-
1
-
-
79651475201
-
An oil spill accident and its impact on ozone levels in the surrounding coastal regions
-
[1] Song, S.K., Shon, Z.H., Kim, Y.K., Kang, Y.H., Kim, K.H., An oil spill accident and its impact on ozone levels in the surrounding coastal regions. Atmos. Environ. 45 (2011), 1312–1322.
-
(2011)
Atmos. Environ.
, vol.45
, pp. 1312-1322
-
-
Song, S.K.1
Shon, Z.H.2
Kim, Y.K.3
Kang, Y.H.4
Kim, K.H.5
-
2
-
-
84938629388
-
Versatile fabrication of magnetic superhydrophobic foams and application for oil/water separation
-
[2] Ge, B., Zhu, X., Li, Y., Men, X., Li, P., Zhang, Z., Versatile fabrication of magnetic superhydrophobic foams and application for oil/water separation. Colloids Surf. A 482 (2015), 687–692.
-
(2015)
Colloids Surf. A
, vol.482
, pp. 687-692
-
-
Ge, B.1
Zhu, X.2
Li, Y.3
Men, X.4
Li, P.5
Zhang, Z.6
-
3
-
-
79951601935
-
Fate of dispersants associated with the deepwater horizon oil spill
-
[3] Kujawinski, E.B., Kido Soule, M.C., Valentine, D.L., Boysen, A.K., Longnecker, K., Redmond, M.C., Fate of dispersants associated with the deepwater horizon oil spill. Environ. Sci. Technol. 45 (2011), 1298–1306.
-
(2011)
Environ. Sci. Technol.
, vol.45
, pp. 1298-1306
-
-
Kujawinski, E.B.1
Kido Soule, M.C.2
Valentine, D.L.3
Boysen, A.K.4
Longnecker, K.5
Redmond, M.C.6
-
4
-
-
84922598003
-
Oil/water separation with selective super antiwetting/superwetting surface materials
-
[4] Chu, Z., Feng, Y., Seeger, S., Oil/water separation with selective super antiwetting/superwetting surface materials. Angew. Chem. Int. Ed. 54 (2015), 2328–2338.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 2328-2338
-
-
Chu, Z.1
Feng, Y.2
Seeger, S.3
-
5
-
-
84915828119
-
A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil/water separation through a chemical fabrication
-
[5] Wang, H., Wang, E., Liu, Z., Gao, D., Yuan, R., Sun, L., Zhu, Y., A novel carbon nanotubes reinforced superhydrophobic and superoleophilic polyurethane sponge for selective oil/water separation through a chemical fabrication. J. Mater. Chem. A 3 (2015), 266–273.
-
(2015)
J. Mater. Chem. A
, vol.3
, pp. 266-273
-
-
Wang, H.1
Wang, E.2
Liu, Z.3
Gao, D.4
Yuan, R.5
Sun, L.6
Zhu, Y.7
-
6
-
-
77049086629
-
Carbon nanotube sponges
-
[6] Gui, X.C., Wei, J.Q., Wang, K.L., Cao, A.Y., Zhu, H.W., Jia, Y., Shu, Q.K., Wu, D.H., Carbon nanotube sponges. Adv. Mater. 22 (2010), 617–621.
-
(2010)
Adv. Mater.
, vol.22
, pp. 617-621
-
-
Gui, X.C.1
Wei, J.Q.2
Wang, K.L.3
Cao, A.Y.4
Zhu, H.W.5
Jia, Y.6
Shu, Q.K.7
Wu, D.H.8
-
7
-
-
84879528558
-
Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation
-
[7] Gui, X.C., Zeng, Z.P., Lin, Z.Q., Gan, Q.M., Xiang, R., Zhu, Y., Cao, A.Y., Tang, Z.K., Magnetic and highly recyclable macroporous carbon nanotubes for spilled oil sorption and separation. ACS Appl. Mater. Interfaces 5 (2013), 5845–5850.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 5845-5850
-
-
Gui, X.C.1
Zeng, Z.P.2
Lin, Z.Q.3
Gan, Q.M.4
Xiang, R.5
Zhu, Y.6
Cao, A.Y.7
Tang, Z.K.8
-
8
-
-
84868583442
-
Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents
-
[8] Bi, H.C., Xie, X., Yin, K.B., Zhou, Y.L., Wan, S., He, L.B., Xu, F., Banhart, F., Sun, L.T., Ruoff, R.S., Spongy graphene as a highly efficient and recyclable sorbent for oils and organic solvents. Adv. Funct. Mater. 22 (2012), 4421–4425.
-
(2012)
Adv. Funct. Mater.
, vol.22
, pp. 4421-4425
-
-
Bi, H.C.1
Xie, X.2
Yin, K.B.3
Zhou, Y.L.4
Wan, S.5
He, L.B.6
Xu, F.7
Banhart, F.8
Sun, L.T.9
Ruoff, R.S.10
-
9
-
-
84863092716
-
Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method
-
[9] Nguyen, D.D., Tai, N.H., Lee, S.B., Kuo, W.S., Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ. Sci. 5 (2012), 7908–7912.
-
(2012)
Energy Environ. Sci.
, vol.5
, pp. 7908-7912
-
-
Nguyen, D.D.1
Tai, N.H.2
Lee, S.B.3
Kuo, W.S.4
-
10
-
-
84941790287
-
Facile method toward hierarchical fullerene architectures with enhanced hydrophobicity and photoluminescence
-
[10] Zheng, S., Xu, M., Lu, X., Facile method toward hierarchical fullerene architectures with enhanced hydrophobicity and photoluminescence. ACS Appl. Mater. Interfaces 7 (2015), 20285–20291.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 20285-20291
-
-
Zheng, S.1
Xu, M.2
Lu, X.3
-
11
-
-
84855292426
-
The properties and applications of nanodiamonds
-
[11] Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y., The properties and applications of nanodiamonds. Nat. Nanotechnol. 7 (2012), 11–23.
-
(2012)
Nat. Nanotechnol.
, vol.7
, pp. 11-23
-
-
Mochalin, V.N.1
Shenderova, O.2
Ho, D.3
Gogotsi, Y.4
-
12
-
-
84954461043
-
Science and engineering of nanodiamond particle surfaces for biological applications
-
[12] Shenderova, O.A., McGuire, G.E., Science and engineering of nanodiamond particle surfaces for biological applications. Biointerphases, 10, 2015, 030802.
-
(2015)
Biointerphases
, vol.10
, pp. 030802
-
-
Shenderova, O.A.1
McGuire, G.E.2
-
13
-
-
84901457389
-
Hard nanodiamonds in soft rubbers: past, present and future – a review
-
[13] Shakun, A., Vuorinen, J., Hoikkanen, M., Poikelispää, M., Das, A., Hard nanodiamonds in soft rubbers: past, present and future – a review. Compos. A 64 (2014), 49–69.
-
(2014)
Compos. A
, vol.64
, pp. 49-69
-
-
Shakun, A.1
Vuorinen, J.2
Hoikkanen, M.3
Poikelispää, M.4
Das, A.5
-
14
-
-
84963516694
-
Antibacterial applications of nanodiamonds
-
[14] Szunerits, S., Barras, A., Boukherroub, R., Antibacterial applications of nanodiamonds. Int. J. Environ. Res. Public Health, 13, 2016, 413.
-
(2016)
Int. J. Environ. Res. Public Health
, vol.13
, pp. 413
-
-
Szunerits, S.1
Barras, A.2
Boukherroub, R.3
-
15
-
-
35348945857
-
Mussel-inspired surface chemistry for multifunctional coatings
-
[15] Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B., Mussel-inspired surface chemistry for multifunctional coatings. Science 318 (2007), 426–430.
-
(2007)
Science
, vol.318
, pp. 426-430
-
-
Lee, H.1
Dellatore, S.M.2
Miller, W.M.3
Messersmith, P.B.4
-
16
-
-
84899016480
-
Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields
-
[16] Liu, Y., Ai, K., Lu, L., Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114 (2014), 5057–5115.
-
(2014)
Chem. Rev.
, vol.114
, pp. 5057-5115
-
-
Liu, Y.1
Ai, K.2
Lu, L.3
-
17
-
-
84862534191
-
Combination of bioinspiration: a general route to superhydrophobic particles
-
[17] Zhang, L., Wu, J.J., Wang, Y.X., Long, Y.H., Zhao, N., Xu, J., Combination of bioinspiration: a general route to superhydrophobic particles. J. Am. Chem. Soc. 134 (2012), 9879–9881.
-
(2012)
J. Am. Chem. Soc.
, vol.134
, pp. 9879-9881
-
-
Zhang, L.1
Wu, J.J.2
Wang, Y.X.3
Long, Y.H.4
Zhao, N.5
Xu, J.6
-
18
-
-
52949131530
-
Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine
-
[18] Fei, B., Qian, B.T., Yang, Z.Y., Wang, R.H., Liu, W.C., Mak, C.L., Xin, J.H., Coating carbon nanotubes by spontaneous oxidative polymerization of dopamine. Carbon 46 (2008), 1795–1797.
-
(2008)
Carbon
, vol.46
, pp. 1795-1797
-
-
Fei, B.1
Qian, B.T.2
Yang, Z.Y.3
Wang, R.H.4
Liu, W.C.5
Mak, C.L.6
Xin, J.H.7
-
19
-
-
84929224036
-
Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates
-
[19] Hong, D., Bae, K., Hong, S.P., Park, J.H., Choi, I.S., Cho, W.K., Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem. Commun. 50 (2014), 11649–11652.
-
(2014)
Chem. Commun.
, vol.50
, pp. 11649-11652
-
-
Hong, D.1
Bae, K.2
Hong, S.P.3
Park, J.H.4
Choi, I.S.5
Cho, W.K.6
-
20
-
-
84939857459
-
Multifunctional electrochemical platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide: construction and application
-
[20] Huang, N., Zhang, S., Yang, L., Liu, M., Li, H., Zhang, Y., Yao, S., Multifunctional electrochemical platforms based on the Michael addition/Schiff base reaction of polydopamine modified reduced graphene oxide: construction and application. ACS Appl. Mater. Interfaces 7 (2015), 17935–17946.
-
(2015)
ACS Appl. Mater. Interfaces
, vol.7
, pp. 17935-17946
-
-
Huang, N.1
Zhang, S.2
Yang, L.3
Liu, M.4
Li, H.5
Zhang, Y.6
Yao, S.7
-
21
-
-
69549083138
-
A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond
-
[21] Liang, Y.J., Ozawa, M., Krueger, A., A general procedure to functionalize agglomerating nanoparticles demonstrated on nanodiamond. ACS Nano 3 (2009), 2288–2296.
-
(2009)
ACS Nano
, vol.3
, pp. 2288-2296
-
-
Liang, Y.J.1
Ozawa, M.2
Krueger, A.3
-
22
-
-
80053994965
-
Direct functionalization of nanodiamond particles using dopamine derivatives
-
[22] Barras, A., Lyskawa, J., Szunerits, S., Woisel, P., Boukherroub, R., Direct functionalization of nanodiamond particles using dopamine derivatives. Langmuir 27 (2011), 12451–12457.
-
(2011)
Langmuir
, vol.27
, pp. 12451-12457
-
-
Barras, A.1
Lyskawa, J.2
Szunerits, S.3
Woisel, P.4
Boukherroub, R.5
-
23
-
-
84926483084
-
Toward multifunctional “clickable” diamond nanoparticles
-
[23] Khanal, M., Turcheniuk, V., Barras, A., Rosay, E., Bande, O., Siriwardena, A., Zaitsev, V., Pan, G.H., Boukherroub, R., Szunerits, S., Toward multifunctional “clickable” diamond nanoparticles. Langmuir 31 (2015), 3926–3933.
-
(2015)
Langmuir
, vol.31
, pp. 3926-3933
-
-
Khanal, M.1
Turcheniuk, V.2
Barras, A.3
Rosay, E.4
Bande, O.5
Siriwardena, A.6
Zaitsev, V.7
Pan, G.H.8
Boukherroub, R.9
Szunerits, S.10
-
24
-
-
84941214542
-
Surface modification of zirconia with polydopamine to enhancefibroblast response and decrease bacterial activity in vitro: a potentialtechnique for soft tissue engineering applications
-
[24] Liu, M., Zhou, J., Yang, Y., Zheng, M., Yang, J., Tan, J., Surface modification of zirconia with polydopamine to enhancefibroblast response and decrease bacterial activity in vitro: a potentialtechnique for soft tissue engineering applications. Colloids Surf. B 136 (2015), 74–83.
-
(2015)
Colloids Surf. B
, vol.136
, pp. 74-83
-
-
Liu, M.1
Zhou, J.2
Yang, Y.3
Zheng, M.4
Yang, J.5
Tan, J.6
-
25
-
-
84929224036
-
Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates
-
[25] Hong, D., Bae, K.E., Hong, S.P., Park, J.H., Choi, I.S., Cho, W.K., Mussel-inspired, perfluorinated polydopamine for self-cleaning coating on various substrates. Chem. Commun. 50 (2014), 11649–11652.
-
(2014)
Chem. Commun.
, vol.50
, pp. 11649-11652
-
-
Hong, D.1
Bae, K.E.2
Hong, S.P.3
Park, J.H.4
Choi, I.S.5
Cho, W.K.6
-
26
-
-
20444413986
-
A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics
-
[26] Jiang, L., Zhao, Y., Zhai, J., A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew. Chem. 116 (2004), 4438–4441.
-
(2004)
Angew. Chem.
, vol.116
, pp. 4438-4441
-
-
Jiang, L.1
Zhao, Y.2
Zhai, J.3
-
27
-
-
38849178087
-
Superhydrophobic surfaces: from structural control to functional application
-
[27] Zhang, X., Shi, F., Niu, J., Jiang, Y., Wang, Z., Superhydrophobic surfaces: from structural control to functional application. J. Mater. Chem. 18 (2008), 621–633.
-
(2008)
J. Mater. Chem.
, vol.18
, pp. 621-633
-
-
Zhang, X.1
Shi, F.2
Niu, J.3
Jiang, Y.4
Wang, Z.5
-
28
-
-
84901621635
-
A superhydrophobic sponge with excellent absorbency and flame retardancy
-
[28] Ruan, C., Ai, K., Li, X., Lu, L., A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew. Chem. Int. Ed. 53 (2014), 5556–5560.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, pp. 5556-5560
-
-
Ruan, C.1
Ai, K.2
Li, X.3
Lu, L.4
-
29
-
-
84894629588
-
Mussel-inspired direct immobilization of nanoparticles and application for oil water separation
-
[29] Zhu, Q., Pan, Q., Mussel-inspired direct immobilization of nanoparticles and application for oil water separation. ACS Nano 8 (2014), 1402–1409.
-
(2014)
ACS Nano
, vol.8
, pp. 1402-1409
-
-
Zhu, Q.1
Pan, Q.2
-
30
-
-
84907896112
-
Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water
-
[30] Huang, S., Mussel-inspired one-step copolymerization to engineer hierarchically structured surface with superhydrophobic properties for removing oil from water. ACS Appl. Mater. Interfaces 6 (2014), 17144–17150.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, pp. 17144-17150
-
-
Huang, S.1
-
31
-
-
84982812077
-
Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation
-
[31] Shang, B., Wang, Y., Peng, B., Deng, Z., Bioinspired polydopamine particles-assisted construction of superhydrophobic surfaces for oil/water separation. J. Colloid Interface Sci. 482 (2016), 240–251.
-
(2016)
J. Colloid Interface Sci.
, vol.482
, pp. 240-251
-
-
Shang, B.1
Wang, Y.2
Peng, B.3
Deng, Z.4
-
32
-
-
84946429509
-
Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation
-
[32] Zhang, L., Li, L., Dang, Z.-M., Bio-inspired durable, superhydrophobic magnetic particles for oil/water separation. J. Colloid Interface Sci. 463 (2016), 266–271.
-
(2016)
J. Colloid Interface Sci.
, vol.463
, pp. 266-271
-
-
Zhang, L.1
Li, L.2
Dang, Z.-M.3
-
33
-
-
84956583970
-
Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water
-
[33] Wang, J., Geng, G., Highly recyclable superhydrophobic sponge suitable for the selective sorption of high viscosity oil from water. Mar. Pollut. Bull. 97 (2015), 118–124.
-
(2015)
Mar. Pollut. Bull.
, vol.97
, pp. 118-124
-
-
Wang, J.1
Geng, G.2
-
34
-
-
84886782717
-
Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent
-
[34] Liu, Y., Ma, J., Wu, T., Wang, X., Huang, G., Liu, Y., Qiu, H., Li, Y., Wang, W., Gao, J., Cost-effective reduced graphene oxide-coated polyurethane sponge as a highly efficient and reusable oil-absorbent. ACS Appl. Mater. Interfaces 5 (2013), 10018–10026.
-
(2013)
ACS Appl. Mater. Interfaces
, vol.5
, pp. 10018-10026
-
-
Liu, Y.1
Ma, J.2
Wu, T.3
Wang, X.4
Huang, G.5
Liu, Y.6
Qiu, H.7
Li, Y.8
Wang, W.9
Gao, J.10
|