-
1
-
-
84863011622
-
Unimpeded permeation of water through helium-leak-tight graphene-based membranes
-
[1] Nair, R.R., Wu, H.A., Jayaram, P.N., Grigorieva, I.V., Geim, A.K., Unimpeded permeation of water through helium-leak-tight graphene-based membranes. Science 335 (2012), 442–444.
-
(2012)
Science
, vol.335
, pp. 442-444
-
-
Nair, R.R.1
Wu, H.A.2
Jayaram, P.N.3
Grigorieva, I.V.4
Geim, A.K.5
-
2
-
-
84893951969
-
Precise and ultrafast molecular sieving through graphene oxide membranes
-
[2] Joshi, R.K., Carbone, P., Wang, F.C., Kravets, V.G., Su, Y., Griforieva, I.V., et al. Precise and ultrafast molecular sieving through graphene oxide membranes. Science 343 (2014), 752–754.
-
(2014)
Science
, vol.343
, pp. 752-754
-
-
Joshi, R.K.1
Carbone, P.2
Wang, F.C.3
Kravets, V.G.4
Su, Y.5
Griforieva, I.V.6
-
3
-
-
77956556804
-
Graphene as a subnanometre trans-electrode membrane
-
[3] Garaj, S., Hubbard, W., Reina, A., Kong, J., Branton, D., Golovchenko, J.A., Graphene as a subnanometre trans-electrode membrane. Nature 467 (2010), 190–194.
-
(2010)
Nature
, vol.467
, pp. 190-194
-
-
Garaj, S.1
Hubbard, W.2
Reina, A.3
Kong, J.4
Branton, D.5
Golovchenko, J.A.6
-
4
-
-
84869079666
-
Selective molecular sieving through porous graphene
-
[4] Koenig, S.P., Wang, L., Pellegrino, J., Bunch, J.S., Selective molecular sieving through porous graphene. Nat. Nanotechnol. 7 (2012), 728–732.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 728-732
-
-
Koenig, S.P.1
Wang, L.2
Pellegrino, J.3
Bunch, J.S.4
-
5
-
-
84885665541
-
Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation
-
[5] Li, H., Song, Z., Zhang, X., Huang, Y., Li, S., Mao, Y., et al. Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation. Science 342 (2013), 95–98.
-
(2013)
Science
, vol.342
, pp. 95-98
-
-
Li, H.1
Song, Z.2
Zhang, X.3
Huang, Y.4
Li, S.5
Mao, Y.6
-
6
-
-
71949117879
-
Porous graphene as the ultimate membrane for gas separation
-
[6] Jiang, D., Cooper, V.R., Dai, S., Porous graphene as the ultimate membrane for gas separation. Nano Lett. 9 (2009), 4019–4024.
-
(2009)
Nano Lett.
, vol.9
, pp. 4019-4024
-
-
Jiang, D.1
Cooper, V.R.2
Dai, S.3
-
7
-
-
84870403081
-
Selective molecular transport through intrinsic defects in a single layer of CVD graphene
-
[7] O'Hern, S.C., Stewart, C.A., Boutilier, M.S.H., Idrobo, J.C., Bhaviripudi, S., Das, S.K., et al. Selective molecular transport through intrinsic defects in a single layer of CVD graphene. ACS Nano 6 (2012), 10130–10138.
-
(2012)
ACS Nano
, vol.6
, pp. 10130-10138
-
-
O'Hern, S.C.1
Stewart, C.A.2
Boutilier, M.S.H.3
Idrobo, J.C.4
Bhaviripudi, S.5
Das, S.K.6
-
8
-
-
84896375292
-
Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes
-
[8] O'Hern, S.C., Boutilier, M.S.H., Idrobo, J.C., Song, Y., Kong, J., Laoui, T., et al. Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes. Nano Lett. 14 (2014), 1234–1241.
-
(2014)
Nano Lett.
, vol.14
, pp. 1234-1241
-
-
O'Hern, S.C.1
Boutilier, M.S.H.2
Idrobo, J.C.3
Song, Y.4
Kong, J.5
Laoui, T.6
-
9
-
-
84929329206
-
Nanofiltration across defect-sealed nanoporous monolayer graphene
-
[9] O'Hern, S.C., Jang, D., Bose, S., Idrobo, J.C., Song, Y., Laoui, T., et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15 (2015), 3254–3260.
-
(2015)
Nano Lett.
, vol.15
, pp. 3254-3260
-
-
O'Hern, S.C.1
Jang, D.2
Bose, S.3
Idrobo, J.C.4
Song, Y.5
Laoui, T.6
-
10
-
-
77955569305
-
DNA translocation through graphene nanopores
-
[10] Schneider, G.F., Kowalczyk, S.W., Calado, V.E., Pandraud, G., Zandbergen, H.W., Vandersypen, L.M.K., et al. DNA translocation through graphene nanopores. Nano Lett. 10 (2010), 3163–3167.
-
(2010)
Nano Lett.
, vol.10
, pp. 3163-3167
-
-
Schneider, G.F.1
Kowalczyk, S.W.2
Calado, V.E.3
Pandraud, G.4
Zandbergen, H.W.5
Vandersypen, L.M.K.6
-
11
-
-
76749137693
-
Rapid sequencing of individual DNA molecules in graphene nanogaps
-
[11] Postma, H. W. Ch., Rapid sequencing of individual DNA molecules in graphene nanogaps. Nano Lett. 10 (2010), 420–425.
-
(2010)
Nano Lett.
, vol.10
, pp. 420-425
-
-
Postma, H.W.C.1
-
12
-
-
79960491374
-
Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes
-
[12] He, Y., Scheicher, R.H., Grigoriev, A., Ahuja, R., Long, S., Huo, Z., et al. Enhanced DNA sequencing performance through edge-hydrogenation of graphene electrodes. Adv. Funct. Mater. 21 (2011), 2674–2679.
-
(2011)
Adv. Funct. Mater.
, vol.21
, pp. 2674-2679
-
-
He, Y.1
Scheicher, R.H.2
Grigoriev, A.3
Ahuja, R.4
Long, S.5
Huo, Z.6
-
13
-
-
57549101676
-
Selective ion passage through functionalized graphene nanopores
-
[13] Sint, K., Wang, B., Král, P., Selective ion passage through functionalized graphene nanopores. J. Am. Chem. Soc. 130 (2008), 16448–16449.
-
(2008)
J. Am. Chem. Soc.
, vol.130
, pp. 16448-16449
-
-
Sint, K.1
Wang, B.2
Král, P.3
-
14
-
-
84916607011
-
Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures
-
[14] Tocci, G., Joly, L., Michaelides, A., Friction of water on graphene and hexagonal boron nitride from ab initio methods: very different slippage despite very similar interface structures. Nano Lett. 14 (2014), 6872–6877.
-
(2014)
Nano Lett.
, vol.14
, pp. 6872-6877
-
-
Tocci, G.1
Joly, L.2
Michaelides, A.3
-
15
-
-
84863847073
-
Water desalination across nanoporous graphene
-
[15] Cohen-Tanugi, D., Grossman, J.C., Water desalination across nanoporous graphene. Nano Lett. 12 (2012), 3602–3608.
-
(2012)
Nano Lett.
, vol.12
, pp. 3602-3608
-
-
Cohen-Tanugi, D.1
Grossman, J.C.2
-
16
-
-
84910128484
-
Mechanical strength of nanoporous graphene as a desalination membrane
-
[16] Cohen-Tanugi, D., Grossman, J.C., Mechanical strength of nanoporous graphene as a desalination membrane. Nano Lett. 14 (2014), 6171–6178.
-
(2014)
Nano Lett.
, vol.14
, pp. 6171-6178
-
-
Cohen-Tanugi, D.1
Grossman, J.C.2
-
17
-
-
33646753161
-
Fast mass transport through sub-2-nanometer carbon nanotubes
-
[17] Holt, J.K., Park, H.G., Wnag, Y., Stadermann, M., Artyukhin, A.B., Grigoropoulos, C.P., et al. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312 (2006), 1034–1037.
-
(2006)
Science
, vol.312
, pp. 1034-1037
-
-
Holt, J.K.1
Park, H.G.2
Wnag, Y.3
Stadermann, M.4
Artyukhin, A.B.5
Grigoropoulos, C.P.6
-
18
-
-
79959809734
-
Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow
-
[18] Majumder, M., Chopra, N., Hinds, B.J., Mass transport through carbon nanotube membranes in three different regimes: ionic diffusion and gas and liquid flow. ACS Nano 5 (2011), 3867–3877.
-
(2011)
ACS Nano
, vol.5
, pp. 3867-3877
-
-
Majumder, M.1
Chopra, N.2
Hinds, B.J.3
-
19
-
-
84876257810
-
Ultrathin graphene nanofiltration membrane for water purification
-
[19] Han, Y., Xu, Z., Gao, C., Ultrathin graphene nanofiltration membrane for water purification. Adv. Funct. Mater. 23 (2013), 3693–3700.
-
(2013)
Adv. Funct. Mater.
, vol.23
, pp. 3693-3700
-
-
Han, Y.1
Xu, Z.2
Gao, C.3
-
20
-
-
84890945623
-
Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes
-
[20] Huang, H., Song, Z., Wei, N., Shi, L., Mao, Y., Ying, Y., et al. Ultrafast viscous water flow through nanostrand-channelled graphene oxide membranes. Nat. Commun., 4, 2013, 2979.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2979
-
-
Huang, H.1
Song, Z.2
Wei, N.3
Shi, L.4
Mao, Y.5
Ying, Y.6
-
21
-
-
84990909337
-
Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates
-
[21] Sun, P., Chen, Q., Li, X., Liu, H., Wang, K., Zhong, M., et al. Highly efficient quasi-static water desalination using monolayer graphene oxide/titania hybrid laminates. NPG Asia Mater., 7, 2015, e162.
-
(2015)
NPG Asia Mater.
, vol.7
, pp. e162
-
-
Sun, P.1
Chen, Q.2
Li, X.3
Liu, H.4
Wang, K.5
Zhong, M.6
-
22
-
-
84943585656
-
An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres
-
[22] Kim, S., Song, Y., Takahashi, T., Oh, T., Heller, M.J., An aqueous single reactor arc discharge process for the synthesis of graphene nanospheres. Small 11 (2015), 5041–5046.
-
(2015)
Small
, vol.11
, pp. 5041-5046
-
-
Kim, S.1
Song, Y.2
Takahashi, T.3
Oh, T.4
Heller, M.J.5
-
23
-
-
84960858844
-
Graphene bi- and trilayers produced by a novel aqueous arc discharge process
-
[23] Kim, S., Song, Y., Wright, J., Heller, M.J., Graphene bi- and trilayers produced by a novel aqueous arc discharge process. Carbon, 102, 2016, 339.
-
(2016)
Carbon
, vol.102
, pp. 339
-
-
Kim, S.1
Song, Y.2
Wright, J.3
Heller, M.J.4
-
24
-
-
0010989267
-
Theoretical models of the electrical discharge machining process. III. the variable mass, cylindrical plasma model
-
[24] Eubank, P.T., Patel, M.R., Barrufet, M.A., Bozkurt, B., Theoretical models of the electrical discharge machining process. III. the variable mass, cylindrical plasma model. J. Appl. Phys. 73 (1993), 7900–7909.
-
(1993)
J. Appl. Phys.
, vol.73
, pp. 7900-7909
-
-
Eubank, P.T.1
Patel, M.R.2
Barrufet, M.A.3
Bozkurt, B.4
-
25
-
-
0036733897
-
Properties of carbon onions produced by an arc discharge in water
-
[25] Sano, N., Wang, H., Alexandrou, I., Chhowalla, M., Teo, K.B.K., Amaratunga, G.A.J., Properties of carbon onions produced by an arc discharge in water. J. Appl. Phys. 92 (2002), 2783–2788.
-
(2002)
J. Appl. Phys.
, vol.92
, pp. 2783-2788
-
-
Sano, N.1
Wang, H.2
Alexandrou, I.3
Chhowalla, M.4
Teo, K.B.K.5
Amaratunga, G.A.J.6
-
26
-
-
0035969532
-
Synthesis of carbon onion in water
-
[26] Sano, N., Wang, H., Chhowalla, M., Alexandrou, I., Amaratunga, G.A.J., Synthesis of carbon onion in water. Nature 414 (2001), 506–507.
-
(2001)
Nature
, vol.414
, pp. 506-507
-
-
Sano, N.1
Wang, H.2
Chhowalla, M.3
Alexandrou, I.4
Amaratunga, G.A.J.5
-
27
-
-
33750459007
-
Raman spectrum of graphene and graphene layers
-
[27] Ferrari, A.C., Meyer, J.C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett., 97, 2006, 187401.
-
(2006)
Phys. Rev. Lett.
, vol.97
, pp. 187401
-
-
Ferrari, A.C.1
Meyer, J.C.2
Scardaci, V.3
Casiraghi, C.4
Lazzeri, M.5
Mauri, F.6
-
28
-
-
65449160966
-
Raman spectroscopy of graphene edges
-
[28] Casiraghi, C., Hartschuh, A., Qian, H., Piscanec, S., Georgi, C., Fasoli, A., Raman spectroscopy of graphene edges. Nano Lett. 9 (2009), 1433–1441.
-
(2009)
Nano Lett.
, vol.9
, pp. 1433-1441
-
-
Casiraghi, C.1
Hartschuh, A.2
Qian, H.3
Piscanec, S.4
Georgi, C.5
Fasoli, A.6
-
29
-
-
84921747361
-
Raman spectroscopy at the edges of multilayer graphene
-
[29] Li, Q.Q., Zhang, X., Han, W.P., Lu, Y., Shi, W., Wu, J.B., et al. Raman spectroscopy at the edges of multilayer graphene. Carbon 85 (2015), 221–224.
-
(2015)
Carbon
, vol.85
, pp. 221-224
-
-
Li, Q.Q.1
Zhang, X.2
Han, W.P.3
Lu, Y.4
Shi, W.5
Wu, J.B.6
-
30
-
-
0242457307
-
Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process
-
[30] Agenson, K.O., Oh, J.I., Urase, T., Retention of a wide variety of organic pollutants by different nanofiltration/reverse osmosis membranes: controlling parameters of process. J. Membr. Sci. 225 (2003), 91–103.
-
(2003)
J. Membr. Sci.
, vol.225
, pp. 91-103
-
-
Agenson, K.O.1
Oh, J.I.2
Urase, T.3
-
31
-
-
38149093291
-
Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide
-
[31] Paci, J.T., Belytschko, T., Schatz, G.C., Computational studies of the structure, behavior upon heating, and mechanical properties of graphite oxide. J. Phys. Chem. C 111 (2007), 18099–18111.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 18099-18111
-
-
Paci, J.T.1
Belytschko, T.2
Schatz, G.C.3
-
32
-
-
78149448625
-
Determination of the local chemical structure of graphene oxide and reduced graphene oxide
-
[32] Erickson, K., Erni, R., Lee, Z., Alem, N., Gannett, W., Zettl, A., Determination of the local chemical structure of graphene oxide and reduced graphene oxide. Adv. Mater. 22 (2010), 4467–4472.
-
(2010)
Adv. Mater.
, vol.22
, pp. 4467-4472
-
-
Erickson, K.1
Erni, R.2
Lee, Z.3
Alem, N.4
Gannett, W.5
Zettl, A.6
-
33
-
-
70349231471
-
Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films
-
[33] Mattevi, C., Eda, G., Agnoli, S., Miller, S., Mkhoyan, K.A., Celik, O., et al. Evolution of electrical, chemical, and structural properties of transparent and conducting chemically derived graphene thin films. Adv. Funct. Mater. 19 (2009), 2577–2583.
-
(2009)
Adv. Funct. Mater.
, vol.19
, pp. 2577-2583
-
-
Mattevi, C.1
Eda, G.2
Agnoli, S.3
Miller, S.4
Mkhoyan, K.A.5
Celik, O.6
-
34
-
-
0035829539
-
Water conduction through the hydrophobic channel of a carbon nanotube
-
[34] Hummer, G., Rasaiah, J.C., Noworyta, J.P., Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414 (2001), 188–190.
-
(2001)
Nature
, vol.414
, pp. 188-190
-
-
Hummer, G.1
Rasaiah, J.C.2
Noworyta, J.P.3
-
35
-
-
40449101346
-
Why are carbon nanotubes fast transporter of water?
-
[35] Joseph, S., Aluru, N.R., Why are carbon nanotubes fast transporter of water?. Nano Lett. 8 (2008), 452–458.
-
(2008)
Nano Lett.
, vol.8
, pp. 452-458
-
-
Joseph, S.1
Aluru, N.R.2
-
36
-
-
84883024645
-
Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification
-
[36] Yang, H.Y., Han, Z.J., Yu, S.F., Pey, K.L., Ostrikov, K., Karnik, R., Carbon nanotube membranes with ultrahigh specific adsorption capacity for water desalination and purification. Nat. Commun., 4, 2013, 2220.
-
(2013)
Nat. Commun.
, vol.4
, pp. 2220
-
-
Yang, H.Y.1
Han, Z.J.2
Yu, S.F.3
Pey, K.L.4
Ostrikov, K.5
Karnik, R.6
|