메뉴 건너뛰기




Volumn 48, Issue 3, 2016, Pages 936-949

Confirmatory factor analysis with ordinal data: Comparing robust maximum likelihood and diagonally weighted least squares

Author keywords

Confirmatory factor analysis; Monte Carlo Simulation; Ordinal data; Robust estimation

Indexed keywords

CHI SQUARE DISTRIBUTION; COMPARATIVE STUDY; FACTOR ANALYSIS; HUMAN; LEAST SQUARE ANALYSIS; MONTE CARLO METHOD; SAMPLE SIZE; STATISTICAL ANALYSIS; STATISTICAL MODEL;

EID: 84984653418     PISSN: 1554351X     EISSN: 15543528     Source Type: Journal    
DOI: 10.3758/s13428-015-0619-7     Document Type: Article
Times cited : (1776)

References (48)
  • 1
    • 33744523182 scopus 로고    scopus 로고
    • On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA
    • Beauducel, A., & Herzberg, P. Y. (2006). On the performance of maximum likelihood versus means and variance adjusted weighted least squares estimation in CFA. Structural Equation Modeling, 13, 186–203. doi:10.1207/s15328007sem1302_2
    • (2006) Structural Equation Modeling , vol.13 , pp. 186-203
    • Beauducel, A.1    Herzberg, P.Y.2
  • 5
    • 85004870441 scopus 로고
    • Asymptotically distribution-free methods for the analysis of covariance structures
    • Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of covariance structures. British Journal of Mathematics and Statistical Psychology, 37, 62–83.
    • (1984) British Journal of Mathematics and Statistical Psychology , vol.37 , pp. 62-83
    • Browne, M.W.1
  • 6
    • 0000330243 scopus 로고    scopus 로고
    • Alternative approaches to structural modeling of ordinal data: A Monte Carlo study
    • Coenders, G., Satorra, A., & Saris, W. E. (1997). Alternative approaches to structural modeling of ordinal data: A Monte Carlo study. Structural Equation Modeling, 4, 261–282. doi:10.1080/10705519709540077
    • (1997) Structural Equation Modeling , vol.4 , pp. 261-282
    • Coenders, G.1    Satorra, A.2    Saris, W.E.3
  • 7
    • 0001922927 scopus 로고    scopus 로고
    • The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis
    • Curran, P. J., West, S. G., & Finch, G. F. (1996). The robustness of test statistics to nonnormality and specification error in confirmatory factor analysis. Psychological Methods, 1, 16–29.
    • (1996) Psychological Methods , vol.1 , pp. 16-29
    • Curran, P.J.1    West, S.G.2    Finch, G.F.3
  • 8
    • 0348118210 scopus 로고    scopus 로고
    • The impact of categorization with confirmatory factor analysis
    • DiStefano, C. (2002). The impact of categorization with confirmatory factor analysis. Structural Equation Modeling, 9, 327–346.
    • (2002) Structural Equation Modeling , vol.9 , pp. 327-346
    • DiStefano, C.1
  • 9
    • 10844245499 scopus 로고    scopus 로고
    • An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data
    • PID: 15598100
    • Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of alternative methods of estimation for confirmatory factor analysis with ordinal data. Psychological Methods, 9, 466–491.
    • (2004) Psychological Methods , vol.9 , pp. 466-491
    • Flora, D.B.1    Curran, P.J.2
  • 10
    • 70249116454 scopus 로고    scopus 로고
    • Estimation of IRT graded response models: Limited versus full information methods
    • PID: 19719362
    • Forero, C. G., & Maydeu-Olivares, A. (2009). Estimation of IRT graded response models: Limited versus full information methods. Psychological Methods, 14, 275–299.
    • (2009) Psychological Methods , vol.14 , pp. 275-299
    • Forero, C.G.1    Maydeu-Olivares, A.2
  • 11
    • 78650468393 scopus 로고    scopus 로고
    • Factor analysis with ordinal indicator: A Monte Carlo Study Comparing DWLS and ULS Estimation
    • Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009). Factor analysis with ordinal indicator: A Monte Carlo Study Comparing DWLS and ULS Estimation. Structural Equation Modeling, 16, 625–641.
    • (2009) Structural Equation Modeling , vol.16 , pp. 625-641
    • Forero, C.G.1    Maydeu-Olivares, A.2    Gallardo-Pujol, D.3
  • 12
    • 34548066774 scopus 로고    scopus 로고
    • The model-size effect on traditional and modified tests of covariance structures
    • Herzog, W., Boomsma, A., & Reinecke, S. (2007). The model-size effect on traditional and modified tests of covariance structures. Structural Equation Modeling, 14, 361–390. doi:10.1080/10705510701301602
    • (2007) Structural Equation Modeling , vol.14 , pp. 361-390
    • Herzog, W.1    Boomsma, A.2    Reinecke, S.3
  • 13
    • 0032330969 scopus 로고    scopus 로고
    • Robustness studies in covariance structure modeling: An overview and meta-analysis
    • Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in covariance structure modeling: An overview and meta-analysis. Sociological Methods & Research, 26, 329–367.
    • (1998) Sociological Methods & Research , vol.26 , pp. 329-367
    • Hoogland, J.J.1    Boomsma, A.2
  • 14
    • 64649086851 scopus 로고    scopus 로고
    • Reporting practices in confirmatory factor analysis: An overview and some recommendations
    • PID: 19271845
    • Jackson, D. L., Gillaspy, J. A., & Purc-Stephenson, R. (2009). Reporting practices in confirmatory factor analysis: An overview and some recommendations. Psychological Methods, 14, 6–23.
    • (2009) Psychological Methods , vol.14 , pp. 6-23
    • Jackson, D.L.1    Gillaspy, J.A.2    Purc-Stephenson, R.3
  • 15
    • 0021025292 scopus 로고
    • Ordinal measures in multiple indicator models: A simulation study of categorization error
    • Johnson, D. R., & Creech, J. C. (1983). Ordinal measures in multiple indicator models: A simulation study of categorization error. American Sociological Review, 48, 398–407.
    • (1983) American Sociological Review , vol.48 , pp. 398-407
    • Johnson, D.R.1    Creech, J.C.2
  • 16
    • 34250481868 scopus 로고
    • A general approach to confirmatory maximum likelihood factor analysis
    • Jöreskog, K. G. (1969). A general approach to confirmatory maximum likelihood factor analysis. Psychometrika, 34, 183–202.
    • (1969) Psychometrika , vol.34 , pp. 183-202
    • Jöreskog, K.G.1
  • 17
    • 84984642423 scopus 로고    scopus 로고
    • Structural equation modeling with ordinal variables using LISREL
    • Jöreskog, K. G. (2005). Structural equation modeling with ordinal variables using LISREL. Retrieved from www.ssicentral.com/lisrel/techdocs/ordinal.pdf
    • (2005) Retrieved from
    • Jöreskog, K.G.1
  • 21
    • 64749097255 scopus 로고    scopus 로고
    • Evaluating estimation methods for ordinal data in structural equation modeling
    • Lei, P. (2009). Evaluating estimation methods for ordinal data in structural equation modeling. Quality and Quantity, 43, 495–507.
    • (2009) Quality and Quantity , vol.43 , pp. 495-507
    • Lei, P.1
  • 22
    • 84874441000 scopus 로고    scopus 로고
    • Validation of the Chinese version of the Life Orientation Test with a robust weighted least squares approach
    • PID: 22250590
    • Li, C.-H. (2012). Validation of the Chinese version of the Life Orientation Test with a robust weighted least squares approach. Psychological Assessment, 24, 770–776. doi:10.1037/a0026612
    • (2012) Psychological Assessment , vol.24 , pp. 770-776
    • Li, C.-H.1
  • 23
    • 8344283498 scopus 로고    scopus 로고
    • Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons
    • Lubke, G. H., & Muthén, B. O. (2004). Applying multigroup confirmatory factor models for continuous outcomes to Likert scale data complicates meaningful group comparisons. Structural Equation Modeling, 11, 514–534.
    • (2004) Structural Equation Modeling , vol.11 , pp. 514-534
    • Lubke, G.H.1    Muthén, B.O.2
  • 24
    • 0039435028 scopus 로고
    • Symmetry, 0–1 matrices and Jacobians: A review
    • Magnus, J. R., & Neudecker, H. (1986). Symmetry, 0–1 matrices and Jacobians: A review. Econometric Theory, 2, 157–190. doi:10.1017/S0266466600011476
    • (1986) Econometric Theory , vol.2 , pp. 157-190
    • Magnus, J.R.1    Neudecker, H.2
  • 25
    • 0032221781 scopus 로고    scopus 로고
    • Is more ever too much? The number of indicators per factor in confirmatory factor analysis
    • PID: 26771883
    • Marsh, H. W., Hau, K., Balla, J. R., & Grayson, D. (1998). Is more ever too much? The number of indicators per factor in confirmatory factor analysis. Multivariate Behavioral Research, 33, 181–220.
    • (1998) Multivariate Behavioral Research , vol.33 , pp. 181-220
    • Marsh, H.W.1    Hau, K.2    Balla, J.R.3    Grayson, D.4
  • 26
    • 58149368765 scopus 로고
    • The unicorn, the normal curve, than other improbable creatures
    • Micceri, T. (1989). The unicorn, the normal curve, than other improbable creatures. Psychological Bulletin, 105, 156–166.
    • (1989) Psychological Bulletin , vol.105 , pp. 156-166
    • Micceri, T.1
  • 27
    • 0001391849 scopus 로고
    • A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators
    • Muthén, B. O. (1984). A general structural equation model with dichotomous, ordered categorical, and continuous latent variable indicators. Psychometrika, 49, 115–132.
    • (1984) Psychometrika , vol.49 , pp. 115-132
    • Muthén, B.O.1
  • 28
    • 0002436931 scopus 로고
    • Goodness of fit with categorical and other non-normal variables
    • Bollen KA, Long JS, (eds), Sage, Newbury Park, CA
    • Muthén, B. O. (1993). Goodness of fit with categorical and other non-normal variables. In K. A. Bollen & J. S. Long (Eds.), Testing structural equation models (pp. 205–243). Newbury Park, CA: Sage.
    • (1993) Testing structural equation models , pp. 205-243
    • Muthén, B.O.1
  • 29
    • 33750993926 scopus 로고    scopus 로고
    • A note one assessing estimation quality and power in latent variable models, Retrieved from
    • Muthén, B. O. (2002). Using Mplus Monte Carlo simulation in practice: A note one assessing estimation quality and power in latent variable models. Retrieved from https://www.statmodel.com/download/webnotes/mc1.pdf
    • (2002) Using Mplus Monte Carlo simulation in practice
    • Muthén, B.O.1
  • 30
    • 0003967699 scopus 로고    scopus 로고
    • Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes
    • Muthén, B. O., du Toit, S. H. C., & Spisic, D. (1997). Robust inference using weighted least squares and quadratic estimating equations in latent variable modeling with categorical and continuous outcomes. Retrieved from http://gseis.ucla.edu/faculty/muthen/articles/Article_075.pdf
    • (1997) Retrieved from
    • Muthén, B.O.1    du Toit, S.H.C.2    Spisic, D.3
  • 31
    • 85004907578 scopus 로고
    • A comparison of some methodologies for the factor-analysis of non-normal Likert variables
    • Muthén, B. O., & Kaplan, D. (1985). A comparison of some methodologies for the factor-analysis of non-normal Likert variables. British Journal of Mathematical and Statistical Psychology, 38, 171–180.
    • (1985) British Journal of Mathematical and Statistical Psychology , vol.38 , pp. 171-180
    • Muthén, B.O.1    Kaplan, D.2
  • 32
    • 85004908574 scopus 로고
    • A comparison of some methodologies for the factor-analysis of non-normal Likert variables: A note on the size of the model
    • Muthén, B. O., & Kaplan, D. (1992). A comparison of some methodologies for the factor-analysis of non-normal Likert variables: A note on the size of the model. British Journal of Mathematical and Statistical Psychology, 45, 19–30.
    • (1992) British Journal of Mathematical and Statistical Psychology , vol.45 , pp. 19-30
    • Muthén, B.O.1    Kaplan, D.2
  • 33
    • 0345040656 scopus 로고    scopus 로고
    • How to use a Monte Carlo study to decide on sample size and determine power
    • Muthén, L. K., & Muthén, B. O. (2002). How to use a Monte Carlo study to decide on sample size and determine power. Structural Equation Modeling, 9, 599–620. doi:10.1207/S15328007SEM0904_8
    • (2002) Structural Equation Modeling , vol.9 , pp. 599-620
    • Muthén, L.K.1    Muthén, B.O.2
  • 35
    • 0000541399 scopus 로고
    • Maximum likelihood estimation of the polychoric correlation coefficient
    • Olsson, U. (1979). Maximum likelihood estimation of the polychoric correlation coefficient. Psychometrika, 44, 443–460.
    • (1979) Psychometrika , vol.44 , pp. 443-460
    • Olsson, U.1
  • 38
    • 0041114493 scopus 로고
    • Studies of the polychoric correlation and other correlation measures for ordinal variables
    • Uppsala University, Uppsala, Sweden
    • Quiroga, A. M. (1992). Studies of the polychoric correlation and other correlation measures for ordinal variables. Unpublished Doctoral dissertation, Uppsala University, Uppsala, Sweden.
    • (1992) Unpublished Doctoral dissertation
    • Quiroga, A.M.1
  • 39
    • 84874530403 scopus 로고    scopus 로고
    • Scale construction and development using structural equation modeling
    • Hoyle RH, (ed), Guildford Press, New York, NY
    • Raykov, T. (2012). Scale construction and development using structural equation modeling. In R. H. Hoyle (Ed.), Handbook of structural equation modeling (pp. 472–492). New York, NY: Guildford Press.
    • (2012) Handbook of structural equation modeling , pp. 472-492
    • Raykov, T.1
  • 41
    • 84873019824 scopus 로고    scopus 로고
    • When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions
    • PID: 22799625
    • Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When can categorical variables be treated as continuous? A comparison of robust continuous and categorical SEM estimation methods under suboptimal conditions. Psychological Methods, 17, 354–373. doi:10.1037/a0029315
    • (2012) Psychological Methods , vol.17 , pp. 354-373
    • Rhemtulla, M.1    Brosseau-Liard, P.É.2    Savalei, V.3
  • 42
    • 0002232660 scopus 로고    scopus 로고
    • Structural equation modeling
    • Marcoulides GA, (ed), Erlbaum, Mahwah, NJ
    • Rigdon, E. E. (1998). Structural equation modeling. In G. A. Marcoulides (Ed.), Modern methods for business research (pp. 251–294). Mahwah, NJ: Erlbaum.
    • (1998) Modern methods for business research , pp. 251-294
    • Rigdon, E.E.1
  • 43
    • 0007338750 scopus 로고
    • Robustness issues in structural equation modeling: A review of recent developments
    • Satorra, A. (1990). Robustness issues in structural equation modeling: A review of recent developments. Quality and Quantity, 24, 367–386.
    • (1990) Quality and Quantity , vol.24 , pp. 367-386
    • Satorra, A.1
  • 44
    • 0003217529 scopus 로고
    • Corrections to test statistics and standard errors in covariance structure analysis
    • Eye A, Clogg CC, (eds), Sage, Thousand Oaks, CA
    • Satorra, C., & Bentler, P. M. (1994). Corrections to test statistics and standard errors in covariance structure analysis. In A. von Eye & C. C. Clogg (Eds.), Latent variable analysis: Applications for developmental research (pp. 399–419). Thousand Oaks, CA: Sage.
    • (1994) Latent variable analysis: Applications for developmental research , pp. 399-419
    • Satorra, C.1    Bentler, P.M.2
  • 45
    • 78650149643 scopus 로고    scopus 로고
    • Expected versus observed information in SEM with incomplete normal and nonnormal data
    • PID: 20853954
    • Savalei, V. (2010). Expected versus observed information in SEM with incomplete normal and nonnormal data. Psychological Methods, 15, 352–367.
    • (2010) Psychological Methods , vol.15 , pp. 352-367
    • Savalei, V.1
  • 46
    • 77954442639 scopus 로고    scopus 로고
    • Confirmatory factor analysis of ordinal variables with misspecified models
    • Yang-Wallentin, F., Jöreskog, K. G., & Luo, H. (2010). Confirmatory factor analysis of ordinal variables with misspecified models. Structural Equation Modeling, 17, 392–423. doi:10.1080/10705511.2010.489003
    • (2010) Structural Equation Modeling , vol.17 , pp. 392-423
    • Yang-Wallentin, F.1    Jöreskog, K.G.2    Luo, H.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.