-
1
-
-
0035890440
-
Issues and challenges facing rechargeable lithium batteries
-
[1] Tarascon, J.M., Armand, M., Issues and challenges facing rechargeable lithium batteries. Nature 414:6861 (2001), 359–367.
-
(2001)
Nature
, vol.414
, Issue.6861
, pp. 359-367
-
-
Tarascon, J.M.1
Armand, M.2
-
2
-
-
84867030978
-
Challenges facing lithium batteries and electrical double-layer capacitors
-
[2] Choi, N.S., Chen, Z.H., Freunberger, S.A., Ji, X.L., Sun, Y.K., Amine, K., et al. Challenges facing lithium batteries and electrical double-layer capacitors. Angew. Chem. Int. Ed. 51:40 (2012), 9994–10024.
-
(2012)
Angew. Chem. Int. Ed.
, vol.51
, Issue.40
, pp. 9994-10024
-
-
Choi, N.S.1
Chen, Z.H.2
Freunberger, S.A.3
Ji, X.L.4
Sun, Y.K.5
Amine, K.6
-
3
-
-
67650072909
-
Lithium storage in carbon nanostructures
-
[3] Kaskhedikar, N.A., Maier, J., Lithium storage in carbon nanostructures. Adv. Mater 21:25–26 (2009), 2664–2680.
-
(2009)
Adv. Mater
, vol.21
, Issue.25-26
, pp. 2664-2680
-
-
Kaskhedikar, N.A.1
Maier, J.2
-
4
-
-
84878073802
-
Graphene-based electrodes for electrochemical energy storage
-
[4] Xu, C., Xu, B., Gu, Y., Xiong, Z., Sun, J., Zhao, X.S., Graphene-based electrodes for electrochemical energy storage. Energy Environ. Sci. 6:5 (2013), 1388–1414.
-
(2013)
Energy Environ. Sci.
, vol.6
, Issue.5
, pp. 1388-1414
-
-
Xu, C.1
Xu, B.2
Gu, Y.3
Xiong, Z.4
Sun, J.5
Zhao, X.S.6
-
5
-
-
84923803931
-
Design and construction of three dimensional graphene-based composites for lithium ion battery applications
-
[5] Luo, B., Zhi, L., Design and construction of three dimensional graphene-based composites for lithium ion battery applications. Energy Environ. Sci. 8:2 (2015), 456–477.
-
(2015)
Energy Environ. Sci.
, vol.8
, Issue.2
, pp. 456-477
-
-
Luo, B.1
Zhi, L.2
-
6
-
-
84859560154
-
Metal Oxide Hollow nanostructures for lithium-ion batteries
-
[6] Wang, Z.Y., Zhou, L., Lou, X.W., Metal Oxide Hollow nanostructures for lithium-ion batteries. Adv. Mater 24:14 (2012), 1903–1911.
-
(2012)
Adv. Mater
, vol.24
, Issue.14
, pp. 1903-1911
-
-
Wang, Z.Y.1
Zhou, L.2
Lou, X.W.3
-
8
-
-
77952852457
-
Is lithium the new gold?
-
[8] Tarascon, J.M., Is lithium the new gold?. Nat. Chem., 2(6), 2010, 510.
-
(2010)
Nat. Chem.
, vol.2
, Issue.6
, pp. 510
-
-
Tarascon, J.M.1
-
9
-
-
84867297718
-
Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries
-
[9] Kim, S.W., Seo, D.H., Ma, X., Ceder, G., Kang, K., Electrode materials for rechargeable sodium-ion batteries: potential alternatives to current lithium-ion batteries. Adv. Energy Mater 2:7 (2012), 710–721.
-
(2012)
Adv. Energy Mater
, vol.2
, Issue.7
, pp. 710-721
-
-
Kim, S.W.1
Seo, D.H.2
Ma, X.3
Ceder, G.4
Kang, K.5
-
10
-
-
84873405642
-
Sodium-ion batteries
-
[10] Slater, M.D., Kim, D., Lee, E., Johnson, C.S., Sodium-ion batteries. Adv. Funct. Mater 23:8 (2013), 947–958.
-
(2013)
Adv. Funct. Mater
, vol.23
, Issue.8
, pp. 947-958
-
-
Slater, M.D.1
Kim, D.2
Lee, E.3
Johnson, C.S.4
-
11
-
-
84896866308
-
Transition metal oxides for high performance sodium ion battery anodes
-
[11] Jiang, Y.Z., Hu, M.J., Zhang, D., Yuan, T.Z., Sun, W.P., Xu, B., Yan, M., Transition metal oxides for high performance sodium ion battery anodes. Nano Energy 5 (2014), 60–66.
-
(2014)
Nano Energy
, vol.5
, pp. 60-66
-
-
Jiang, Y.Z.1
Hu, M.J.2
Zhang, D.3
Yuan, T.Z.4
Sun, W.P.5
Xu, B.6
Yan, M.7
-
12
-
-
84929427984
-
2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials
-
2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials. Nanoscale 7:20 (2015), 9158–9163.
-
(2015)
Nanoscale
, vol.7
, Issue.20
, pp. 9158-9163
-
-
Walter, M.1
Zund, T.2
Kovalenko, M.V.3
-
13
-
-
84902376682
-
2-reduced graphene oxide composite – a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material
-
2-reduced graphene oxide composite – a high-capacity, high-rate, and long-cycle life sodium-ion battery anode material. Adv. Mater 26:23 (2014), 3854–3859.
-
(2014)
Adv. Mater
, vol.26
, Issue.23
, pp. 3854-3859
-
-
Qu, B.H.1
Ma, C.Z.2
Ji, G.3
Xu, C.H.4
Xu, J.5
Meng, Y.S.6
-
14
-
-
84904440154
-
Graphene, inorganic graphene analogs and their composites for lithium ion batteries
-
[14] Jing, Y., Zhou, Z., Cabrera, C.R., Chen, Z., Graphene, inorganic graphene analogs and their composites for lithium ion batteries. J. Mater. Chem. A 2:31 (2014), 12104–12122.
-
(2014)
J. Mater. Chem. A
, vol.2
, Issue.31
, pp. 12104-12122
-
-
Jing, Y.1
Zhou, Z.2
Cabrera, C.R.3
Chen, Z.4
-
15
-
-
85027948562
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface
-
2/graphene composite anodes with enhanced performance for sodium-ion batteries: the role of the two-dimensional heterointerface. Adv. Funct. Mater 25:9 (2015), 1393–1403.
-
(2015)
Adv. Funct. Mater
, vol.25
, Issue.9
, pp. 1393-1403
-
-
Xie, X.1
Ao, Z.2
Su, D.3
Zhang, J.4
Wang, G.5
-
16
-
-
76249094640
-
Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries
-
[16] Du, G., Guo, Z., Wang, S., Zeng, R., Chen, Z., Liu, H., Superior stability and high capacity of restacked molybdenum disulfide as anode material for lithium ion batteries. Chem. Commun. 46:7 (2010), 1106–1108.
-
(2010)
Chem. Commun.
, vol.46
, Issue.7
, pp. 1106-1108
-
-
Du, G.1
Guo, Z.2
Wang, S.3
Zeng, R.4
Chen, Z.5
Liu, H.6
-
17
-
-
80755125655
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials
-
2 nanoplates consisting of disordered graphene-like layers for high rate lithium battery anode materials. Nano Lett. 11:11 (2011), 4826–4830.
-
(2011)
Nano Lett.
, vol.11
, Issue.11
, pp. 4826-4830
-
-
Hwang, H.1
Kim, H.2
Cho, J.3
-
18
-
-
84867310395
-
2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage
-
2 with expanded spacing of the (002) crystal plane for ultrafast lithium ion storage. Adv. Energy Mater 2:8 (2012), 970–975.
-
(2012)
Adv. Energy Mater
, vol.2
, Issue.8
, pp. 970-975
-
-
Liu, H.1
Su, D.2
Zhou, R.3
Sun, B.4
Wang, G.5
Qiao, S.Z.6
-
19
-
-
84927926236
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries
-
2 nanoflowers with expanded interlayers as high-performance anodes for sodium-ion batteries. Angew. Chem. Int. 126:47 (2014), 13008–13012.
-
(2014)
Angew. Chem. Int.
, vol.126
, Issue.47
, pp. 13008-13012
-
-
Hu, Z.1
Wang, L.2
Zhang, K.3
Wang, J.4
Cheng, F.5
Tao, Z.6
-
20
-
-
79959807824
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries
-
2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:6 (2011), 4720–4728.
-
(2011)
ACS Nano
, vol.5
, Issue.6
, pp. 4720-4728
-
-
Chang, K.1
Chen, W.2
-
21
-
-
81255166899
-
2 nanosheets on CNT backbone for improved lithium storage properties
-
2 nanosheets on CNT backbone for improved lithium storage properties. Chem. Eur. J. 17:47 (2011), 13142–13145.
-
(2011)
Chem. Eur. J.
, vol.17
, Issue.47
, pp. 13142-13145
-
-
Ding, S.1
Chen, J.S.2
Lou, X.W.3
-
22
-
-
84919881008
-
2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes
-
2 nanosheets with expanded spacing of (002) plane on carbon nanotubes for high-performance sodium-ion battery anodes. ACS Appl. Mater. Interfaces 6:24 (2014), 21880–21885.
-
(2014)
ACS Appl. Mater. Interfaces
, vol.6
, Issue.24
, pp. 21880-21885
-
-
Zhang, S.1
Yu, X.2
Yu, H.3
Chen, Y.4
Gao, P.5
Li, C.6
-
23
-
-
65249185111
-
Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons
-
[23] Kosynkin, D.V., Higginbotham, A.L., Sinitskii, A., Lomeda, J.R., Dimiev, A., Price, B.K., et al. Longitudinal unzipping of carbon nanotubes to form graphene nanoribbons. Nature 458:7240 (2009), 872–876.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 872-876
-
-
Kosynkin, D.V.1
Higginbotham, A.L.2
Sinitskii, A.3
Lomeda, J.R.4
Dimiev, A.5
Price, B.K.6
-
24
-
-
65249133533
-
Narrow graphene nanoribbons from carbon nanotubes
-
[24] Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H., Narrow graphene nanoribbons from carbon nanotubes. Nature 458:7240 (2009), 877–880.
-
(2009)
Nature
, vol.458
, Issue.7240
, pp. 877-880
-
-
Jiao, L.1
Zhang, L.2
Wang, X.3
Diankov, G.4
Dai, H.5
-
25
-
-
72449128594
-
Lithium adsorption on zigzag graphene nanoribbons
-
[25] Uthaisar, C., Barone, V., Peralta, J.E., Lithium adsorption on zigzag graphene nanoribbons. J. Appl. Phys., 106(11), 2009, 113715.
-
(2009)
J. Appl. Phys.
, vol.106
, Issue.11
, pp. 113715
-
-
Uthaisar, C.1
Barone, V.2
Peralta, J.E.3
-
26
-
-
77956430487
-
Enhanced electrochemical lithium storage by graphene nanoribbons
-
[26] Bhardwaj, T., Antic, A., Pavan, B., Barone, V., Fahlman, B.D., Enhanced electrochemical lithium storage by graphene nanoribbons. J. Am. Chem. Soc. 132:36 (2010), 12556–12558.
-
(2010)
J. Am. Chem. Soc.
, vol.132
, Issue.36
, pp. 12556-12558
-
-
Bhardwaj, T.1
Antic, A.2
Pavan, B.3
Barone, V.4
Fahlman, B.D.5
-
27
-
-
84880768380
-
2 composite anodes for lithium ion batteries
-
2 composite anodes for lithium ion batteries. ACS Nano 7:7 (2013), 6001–6006.
-
(2013)
ACS Nano
, vol.7
, Issue.7
, pp. 6001-6006
-
-
Lin, J.1
Peng, Z.2
Xiang, C.3
Ruan, G.4
Yan, Z.5
Natelson, D.6
-
28
-
-
84888008880
-
2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries
-
2 -graphene nanoribbons as anode materials for high-performance lithium ion batteries. Adv. Mater 25:43 (2013), 6298–6302.
-
(2013)
Adv. Mater
, vol.25
, Issue.43
, pp. 6298-6302
-
-
Li, L.1
Raji, A.R.2
Tour, J.M.3
-
29
-
-
84901485439
-
Graphene nanoribbon aerogels unzipped from carbon nanotube sponges
-
[29] Peng, Q., Li, Y., He, X., Gui, X., Shang, Y., Wang, C., et al. Graphene nanoribbon aerogels unzipped from carbon nanotube sponges. Adv. Mater 26:20 (2014), 3241–3247.
-
(2014)
Adv. Mater
, vol.26
, Issue.20
, pp. 3241-3247
-
-
Peng, Q.1
Li, Y.2
He, X.3
Gui, X.4
Shang, Y.5
Wang, C.6
-
30
-
-
84962911698
-
Multifunctional three-dimensional graphene nanoribbons composite sponge
-
[30] Ding, Y., Zhu, J., Wang, C., Dai, B., Li, Y., Qin, Y., et al. Multifunctional three-dimensional graphene nanoribbons composite sponge. Carbon 104 (2016), 133–140.
-
(2016)
Carbon
, vol.104
, pp. 133-140
-
-
Ding, Y.1
Zhu, J.2
Wang, C.3
Dai, B.4
Li, Y.5
Qin, Y.6
-
31
-
-
84881139398
-
Graphene-network-backboned architectures for high-performance lithium storage
-
[31] Gong, Y., Yang, S., Liu, Z., Ma, L., Vajtai, R., Ajayan, P.M., Graphene-network-backboned architectures for high-performance lithium storage. Adv. Mater 25:29 (2013), 3979–3984.
-
(2013)
Adv. Mater
, vol.25
, Issue.29
, pp. 3979-3984
-
-
Gong, Y.1
Yang, S.2
Liu, Z.3
Ma, L.4
Vajtai, R.5
Ajayan, P.M.6
-
32
-
-
84941067660
-
2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage
-
2 nanoarchitectures anchored into graphene foam for enhanced lithium-ion storage. Adv. Mater 26:42 (2014), 7162–7169.
-
(2014)
Adv. Mater
, vol.26
, Issue.42
, pp. 7162-7169
-
-
Wang, J.1
Liu, J.2
Chao, D.3
Yan, J.4
Lin, J.5
Shen, Z.X.6
-
33
-
-
79955891162
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction
-
2 nanoparticles grown on graphene: an advanced catalyst for the hydrogen evolution reaction. J. Am. Chem. Soc. 133:19 (2011), 7296–7299.
-
(2011)
J. Am. Chem. Soc.
, vol.133
, Issue.19
, pp. 7296-7299
-
-
Li, Y.1
Wang, H.2
Xie, L.3
Liang, Y.4
Hong, G.5
Dai, H.6
-
35
-
-
27744460065
-
Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium
-
[35] Kresse, G., Hafner, J., Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49:20 (1994), 14251–14269.
-
(1994)
Phys. Rev. B
, vol.49
, Issue.20
, pp. 14251-14269
-
-
Kresse, G.1
Hafner, J.2
-
36
-
-
25744460922
-
Projector augmented-wave method
-
[36] Blöchl, P.E., Projector augmented-wave method. Phys. Rev. B 50:24 (1994), 17953–17979.
-
(1994)
Phys. Rev. B
, vol.50
, Issue.24
, pp. 17953-17979
-
-
Blöchl, P.E.1
-
37
-
-
0030190741
-
Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set
-
[37] Kresse, G., Furthmüller, J., Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6:1 (1996), 15–50.
-
(1996)
Comput. Mater. Sci.
, vol.6
, Issue.1
, pp. 15-50
-
-
Kresse, G.1
Furthmüller, J.2
-
38
-
-
0034722242
-
Aqueous preparation of highly dispersed molybdenum sulfide
-
[38] Bezverkhy, I., Afanasiev, P., Lacroix, M., Aqueous preparation of highly dispersed molybdenum sulfide. Inorg. Chem. 39:24 (2000), 5416–5417.
-
(2000)
Inorg. Chem.
, vol.39
, Issue.24
, pp. 5416-5417
-
-
Bezverkhy, I.1
Afanasiev, P.2
Lacroix, M.3
-
39
-
-
84900471906
-
Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li-S batteries
-
[39] Zhang, C., Lv, W., Zhang, W., Zheng, X., Wu, M.B., Wei, W., et al. Reduction of graphene oxide by hydrogen sulfide: a promising strategy for pollutant control and as an electrode for Li-S batteries. Adv. Energy Mater, 4(7), 2014, 1301565.
-
(2014)
Adv. Energy Mater
, vol.4
, Issue.7
, pp. 1301565
-
-
Zhang, C.1
Lv, W.2
Zhang, W.3
Zheng, X.4
Wu, M.B.5
Wei, W.6
-
40
-
-
0000649147
-
Thermal and reductive decomposition of ammonium thiomolybdates
-
[40] Brito, J.L., Ilija, M., Hernandez, P., Thermal and reductive decomposition of ammonium thiomolybdates. Thermochim. Acta 256:2 (1995), 325–338.
-
(1995)
Thermochim. Acta
, vol.256
, Issue.2
, pp. 325-338
-
-
Brito, J.L.1
Ilija, M.2
Hernandez, P.3
-
41
-
-
84873869620
-
3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction
-
3/carbon nanotube nanocomposite with high catalytic activity toward hydrogen evolution reaction. Appl. Catal. B Environ. 134–135 (2013), 75–82.
-
(2013)
Appl. Catal. B Environ.
, vol.134-135
, pp. 75-82
-
-
Lin, T.W.1
Liu, C.J.2
Lin, J.Y.3
-
42
-
-
34547181779
-
3 structure confirmation via electrochemistry
-
3 structure confirmation via electrochemistry. Electrochem. Solid State Lett. 10:9 (2007), A204–A207.
-
(2007)
Electrochem. Solid State Lett.
, vol.10
, Issue.9
, pp. A204-A207
-
-
Wang, J.1
Ng, S.H.2
Chew, S.Y.3
Wexler, D.4
Wang, G.X.5
Liu, H.K.6
-
43
-
-
84876590946
-
2-graphene composites as anode materials of Li-ion batteries
-
2-graphene composites as anode materials of Li-ion batteries. J. Mater. Chem. A 1:6 (2013), 2202–2210.
-
(2013)
J. Mater. Chem. A
, vol.1
, Issue.6
, pp. 2202-2210
-
-
Wang, Z.1
Chen, T.2
Chen, W.3
Chang, K.4
Ma, L.5
Huang, G.6
-
44
-
-
84871741977
-
Biomimetic superelastic graphene-based cellular monoliths
-
[44] Qiu, L., Liu, J.Z., Chang, S.L., Wu, Y., Li, D., Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun., 3, 2012, 1241.
-
(2012)
Nat. Commun.
, vol.3
, pp. 1241
-
-
Qiu, L.1
Liu, J.Z.2
Chang, S.L.3
Wu, Y.4
Li, D.5
-
45
-
-
84876266483
-
Ultralight and highly compressible graphene aerogels
-
[45] Hu, H., Zhao, Z., Wan, W., Gogotsi, Y., Qiu, J., Ultralight and highly compressible graphene aerogels. Adv. Mater 25:15 (2013), 2219–2223.
-
(2013)
Adv. Mater
, vol.25
, Issue.15
, pp. 2219-2223
-
-
Hu, H.1
Zhao, Z.2
Wan, W.3
Gogotsi, Y.4
Qiu, J.5
-
46
-
-
81555212279
-
Ultralight metallic microlattices
-
[46] Schaedler, T.A., Jacobsen, A.J., Torrents, A., Sorensen, A.E., Lian, J., Greer, J.R., et al. Ultralight metallic microlattices. Science 334:6058 (2011), 962–965.
-
(2011)
Science
, vol.334
, Issue.6058
, pp. 962-965
-
-
Schaedler, T.A.1
Jacobsen, A.J.2
Torrents, A.3
Sorensen, A.E.4
Lian, J.5
Greer, J.R.6
-
48
-
-
84883886591
-
Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst
-
[48] Vrubel, H., Hu, X., Growth and activation of an amorphous molybdenum sulfide hydrogen evolving catalyst. ACS Catal. 3:9 (2013), 2002–2011.
-
(2013)
ACS Catal.
, vol.3
, Issue.9
, pp. 2002-2011
-
-
Vrubel, H.1
Hu, X.2
-
50
-
-
84925775564
-
Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution
-
[50] Li, Y., Yu, Y., Huang, Y., Nielsen, R.A., Goddard, W.A., Li, Y., et al. Engineering the composition and crystallinity of molybdenum sulfide for high-performance electrocatalytic hydrogen evolution. ACS Catal. 5:1 (2015), 448–455.
-
(2015)
ACS Catal.
, vol.5
, Issue.1
, pp. 448-455
-
-
Li, Y.1
Yu, Y.2
Huang, Y.3
Nielsen, R.A.4
Goddard, W.A.5
Li, Y.6
-
51
-
-
77951701645
-
Sharping the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons
-
[51] Terrones, M., Sharping the chemical scissors to unzip carbon nanotubes: crystalline graphene nanoribbons. ACS Nano 4:4 (2010), 1775–1781.
-
(2010)
ACS Nano
, vol.4
, Issue.4
, pp. 1775-1781
-
-
Terrones, M.1
-
52
-
-
84887245438
-
2/nitrogen-doped graphene nanosheets with highly reversible lithium storage
-
2/nitrogen-doped graphene nanosheets with highly reversible lithium storage. Adv. Energy Mater 3:7 (2013), 839–844.
-
(2013)
Adv. Energy Mater
, vol.3
, Issue.7
, pp. 839-844
-
-
Chang, K.1
Geng, D.2
Li, X.3
Yang, J.4
Tang, Y.5
Cai, M.6
-
53
-
-
84860452478
-
2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries
-
2S/Mo nanocomposites as cathode materials for lithium-sulfur batteries. Chem. Asian. J. 7:5 (2012), 1013–1017.
-
(2012)
Chem. Asian. J.
, vol.7
, Issue.5
, pp. 1013-1017
-
-
Fang, X.1
Guo, X.2
Mao, Y.3
Hua, C.4
Shen, L.5
Hu, Y.6
-
54
-
-
84891559931
-
A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage
-
[54] Gong, Y., Yang, S., Zhan, L., Ma, L., Vajtai, R., Ajayan, P.M., A bottom-up approach to build 3D architectures from nanosheets for superior lithium storage. Adv. Funct. Mater 24:1 (2014), 125–130.
-
(2014)
Adv. Funct. Mater
, vol.24
, Issue.1
, pp. 125-130
-
-
Gong, Y.1
Yang, S.2
Zhan, L.3
Ma, L.4
Vajtai, R.5
Ajayan, P.M.6
-
56
-
-
84893860567
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage
-
2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage. Angew. Chem. Int. Ed. 53:8 (2014), 2152–2156.
-
(2014)
Angew. Chem. Int. Ed.
, vol.53
, Issue.8
, pp. 2152-2156
-
-
Zhu, C.1
Mu, X.2
Van Aken, P.A.3
Yu, Y.4
Maier, J.5
-
57
-
-
84959871887
-
2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries
-
2 nanosheets vertically aligned on carbon paper: a freestanding electrode for highly reversible sodium-ion batteries. Adv. Energy Mater, 6(5), 2015, 1502161.
-
(2015)
Adv. Energy Mater
, vol.6
, Issue.5
, pp. 1502161
-
-
Xie, X.1
Makaryan, T.2
Zhao, M.3
Van Aken, K.L.4
Gogotsi, Y.5
Wang, G.6
-
59
-
-
85027922113
-
2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties
-
2-graphene microspheres consisting of multiple nanospheres with superior sodium ion storage properties. Adv. Funct. Mater 25:12 (2015), 1780–1788.
-
(2015)
Adv. Funct. Mater
, vol.25
, Issue.12
, pp. 1780-1788
-
-
Choi, S.H.1
Ko, Y.N.2
Lee, J.K.3
Kang, Y.C.4
|