메뉴 건너뛰기




Volumn 329, Issue , 2016, Pages 197-206

Energy distributions exhibited during thermal runaway of commercial lithium ion batteries used for human spaceflight applications

Author keywords

Accelerating rate calorimetry; Battery safety; Lithium ion battery; Thermal runaway; Total energy release

Indexed keywords

BATTERY MANAGEMENT SYSTEMS; CALORIMETERS; CALORIMETRY; CHARGING (BATTERIES); ELECTRIC BATTERIES; ENCLOSURES; HEAT TRANSFER; IONS; LITHIUM; LITHIUM ALLOYS; LITHIUM COMPOUNDS; MANNED SPACE FLIGHT; SECONDARY BATTERIES; SPACE FLIGHT; SPACE RESEARCH;

EID: 84983508997     PISSN: 03787753     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.jpowsour.2016.08.078     Document Type: Article
Times cited : (80)

References (52)
  • 3
    • 43049165762 scopus 로고    scopus 로고
    • Storage of a lithium-ion secondary battery under micro-gravity conditions
    • [3] Sone, Y., Ooto, H., Yamamoto, M., Eguro, T., Sakai, S., Yoshida, T., et al. Storage of a lithium-ion secondary battery under micro-gravity conditions. J. Power Sources 181 (2008), 149–154.
    • (2008) J. Power Sources , vol.181 , pp. 149-154
    • Sone, Y.1    Ooto, H.2    Yamamoto, M.3    Eguro, T.4    Sakai, S.5    Yoshida, T.6
  • 4
    • 79961031074 scopus 로고    scopus 로고
    • Development and on-orbit operation of lithium-ion pouch battery for small scientific satellite “REIMEI”
    • [4] Uno, M., Ogawa, K., Takeda, Y., Sone, Y., Tanaka, K., Mita, M., et al. Development and on-orbit operation of lithium-ion pouch battery for small scientific satellite “REIMEI”. J. Power Sources 196 (2011), 8755–8763.
    • (2011) J. Power Sources , vol.196 , pp. 8755-8763
    • Uno, M.1    Ogawa, K.2    Takeda, Y.3    Sone, Y.4    Tanaka, K.5    Mita, M.6
  • 5
    • 84884650019 scopus 로고    scopus 로고
    • Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction
    • [5] Liu, D., Wang, H., Peng, Y., Xie, W., Liao, H., Satellite lithium-ion battery remaining cycle life prediction with novel indirect health indicator extraction. Energies 6 (2013), 3654–3668.
    • (2013) Energies , vol.6 , pp. 3654-3668
    • Liu, D.1    Wang, H.2    Peng, Y.3    Xie, W.4    Liao, H.5
  • 6
    • 84878011480 scopus 로고    scopus 로고
    • Charge/discharge performance of lithium-ion secondary cells under microgravity conditions: lessons learned from operation of interplanetary spacecraft Hayabusa
    • [6] Sone, Y., Charge/discharge performance of lithium-ion secondary cells under microgravity conditions: lessons learned from operation of interplanetary spacecraft Hayabusa. Electrochimica Acta 100 (2013), 358–363.
    • (2013) Electrochimica Acta , vol.100 , pp. 358-363
    • Sone, Y.1
  • 7
    • 84983496763 scopus 로고    scopus 로고
    • Interim Factual Report on Boeing
    • 787–8, JA829J Japan Airlines, National Transportation Safety Board, Office of Aviation Safety Washington, DC
    • [7] National Transportation and Safety Board, Interim Factual Report on Boeing. 787–8, JA829J, 2013, Japan Airlines, National Transportation Safety Board, Office of Aviation Safety, Washington, DC.
    • (2013)
    • National Transportation and Safety Board1
  • 8
    • 84983506317 scopus 로고    scopus 로고
    • Thermal runaway Severity Reduction Assessment for EVA Li-ion Batteries
    • Huntsville, Alabama
    • [8] Darcy, E., Thermal runaway Severity Reduction Assessment for EVA Li-ion Batteries. 2014 Huntsville, Alabama.
    • (2014)
    • Darcy, E.1
  • 9
    • 84983489389 scopus 로고    scopus 로고
    • COTS Li-ion Cell; How Rugged are New Designs?
    • Huntsville, Alabama
    • [9] Darcy, E., COTS Li-ion Cell; How Rugged are New Designs?. 2012 Huntsville, Alabama.
    • (2012)
    • Darcy, E.1
  • 10
    • 84940470706 scopus 로고    scopus 로고
    • Thermo-electrochemical evaluation of lithium-ion batteries for space applications
    • [10] Walker, W., Yayathi, S., Shaw, J., Ardebili, H., Thermo-electrochemical evaluation of lithium-ion batteries for space applications. J. Power Sources 298 (2015), 217–227.
    • (2015) J. Power Sources , vol.298 , pp. 217-227
    • Walker, W.1    Yayathi, S.2    Shaw, J.3    Ardebili, H.4
  • 12
    • 84984651294 scopus 로고    scopus 로고
    • Boston Power Datasheet: Boston Power Swing 5300 Rechargeable Lithium Ion Cell
    • [12] Boston Power, Boston Power Datasheet: Boston Power Swing 5300 Rechargeable Lithium Ion Cell. 2011.
    • (2011)
    • Boston Power1
  • 13
    • 84893481265 scopus 로고    scopus 로고
    • Specification of Product for Lithium-ion Rechargeable Cell Model: ICR18650–26F
    • [13] Samsung SDI Co., LTD, Specification of Product for Lithium-ion Rechargeable Cell Model: ICR18650–26F. 2009.
    • (2009)
    • Samsung SDI Co., LTD,1
  • 14
    • 84983533878 scopus 로고    scopus 로고
    • Energy Corporation, Product Datasheet for MoliCel ICR 18650-J
    • [14] E-ONE MOLI, Energy Corporation, Product Datasheet for MoliCel ICR 18650-J. 2016.
    • (2016)
    • E-ONE MOLI1
  • 15
    • 84984608038 scopus 로고    scopus 로고
    • Determining the Specific Heat Capacity of a Battery Pack
    • [15] Thermal Hazard Technology, Determining the Specific Heat Capacity of a Battery Pack. 2016.
    • (2016)
    • Thermal Hazard Technology1
  • 16
    • 84984649459 scopus 로고    scopus 로고
    • Sonata 5300 and Swing 5300 Material Safety Data Sheet
    • [16] Boston Power, Sonata 5300 and Swing 5300 Material Safety Data Sheet. 2015.
    • (2015)
    • Boston Power1
  • 17
    • 84984649453 scopus 로고    scopus 로고
    • Samsung Material Safety Datasheet ICR 18650-26F
    • [17] Samsung SDI Co., LTD, Samsung Material Safety Datasheet ICR 18650-26F. 2013.
    • (2013)
    • Samsung SDI Co., LTD,1
  • 18
    • 84983533909 scopus 로고    scopus 로고
    • MoliCel Safety Datasheet FSSF00058AB
    • [18] E-ONE Moli Energy Corporation, MoliCel Safety Datasheet FSSF00058AB. 2016.
    • (2016)
    • E-ONE Moli Energy Corporation1
  • 19
    • 84937057368 scopus 로고    scopus 로고
    • Experimental analysis of thermal runaway and propagation in lithium-ion battery modules
    • [19] Lopez, C., Jeevarajan, J., Mukherjee, P., Experimental analysis of thermal runaway and propagation in lithium-ion battery modules. J. Electrochem Soc. 162 (2015), A1905–A1915.
    • (2015) J. Electrochem Soc. , vol.162 , pp. A1905-A1915
    • Lopez, C.1    Jeevarajan, J.2    Mukherjee, P.3
  • 20
    • 33645742139 scopus 로고    scopus 로고
    • Safety mechanisms in lithium-ion batteries
    • [20] Balakrishnan, P., Ramesh, R., Kumar, P.T., Safety mechanisms in lithium-ion batteries. J. Power Sources 155 (2006), 401–414.
    • (2006) J. Power Sources , vol.155 , pp. 401-414
    • Balakrishnan, P.1    Ramesh, R.2    Kumar, P.T.3
  • 21
    • 79551587744 scopus 로고    scopus 로고
    • A critical review of thermal issues in lithium-ion batteries
    • [21] Bandhauer, T.M., Garimella, S., Fuller, T.F., A critical review of thermal issues in lithium-ion batteries. J. Electrochem. Soc. 158 (2011), R1–R25.
    • (2011) J. Electrochem. Soc. , vol.158 , pp. R1-R25
    • Bandhauer, T.M.1    Garimella, S.2    Fuller, T.F.3
  • 22
    • 82755193668 scopus 로고    scopus 로고
    • A review of hazards associated with primary lithium and lithium-ion batteries
    • [22] Lisbona, D., Snee, T., A review of hazards associated with primary lithium and lithium-ion batteries. Process Saf. Environ. Prot. 89 (2011), 434–442.
    • (2011) Process Saf. Environ. Prot. , vol.89 , pp. 434-442
    • Lisbona, D.1    Snee, T.2
  • 23
    • 84858743931 scopus 로고    scopus 로고
    • Thermal runaway caused fire and explosion of lithium ion battery
    • [23] Wang, Q., Ping, P., Zhao, X., Chu, G., Sun, J., Chen, C., Thermal runaway caused fire and explosion of lithium ion battery. J. Power Sources 208 (2012), 210–224.
    • (2012) J. Power Sources , vol.208 , pp. 210-224
    • Wang, Q.1    Ping, P.2    Zhao, X.3    Chu, G.4    Sun, J.5    Chen, C.6
  • 24
    • 84940033599 scopus 로고    scopus 로고
    • Overcharge failure investigation of lithium-ion batteries
    • [24] Yuan, Q., Zhao, F., Wang, W., Zhao, Y., Liang, Z., Yan, D., Overcharge failure investigation of lithium-ion batteries. Electrochim Acta 178 (2015), 682–688.
    • (2015) Electrochim Acta , vol.178 , pp. 682-688
    • Yuan, Q.1    Zhao, F.2    Wang, W.3    Zhao, Y.4    Liang, Z.5    Yan, D.6
  • 25
    • 0000509585 scopus 로고    scopus 로고
    • The reaction of charged cathodes with nonaqueous solvents and electrolytes
    • [25] MacNeil, D.D., Dahn, J.R., The reaction of charged cathodes with nonaqueous solvents and electrolytes. J. Electrochem. Soc. 148 (2001), A1205–A1210.
    • (2001) J. Electrochem. Soc. , vol.148 , pp. A1205-A1210
    • MacNeil, D.D.1    Dahn, J.R.2
  • 26
    • 0037215213 scopus 로고    scopus 로고
    • Abuse behavior of high-power, lithium-ion cells
    • [26] Spotnitz, R., Franklin, J., Abuse behavior of high-power, lithium-ion cells. J. Power Sources 113 (2003), 81–100.
    • (2003) J. Power Sources , vol.113 , pp. 81-100
    • Spotnitz, R.1    Franklin, J.2
  • 28
    • 84928777881 scopus 로고    scopus 로고
    • In-operando high-speed tomography of lithium-ion batteries during thermal runaway
    • [28] Finegan, D., Scheel, M., Robinson, J., Tjaden, B., Hunt, I., Mason, T., et al. In-operando high-speed tomography of lithium-ion batteries during thermal runaway. Nat. Commun., 6, 2015.
    • (2015) Nat. Commun. , vol.6
    • Finegan, D.1    Scheel, M.2    Robinson, J.3    Tjaden, B.4    Hunt, I.5    Mason, T.6
  • 29
    • 84885158824 scopus 로고    scopus 로고
    • Building a “smart nail” for penetration tests on Li-ion cells
    • [29] Hatchard, T.D., Trussler, S., Dahn, J.R., Building a “smart nail” for penetration tests on Li-ion cells. J. Power Sources 247 (2014), 821–823.
    • (2014) J. Power Sources , vol.247 , pp. 821-823
    • Hatchard, T.D.1    Trussler, S.2    Dahn, J.R.3
  • 30
    • 84910642963 scopus 로고    scopus 로고
    • Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module
    • [30] Feng, X., Sun, J., Ouyang, M., Wang, F., He, X., Lu, L., et al. Characterization of penetration induced thermal runaway propagation process within a large format lithium ion battery module. J. Power Sources 275 (2015), 261–273.
    • (2015) J. Power Sources , vol.275 , pp. 261-273
    • Feng, X.1    Sun, J.2    Ouyang, M.3    Wang, F.4    He, X.5    Lu, L.6
  • 31
    • 0032677050 scopus 로고    scopus 로고
    • Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. experimental
    • [31] Richard, M., Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. I. experimental. J. Electrochem. Soc. 146 (1999), 2068–2077.
    • (1999) J. Electrochem. Soc. , vol.146 , pp. 2068-2077
    • Richard, M.1
  • 32
    • 0032659129 scopus 로고    scopus 로고
    • Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. II. Modeling the results and predicting differential scanning calorimeter curves
    • [32] Richard, M., Accelerating rate calorimetry study on the thermal stability of lithium intercalated graphite in electrolyte. II. Modeling the results and predicting differential scanning calorimeter curves. J. Electrochem. Soc. 146 (1999), 2078–2084.
    • (1999) J. Electrochem. Soc. , vol.146 , pp. 2078-2084
    • Richard, M.1
  • 33
    • 0000906518 scopus 로고    scopus 로고
    • Thermal model of cylindrical and prismatic lithium-ion cells
    • [33] Hatchard, T., MacNeil, D., Basu, A., Dahn, J., Thermal model of cylindrical and prismatic lithium-ion cells. J. Electrochem. Soc. 148 (2001), A755–A761.
    • (2001) J. Electrochem. Soc. , vol.148 , pp. A755-A761
    • Hatchard, T.1    MacNeil, D.2    Basu, A.3    Dahn, J.4
  • 34
    • 34249888483 scopus 로고    scopus 로고
    • A three-dimensional thermal abuse model for lithium-ion cells
    • [34] Kim, G.-H., Pesaran, A., Spotnitz, R., A three-dimensional thermal abuse model for lithium-ion cells. J. Power Sources 170 (2007), 476–489.
    • (2007) J. Power Sources , vol.170 , pp. 476-489
    • Kim, G.-H.1    Pesaran, A.2    Spotnitz, R.3
  • 35
    • 84930194099 scopus 로고    scopus 로고
    • A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation
    • [35] Lee, C.H., Bae, S.J., Jang, M., A study on effect of lithium ion battery design variables upon features of thermal-runaway using mathematical model and simulation. J. Power Sources 293 (2015), 498–510.
    • (2015) J. Power Sources , vol.293 , pp. 498-510
    • Lee, C.H.1    Bae, S.J.2    Jang, M.3
  • 36
    • 84952838117 scopus 로고    scopus 로고
    • A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell
    • [36] Coman, P., Rayman, S., White, R., A lumped model of venting during thermal runaway in a cylindrical Lithium Cobalt Oxide lithium-ion cell. J. Power Sources 307 (2016), 56–62.
    • (2016) J. Power Sources , vol.307 , pp. 56-62
    • Coman, P.1    Rayman, S.2    White, R.3
  • 37
    • 84984623059 scopus 로고    scopus 로고
    • Accelerating Rate Calorimeter Technical Information Note 22: the Phi Correction in Accelerating Rate Calorimetry
    • [37] Thermal Hazard Technology, Accelerating Rate Calorimeter Technical Information Note 22: the Phi Correction in Accelerating Rate Calorimetry. 2016.
    • (2016)
    • Thermal Hazard Technology1
  • 38
    • 0038685950 scopus 로고    scopus 로고
    • The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions
    • [38] Gnanaraj, J.S., Zinigrad, E., Asraf, L., Gottlieb, H.E., Sprecher, M., Aurbach, D., et al. The use of accelerating rate calorimetry (ARC) for the study of the thermal reactions of Li-ion battery electrolyte solutions. J. Power Sources 119 (2003), 794–798.
    • (2003) J. Power Sources , vol.119 , pp. 794-798
    • Gnanaraj, J.S.1    Zinigrad, E.2    Asraf, L.3    Gottlieb, H.E.4    Sprecher, M.5    Aurbach, D.6
  • 39
    • 1542333425 scopus 로고    scopus 로고
    • Thermal abuse performance of high-power 18650 Li-ion cells
    • [39] Roth, E., Doughty, D., Thermal abuse performance of high-power 18650 Li-ion cells. J. Power Sources 128 (2004), 308–318.
    • (2004) J. Power Sources , vol.128 , pp. 308-318
    • Roth, E.1    Doughty, D.2
  • 41
    • 79959754347 scopus 로고    scopus 로고
    • Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter
    • [41] Jhu, C.-Y., Wang, Y.-W., Shu, C.-M., Chang, J.-C., Wu, H.-C., Thermal explosion hazards on 18650 lithium ion batteries with a VSP2 adiabatic calorimeter. J. Hazard. Mater. 192 (2011), 99–107.
    • (2011) J. Hazard. Mater. , vol.192 , pp. 99-107
    • Jhu, C.-Y.1    Wang, Y.-W.2    Shu, C.-M.3    Chang, J.-C.4    Wu, H.-C.5
  • 42
    • 34249285495 scopus 로고    scopus 로고
    • Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials
    • [42] Wang, Y., Zaghib, K., Guerfi, A., Bazito, F., Torresi, R., Dahn, J.R., Accelerating rate calorimetry studies of the reactions between ionic liquids and charged lithium ion battery electrode materials. Electrochim Acta 52 (2007), 6346–6352.
    • (2007) Electrochim Acta , vol.52 , pp. 6346-6352
    • Wang, Y.1    Zaghib, K.2    Guerfi, A.3    Bazito, F.4    Torresi, R.5    Dahn, J.R.6
  • 43
    • 84907191494 scopus 로고    scopus 로고
    • Characterization of large format lithium ion battery exposed to extremely high temperature
    • [43] Feng, X., Sun, J., Ouyang, M., He, X., Lu, L., Han, X., et al. Characterization of large format lithium ion battery exposed to extremely high temperature. J. Power Sources 272 (2014), 457–467.
    • (2014) J. Power Sources , vol.272 , pp. 457-467
    • Feng, X.1    Sun, J.2    Ouyang, M.3    He, X.4    Lu, L.5    Han, X.6
  • 44
  • 45
    • 84983496446 scopus 로고    scopus 로고
    • Calibration for High Sensitivity and Calibration Reproducibility in the ARC
    • [45] Thermal Hazard Technology, Calibration for High Sensitivity and Calibration Reproducibility in the ARC. 2016.
    • (2016)
    • Thermal Hazard Technology1
  • 46
    • 84936888333 scopus 로고    scopus 로고
    • Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge
    • [46] Golubkov, A., Scheikl, S., Planteu, R., Voitic, G., Wiltsche, H., Stangl, C., et al. Thermal runaway of commercial 18650 Li-ion batteries with LFP and NCA cathodes – impact of state of charge and overcharge. Rsc Adv. 5 (2015), 57171–57186.
    • (2015) Rsc Adv. , vol.5 , pp. 57171-57186
    • Golubkov, A.1    Scheikl, S.2    Planteu, R.3    Voitic, G.4    Wiltsche, H.5    Stangl, C.6
  • 47
    • 84907758552 scopus 로고    scopus 로고
    • An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter
    • [47] Fu, Y., Lu, S., Li, K., Liu, C., Cheng, X., Zhang, H., An experimental study on burning behaviors of 18650 lithium ion batteries using a cone calorimeter. J. Power Sources 273 (2015), 216–222.
    • (2015) J. Power Sources , vol.273 , pp. 216-222
    • Fu, Y.1    Lu, S.2    Li, K.3    Liu, C.4    Cheng, X.5    Zhang, H.6
  • 48
    • 84983476455 scopus 로고    scopus 로고
    • How to Mitigate/prevent Safety Incidents in Li-ion Cells and Batteries
    • Fort Lauderdale, Florida
    • [48] Barnett, B., Sriramulu, S., Stringfellow, R., Ofer, D., Takata, R., Oh, B., How to Mitigate/prevent Safety Incidents in Li-ion Cells and Batteries. 2009 Fort Lauderdale, Florida.
    • (2009)
    • Barnett, B.1    Sriramulu, S.2    Stringfellow, R.3    Ofer, D.4    Takata, R.5    Oh, B.6
  • 49
    • 84983476447 scopus 로고    scopus 로고
    • Internal Short Circuits in Lithium-ion Cells for PHEVs
    • TIAX LLC
    • [49] Sriramulu, S., Stringfellow, R., Internal Short Circuits in Lithium-ion Cells for PHEVs. 2014, TIAX LLC.
    • (2014)
    • Sriramulu, S.1    Stringfellow, R.2
  • 50
    • 84893182243 scopus 로고    scopus 로고
    • Vehicle Battery Safety Roadmap Guidance
    • NREL
    • [50] Doughty, D.H., Pesaran, A.A., Vehicle Battery Safety Roadmap Guidance. 2012, NREL.
    • (2012)
    • Doughty, D.H.1    Pesaran, A.A.2
  • 51
    • 84890114320 scopus 로고    scopus 로고
    • Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter
    • [51] Lu, T.Y., Chiang, C.C., Wu, S.H., Chen, K.C., Lin, S.J., Wen, C.Y., Shu, C.M., Thermal hazard evaluations of 18650 lithium-ion batteries by an adiabatic calorimeter. J. Therm. Anal. Calorim. 114 (2013), 1083–1088.
    • (2013) J. Therm. Anal. Calorim. , vol.114 , pp. 1083-1088
    • Lu, T.Y.1    Chiang, C.C.2    Wu, S.H.3    Chen, K.C.4    Lin, S.J.5    Wen, C.Y.6    Shu, C.M.7
  • 52
    • 80053299010 scopus 로고    scopus 로고
    • Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries
    • [52] Jhu, C.Y., Wang, Y.W., Wen, C.Y., Chiang, C.C., Shu, C.M., Self-reactive rating of thermal runaway hazards on 18650 lithium-ion batteries. J. Therm. Anal. Calorim. 106 (2011), 159–163.
    • (2011) J. Therm. Anal. Calorim. , vol.106 , pp. 159-163
    • Jhu, C.Y.1    Wang, Y.W.2    Wen, C.Y.3    Chiang, C.C.4    Shu, C.M.5


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.