-
2
-
-
0001639099
-
The Jacobians of certain matrix transformations useful in multivariate analysis
-
[2] Deemer, W.L., Olkin, I., The Jacobians of certain matrix transformations useful in multivariate analysis. Biometrika 38 (1951), 345–367.
-
(1951)
Biometrika
, vol.38
, pp. 345-367
-
-
Deemer, W.L.1
Olkin, I.2
-
3
-
-
0001165055
-
Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population
-
[3] Fisher, R.A., Frequency distribution of the values of the correlation coefficient in samples from an indefinitely large population. Biometrika 10 (1915), 507–521.
-
(1915)
Biometrika
, vol.10
, pp. 507-521
-
-
Fisher, R.A.1
-
4
-
-
0030536935
-
-
When does [Formula presented] and why does one want to know? Amer Math. Monthly 103 (1996) 470–482.
-
[4] R. Horn, I. Olkin, When does [Formula presented] and why does one want to know? Amer Math. Monthly 103 (1996) 470–482.
-
-
-
Horn, R.1
Olkin, I.2
-
5
-
-
0009984674
-
An algebraic derivation of the distribution of rectangular coordinates
-
[5] Hsu, P.L., An algebraic derivation of the distribution of rectangular coordinates. Proc. Edinburgh Math. Soc. 6:2 (1940), 185–189.
-
(1940)
Proc. Edinburgh Math. Soc.
, vol.6
, Issue.2
, pp. 185-189
-
-
Hsu, P.L.1
-
6
-
-
0002416976
-
Normal multivariate analysis and the orthogonal group
-
[6] James, A.T., Normal multivariate analysis and the orthogonal group. Ann. Math. Statist. 25 (1954), 40–75.
-
(1954)
Ann. Math. Statist.
, vol.25
, pp. 40-75
-
-
James, A.T.1
-
8
-
-
0010057774
-
Normalisation of statistical variates and the use of rectangular coordinates in the theory of sampling distributions
-
[8] Mahalanobis, P.C., Bose, R.C., Roy, S.N., Normalisation of statistical variates and the use of rectangular coordinates in the theory of sampling distributions. Sankhyā 3 (1937), 1–40.
-
(1937)
Sankhyā
, vol.3
, pp. 1-40
-
-
Mahalanobis, P.C.1
Bose, R.C.2
Roy, S.N.3
-
11
-
-
21344448564
-
The density of the Moore–Penrose inverse of a random matrix
-
[11] Neudecker, H., Liu, S., The density of the Moore–Penrose inverse of a random matrix. Linear Algebra Appl. 237/238 (1996), 123–126.
-
(1996)
Linear Algebra Appl.
, vol.237-238
, pp. 123-126
-
-
Neudecker, H.1
Liu, S.2
-
12
-
-
85017504671
-
-
On distribution problems in multivariate analysis, Doctoral dissertation, University of North Carolina, Institute of Statistics Mimeograph Series, No. 43, 1951, pp. 1–126
-
[12] I. Olkin, On distribution problems in multivariate analysis, Doctoral dissertation, University of North Carolina, Institute of Statistics Mimeograph Series, No. 43, 1951, pp. 1–126.
-
-
-
Olkin, I.1
-
13
-
-
0009985251
-
Note on “The Jacobians of certain matrix transformations useful in multivariate analysis”
-
[13] Olkin, I., Note on “The Jacobians of certain matrix transformations useful in multivariate analysis”. Biometrika 40 (1953), 43–46.
-
(1953)
Biometrika
, vol.40
, pp. 43-46
-
-
Olkin, I.1
-
14
-
-
0032087331
-
The density of the inverse and pseudo-inverse of a random matrix
-
[14] Olkin, I., The density of the inverse and pseudo-inverse of a random matrix. Statist. Prob. Lett. 38 (1998), 131–135.
-
(1998)
Statist. Prob. Lett.
, vol.38
, pp. 131-135
-
-
Olkin, I.1
-
15
-
-
0009979847
-
On multivariate distribution theory
-
[15] Olkin, I., Roy, S.N., On multivariate distribution theory. Ann. Math. Statist. 25 (1954), 329–339.
-
(1954)
Ann. Math. Statist.
, vol.25
, pp. 329-339
-
-
Olkin, I.1
Roy, S.N.2
-
16
-
-
0000657301
-
Jacobians of matrix transformations and induced functional equations
-
[16] Olkin, I., Sampson, A.R., Jacobians of matrix transformations and induced functional equations. Linear Algebra Appl. 5 (1972), 257–276.
-
(1972)
Linear Algebra Appl.
, vol.5
, pp. 257-276
-
-
Olkin, I.1
Sampson, A.R.2
-
17
-
-
84972534130
-
The characteristic roots of matrices
-
[17] Parker, W.V., The characteristic roots of matrices. Duke Math. J. 12 (1945), 519–526.
-
(1945)
Duke Math. J.
, vol.12
, pp. 519-526
-
-
Parker, W.V.1
-
18
-
-
34250957105
-
Zur Theorie der linearen und nichtlinearen Integralgleichungen, I. Teil, Entwicklung Willkürlicher Funktionen noch Sytemen Vargeschriebener
-
[18] Schmidt, E., Zur Theorie der linearen und nichtlinearen Integralgleichungen, I. Teil, Entwicklung Willkürlicher Funktionen noch Sytemen Vargeschriebener. Math. Ann. 63 (1907), 433–476.
-
(1907)
Math. Ann.
, vol.63
, pp. 433-476
-
-
Schmidt, E.1
-
19
-
-
84968476512
-
Canonical positive definite matrices under internal linear transformations
-
[19] Vinograde, B., Canonical positive definite matrices under internal linear transformations. Proc. Amer. Math. Soc. 1 (1950), 159–161.
-
(1950)
Proc. Amer. Math. Soc.
, vol.1
, pp. 159-161
-
-
Vinograde, B.1
-
20
-
-
0002125597
-
The generalized product moment distribution in samples from a normal multivariate population
-
[20] Wishart, J., The generalized product moment distribution in samples from a normal multivariate population. Biometrika 20:A (1928), 32–52.
-
(1928)
Biometrika
, vol.20
, Issue.A
, pp. 32-52
-
-
Wishart, J.1
-
21
-
-
0031513922
-
Probabilistic analysis of Gaussian elimination without pivoting
-
[21] Yeung, M.-C., Chan, T.F., Probabilistic analysis of Gaussian elimination without pivoting. SIAM J. Matrix Anal. Appl. 18:2 (1997), 499–517.
-
(1997)
SIAM J. Matrix Anal. Appl.
, vol.18
, Issue.2
, pp. 499-517
-
-
Yeung, M.-C.1
Chan, T.F.2
-
22
-
-
0345647738
-
The exact distribution of the Moore–Penrose inverse of X with a density
-
P.R. Krishnaiah Elsevier New York
-
[22] Zhang, Y., The exact distribution of the Moore–Penrose inverse of X with a density. Krishnaiah, P.R., (eds.) Multivariate Analysis VI, 1985, Elsevier, New York, 633–635.
-
(1985)
Multivariate Analysis VI
, pp. 633-635
-
-
Zhang, Y.1
|