol.3 , pp. 1-122
    • Boyd, S.1
  • 55
    • 84929460109 scopus 로고    scopus 로고
    • Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging
    • Apr
    • Y. Liu et al., "Balanced sparse model for tight frames in compressed sensing magnetic resonance imaging, " PLoS One, vol. 10, p. e0119584, Apr. 2015.
    • (2015) PLoS One , vol.10 , pp. e0119584
    • Liu, Y.1
  • 56
    • 85030546640 scopus 로고    scopus 로고
    • C. Chen and J. Huang. (2012). WaTMRI code. [Online]. Available: http://ranger.uta.edu/huang/codes/WaTMRI.zip
  • 57
    • 85030565925 scopus 로고    scopus 로고
    • X. Qu et al. (2012). PBDW code. [Online]. Available: http://www. quxiaobo.org/project/CS-MRI-PBDW/Toolbox-PBDW.zip
  • 58
    • 85030563949 scopus 로고    scopus 로고
    • S. Ravishankar and Y. Bresler. (2013). DLMRI-Lab. [Online]. Available: http://www.ifp.illinois.edu/yoram/DLMRI-Lab/DLMRI. html#Download
  • 59
    • 1942436689 scopus 로고    scopus 로고
    • Image quality assessment: From error visibility to structural similarity
    • Apr
    • Z. Wang et al., "Image quality assessment: From error visibility to structural similarity, " IEEE Trans. Image Process., vol. 13, no. 4, pp. 600-612, Apr. 2004.
    • (2004) IEEE Trans. Image Process , vol.13 , Issue.4 , pp. 600-612
    • Wang, Z.1
  • 60
    • 84908237249 scopus 로고    scopus 로고
    • Bayesian nonparametric dictionary learning for compressed sensing MRI
    • Dec
    • Y. Huang et al., "Bayesian nonparametric dictionary learning for compressed sensing MRI, " IEEE Trans. Image Process., vol. 23, no. 12, pp. 5007-5019, Dec. 2014.
    • (2014) IEEE Trans. Image Process , vol.23 , Issue.12 , pp. 5007-5019
    • Huang, Y.1
  • 61
    • 84960499112 scopus 로고    scopus 로고
    • Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery
    • Dec
    • Y. Mohsin et al., "Iterative shrinkage algorithm for patch-smoothness regularized medical image recovery, " IEEE Trans. Med. Imag., vol. 34, no. 12, pp. 2417-2428, Dec. 2015.
    • (2015) IEEE Trans. Med. Imag , vol.34 , Issue.12 , pp. 2417-2428
    • Mohsin, Y.1
  • 62
    • 85030564799 scopus 로고    scopus 로고
    • X. Qu et al. (2014). PANO code. [Online]. Available: http://www. quxiaobo.org/project/CS-MRI-PANO/PANO-Toolbox.zip
  • 63
    • 85030544534 scopus 로고    scopus 로고
    • B. Ning and X. Qu. (2013). PBDWS code. [Online]. Available: http://www.quxiaobo.org/project/CS-MRI-PBDWS/Demo-PBDWS-SparseMRI.zip
  • 64
    • 85030549497 scopus 로고    scopus 로고
    • Z. Zhan et al. (2015). FDLCP code. [Online]. Available: http://www. quxiaobo.org/project/CS-MRI-FDLCP/Demo-FDLCP-L1-L0.zip
  • 65
    • 85030546196 scopus 로고    scopus 로고
    • Y. Liu et al. (2015, Oct.). Projected iterative soft-Thresholding algorithm for tight frames in compressed sensing magnetic resonance imaging.To be published. [Online]. Available: http://arxiv.org/abs/1504.07786


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.