메뉴 건너뛰기




Volumn , Issue , 2016, Pages 1961-1964

Block recursive least squares dictionary learning algorithm

Author keywords

block; Overcomplete dictionary; recursive least square; sparse representation

Indexed keywords


EID: 84983788930     PISSN: None     EISSN: None     Source Type: Conference Proceeding    
DOI: 10.1109/CCDC.2016.7531304     Document Type: Conference Paper
Times cited : (5)

References (12)
  • 2
    • 33751379736 scopus 로고    scopus 로고
    • Image denoising via sparse and redundant representations over learned dictionaries
    • M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries, IEEE Trans. Image Process, Vol. 15, No. 12, 3736-3745, 2006.
    • (2006) IEEE Trans. Image Process , vol.15 , Issue.12 , pp. 3736-3745
    • Elad, M.1    Aharon, M.2
  • 5
    • 0027842081 scopus 로고
    • Matching pursuit with timefrequency dictionaries
    • S. G. Mallat and Z. Zhang, Matching pursuit with timefrequency dictionaries, IEEE Trans. Signal Process., vol. 41, no. 12, 3397-3415, 1993.
    • (1993) IEEE Trans. Signal Process. , vol.41 , Issue.12 , pp. 3397-3415
    • Mallat, S.G.1    Zhang, Z.2
  • 6
  • 8
    • 33750383209 scopus 로고    scopus 로고
    • K-SVD: An algorithm for designing overcomplete dictionaries for sparse representation
    • M. Aharon, M. Elad and A. Bruchstein, K-SVD: an algorithm for designing overcomplete dictionaries for sparse representation, IEEE Trans. on Signal Processing, vol. 54, no. 11, 4311-4322, 2006.
    • (2006) IEEE Trans. on Signal Processing , vol.54 , Issue.11 , pp. 4311-4322
    • Aharon, M.1    Elad, M.2    Bruchstein, A.3
  • 11
    • 77949403269 scopus 로고    scopus 로고
    • Recursive least squares dictionary learning algorithm
    • K. Skretting, K. Engan, Recursive least squares dictionary learning algorithm, IEEE Trans. Signal Process. vol. 58, no. 4, 2121-2130, 2010.
    • (2010) IEEE Trans. Signal Process. , vol.58 , Issue.4 , pp. 2121-2130
    • Skretting, K.1    Engan, K.2


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.