메뉴 건너뛰기




Volumn 9, Issue 9, 2016, Pages 4142-4159

Spectral-Spatial Feature Learning Using Cluster-Based Group Sparse Coding for Hyperspectral Image Classification

Author keywords

Group sparse coding (GSC); hyperspectral image segmentation; kernel group sparse coding; mean shift (MS); spectral spatial classification

Indexed keywords

CLASSIFICATION (OF INFORMATION); CODES (SYMBOLS); IMAGE CODING; LEARNING SYSTEMS; PIXELS; SPECTROSCOPY;

EID: 84983086503     PISSN: 19391404     EISSN: 21511535     Source Type: Journal    
DOI: 10.1109/JSTARS.2016.2593907     Document Type: Article
Times cited : (30)

References (63)
  • 1
    • 0032157956 scopus 로고    scopus 로고
    • Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)
    • Sep.
    • R. O. Green et al., "Imaging spectroscopy and the airborne visible/infrared imaging spectrometer (AVIRIS)," Remote Sens. Environ., vol. 65, no. 3, pp. 227-248, Sep. 1998.
    • (1998) Remote Sens. Environ. , vol.65 , Issue.3 , pp. 227-248
    • Green, R.O.1
  • 2
    • 15944411032 scopus 로고    scopus 로고
    • A collection of data for urban area characterization
    • Sep.
    • P. Gamba, "A collection of data for urban area characterization," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Sep. 2004, vol. 1, pp. 69-72.
    • (2004) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.1 , pp. 69-72
    • Gamba, P.1
  • 3
    • 0034516115 scopus 로고    scopus 로고
    • Development and operations of the EO-1 hyperion imaging spectrometer
    • J. Pearlman et al., "Development and operations of the EO-1 Hyperion imaging spectrometer," Proc. SPIE, vol. 4135, pp. 243-253, 2000.
    • (2000) Proc. SPIE , vol.4135 , pp. 243-253
    • Pearlman, J.1
  • 4
    • 84943238357 scopus 로고    scopus 로고
    • Terrestrial imaging spectroscopy - some future perspectives
    • Tel Aviv, Israel
    • K. Staenz, "Terrestrial imaging spectroscopy - Some future perspectives," in Proc. 6th EARSEL SIG IS Workshop, Tel Aviv, Israel, 2009, pp. 1-12.
    • (2009) Proc. 6th EARSEL SIG is Workshop , pp. 1-12
    • Staenz, K.1
  • 5
    • 0035882614 scopus 로고    scopus 로고
    • Study of crop growth parameters using airborne imaging spectrometer data
    • Aug.
    • N. K. Patel, C. Patnaik, S. Dutta, A. M. Shekh, and A. J. Dave, "Study of crop growth parameters using airborne imaging spectrometer data," Int. J. Remote Sens., vol. 22, no. 12, pp. 2401-2411, Aug. 2001.
    • (2001) Int. J. Remote Sens. , vol.22 , Issue.12 , pp. 2401-2411
    • Patel, N.K.1    Patnaik, C.2    Dutta, S.3    Shekh, A.M.4    Dave, A.J.5
  • 6
    • 0242543183 scopus 로고    scopus 로고
    • Classification of optical high resolution images in urban environment using spectral and textural information
    • Jul.
    • M. De Martinao, F. Causa, and S. B. Serpico, "Classification of optical high resolution images in urban environment using spectral and textural information," in Proc. IEEE Int. Geosci. Remote Sens. Symp., Jul. 2003, vol. 1, pp. 467-469.
    • (2003) Proc. IEEE Int. Geosci. Remote Sens. Symp. , vol.1 , pp. 467-469
    • De Martinao, M.1    Causa, F.2    Serpico, S.B.3
  • 7
    • 66249130979 scopus 로고    scopus 로고
    • Automated hyperspectral cueing for civilian search and rescue
    • Jun.
    • M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, "Automated hyperspectral cueing for civilian search and rescue," Proc. IEEE, vol. 97, no. 6, pp. 1031-1055, Jun. 2009.
    • (2009) Proc. IEEE , vol.97 , Issue.6 , pp. 1031-1055
    • Eismann, M.T.1    Stocker, A.D.2    Nasrabadi, N.M.3
  • 9
    • 77953764526 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using watershed transformation
    • Jul.
    • Y. Tarabalka, J. Chanussot, and J. Benediktsson, "Segmentation and classification of hyperspectral images using watershed transformation," Pattern Recognit., vol. 43, no. 7, pp. 2367-2379, Jul. 2010.
    • (2010) Pattern Recognit , vol.43 , Issue.7 , pp. 2367-2379
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.3
  • 10
    • 0032636659 scopus 로고    scopus 로고
    • Support vector machines for hyperspectral remote sensing classification
    • Jan.
    • J. A. Gualtieri and R. F. Cromp, "Support vector machines for hyperspectral remote sensing classification," Proc. SPIE, vol. 3584, pp. 221-232, Jan. 1998.
    • (1998) Proc. SPIE , vol.3584 , pp. 221-232
    • Gualtieri, J.A.1    Cromp, R.F.2
  • 11
    • 77957741951 scopus 로고
    • On the mean accuracy of statistical pattern recognizers
    • Jan.
    • G. Hughes, "On the mean accuracy of statistical pattern recognizers," IEEE Trans. Inf. Theory, vol. IT-14, no. 1, pp. 55-63, Jan. 1968.
    • (1968) IEEE Trans. Inf. Theory , vol.IT-14 , Issue.1 , pp. 55-63
    • Hughes, G.1
  • 12
    • 44649165024 scopus 로고    scopus 로고
    • Statistical pattern recognition in remote sensing
    • Sep.
    • C. H. Chen and P. G. P. Ho, "Statistical pattern recognition in remote sensing," Pattern Recognit., vol. 41, no. 9, pp. 2731-2741, Sep. 2008.
    • (2008) Pattern Recognit , vol.41 , Issue.9 , pp. 2731-2741
    • Chen, C.H.1    Ho, P.G.P.2
  • 14
    • 0037696635 scopus 로고    scopus 로고
    • Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn
    • P. K. Goel, S. O. Prasher, R. M. Patel, J. A. Landry, R. B. Bonnell, and A. A. Viau, "Classification of hyperspectral data by decision trees and artificial neural networks to identify weed stress and nitrogen status of corn," Comput. Electron. Agric., vol. 39, no. 2, pp. 67-93, 2003.
    • (2003) Comput. Electron. Agric , vol.39 , Issue.2 , pp. 67-93
    • Goel, P.K.1    Prasher, S.O.2    Patel, R.M.3    Landry, J.A.4    Bonnell, R.B.5    Viau, A.A.6
  • 15
    • 77957990796 scopus 로고    scopus 로고
    • An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine
    • Feb.
    • S. Li, H. Wu, D. Wan, and J. Zhu, "An effective feature selection method for hyperspectral image classification based on genetic algorithm and support vector machine," Knowl.-Based Syst., vol. 24, no. 1, pp. 40-48, Feb. 2011.
    • (2011) Knowl.-Based Syst. , vol.24 , Issue.1 , pp. 40-48
    • Li, S.1    Wu, H.2    Wan, D.3    Zhu, J.4
  • 16
    • 20444432773 scopus 로고    scopus 로고
    • Kernel-based methods for hyperspectral image classification
    • Jun.
    • G. Camps-Valls and L. Bruzzone, "Kernel-based methods for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 43, no. 6, pp. 1351-1362, Jun. 2005.
    • (2005) IEEE Trans. Geosci. Remote Sens. , vol.43 , Issue.6 , pp. 1351-1362
    • Camps-Valls, G.1    Bruzzone, L.2
  • 17
    • 41849112041 scopus 로고    scopus 로고
    • Customizing kernel functions for SVM-based hyperspectral image classification
    • Apr.
    • B. Guo, S. R. Gunn, R. I. Damper, and J. D. B. Nelson, "Customizing kernel functions for SVM-based hyperspectral image classification," IEEE Trans. Image Process., vol. 17, no. 4, pp. 622-629, Apr. 2008.
    • (2008) IEEE Trans. Image Process , vol.17 , Issue.4 , pp. 622-629
    • Guo, B.1    Gunn, S.R.2    Damper, R.I.3    Nelson, J.D.B.4
  • 18
    • 4344614511 scopus 로고    scopus 로고
    • Classification of hyperspectral remote sensing images with support vector machines
    • Aug.
    • F. Melgani and L. Bruzzone, "Classification of hyperspectral remote sensing images with support vector machines," IEEE Trans. Geosci. Remote Sens., vol. 42, no. 8, pp. 1778-1790, Aug. 2004.
    • (2004) IEEE Trans. Geosci. Remote Sens. , vol.42 , Issue.8 , pp. 1778-1790
    • Melgani, F.1    Bruzzone, L.2
  • 20
    • 77958017904 scopus 로고    scopus 로고
    • SVMand MRF-based method for accurate classification of hyperspectral images
    • Oct.
    • Y. Tarabalka, M. Fauvel, J. Chanussot, and J. A. Benediktsson, "SVMand MRF-based method for accurate classification of hyperspectral images," IEEE Geosci. Remote Sens. Lett., vol. 7, no. 4, pp. 736-740, Oct. 2010.
    • (2010) IEEE Geosci. Remote Sens. Lett. , vol.7 , Issue.4 , pp. 736-740
    • Tarabalka, Y.1    Fauvel, M.2    Chanussot, J.3    Benediktsson, J.A.4
  • 21
    • 80052087931 scopus 로고    scopus 로고
    • Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and markov random fields
    • Mar.
    • J. Li, J. Bioucas-Dias, and A. Plaza, "Spectral-spatial hyperspectral image segmentation using subspace multinomial logistic regression and Markov random fields," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 3, pp. 809-823, Mar. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.3 , pp. 809-823
    • Li, J.1    Bioucas-Dias, J.2    Plaza, A.3
  • 22
    • 56849127860 scopus 로고    scopus 로고
    • Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles
    • Oct.
    • M. Fauvel, J. Chanussot, J. A. Benediktsson, and J. R. Sveinsson, "Spectral and spatial classification of hyperspectral data using SVMs and morphological profiles," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 10, pp. 3804-3814, Oct. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.10 , pp. 3804-3814
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3    Sveinsson, J.R.4
  • 23
    • 80052740627 scopus 로고    scopus 로고
    • A spatial-spectral kernel-based approach for the classification of remote-sensing images
    • M. Fauvel, J. Chanussot, and J. A. Benediktsson, "A spatial-spectral kernel-based approach for the classification of remote-sensing images," Pattern Recognit., vol. 45, no. 1, pp. 381-392, 2012.
    • (2012) Pattern Recognit , vol.45 , Issue.1 , pp. 381-392
    • Fauvel, M.1    Chanussot, J.2    Benediktsson, J.A.3
  • 25
    • 70350690258 scopus 로고    scopus 로고
    • Random set framework for context-based classification with hyperspectral imagery
    • Nov.
    • J. Bolton and P. Gader, "Random set framework for context-based classification with hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 11, pp. 3810-3821, Nov. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.11 , pp. 3810-3821
    • Bolton, J.1    Gader, P.2
  • 26
    • 84896389249 scopus 로고    scopus 로고
    • Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features
    • Aug.
    • Z. He, Q. Wang, Y. Shen, and M. Sun, "Kernel sparse multitask learning for hyperspectral image classification with empirical mode decomposition and morphological wavelet-based features," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 8, pp. 5150-5163, Aug. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.8 , pp. 5150-5163
    • He, Z.1    Wang, Q.2    Shen, Y.3    Sun, M.4
  • 27
    • 84867399355 scopus 로고    scopus 로고
    • Classification of hyperspectral images by tensor modeling and additive morphological decomposition
    • S. Velasco-Forero and J. Angulo, "Classification of hyperspectral images by tensor modeling and additive morphological decomposition," Pattern Recognit., vol. 46, no. 2, pp. 566-577, 2013.
    • (2013) Pattern Recognit , vol.46 , Issue.2 , pp. 566-577
    • Velasco-Forero, S.1    Angulo, J.2
  • 28
    • 84875713130 scopus 로고    scopus 로고
    • Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features
    • Apr.
    • Y. Qian, M. Ye, and J. Zhou, "Hyperspectral image classification based on structured sparse logistic regression and three-dimensional wavelet texture features," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 4, pp. 2276-2291, Apr. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.4 , pp. 2276-2291
    • Qian, Y.1    Ye, M.2    Zhou, J.3
  • 30
    • 84862649818 scopus 로고    scopus 로고
    • Learning sparse representations for human action recognition
    • Aug.
    • T. Guha and R. Ward, "Learning sparse representations for human action recognition," IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 8, pp. 1576-1588, Aug. 2012.
    • (2012) IEEE Trans. Pattern Anal. Mach. Intell. , vol.34 , Issue.8 , pp. 1576-1588
    • Guha, T.1    Ward, R.2
  • 31
    • 84255204432 scopus 로고    scopus 로고
    • Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images
    • Jan.
    • M. Zhou et al., "Nonparametric Bayesian dictionary learning for analysis of noisy and incomplete images," IEEE Trans. Image Process., vol. 21, no. 1, pp. 130-144, Jan. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.1 , pp. 130-144
    • Zhou, M.1
  • 33
    • 69949128613 scopus 로고    scopus 로고
    • L1 unmixing and its application to hyperspectral image enhancement
    • Z. Guo, T. Wittman, and S. Osher, "L1 unmixing and its application to hyperspectral image enhancement," Proc. SPIE, vol. 1, pp. 1-12, 2009.
    • (2009) Proc. SPIE , vol.1 , pp. 1-12
    • Guo, Z.1    Wittman, T.2    Osher, S.3
  • 34
    • 84861772901 scopus 로고    scopus 로고
    • Hyperspectral unmixing overview: Geometrical, statistical and sparse regression-based approaches
    • Apr.
    • J. M. Bioucas-Dias et al., "Hyperspectral unmixing overview: Geometrical, statistical and sparse regression-based approaches," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 5, no. 2, pp. 354-379, Apr. 2012.
    • (2012) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.5 , Issue.2 , pp. 354-379
    • Bioucas-Dias, J.M.1
  • 35
    • 84255178230 scopus 로고    scopus 로고
    • Sparse demixing of hyperspectral images
    • Jan.
    • J. Greer, "Sparse demixing of hyperspectral images," IEEE Trans. Image Process., vol. 21, no. 1, pp. 219-228, Jan. 2012.
    • (2012) IEEE Trans. Image Process , vol.21 , Issue.1 , pp. 219-228
    • Greer, J.1
  • 36
    • 84861338885 scopus 로고    scopus 로고
    • A fast and robust sparse approach for hyperspectral data classification using a few labeled samples
    • Jun.
    • S. U. Haq, L. Tao, F. Sun, and S. Yang, "A fast and robust sparse approach for hyperspectral data classification using a few labeled samples," IEEE Trans. Geosci. Remote Sens., vol. 50, no. 6, pp. 2287-2302, Jun. 2012.
    • (2012) IEEE Trans. Geosci. Remote Sens. , vol.50 , Issue.6 , pp. 2287-2302
    • Haq, S.U.1    Tao, L.2    Sun, F.3    Yang, S.4
  • 37
    • 80455122805 scopus 로고    scopus 로고
    • Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery
    • Nov.
    • A. Castrodad, Z. Xing, J. Greer, E. Bosch, L. Carin, and G. Sapiro, "Learning discriminative sparse representations for modeling, source separation, and mapping of hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 11, pp. 4263-4281, Nov. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.11 , pp. 4263-4281
    • Castrodad, A.1    Xing, Z.2    Greer, J.3    Bosch, E.4    Carin, L.5    Sapiro, G.6
  • 38
    • 80053571096 scopus 로고    scopus 로고
    • Hyperspectral image classification using dictionary-based sparse representation
    • Oct.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification using dictionary-based sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 49, no. 10, pp. 3973-3985, Oct. 2011.
    • (2011) IEEE Trans. Geosci. Remote Sens. , vol.49 , Issue.10 , pp. 3973-3985
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 39
    • 84870541423 scopus 로고    scopus 로고
    • Exploiting sparsity in hyperspectral image classification via graphical models
    • May
    • U. Srinivas, Y. Chen, V. Monga, N. M. Nasrabadi, and T.D. Tran, "Exploiting sparsity in hyperspectral image classification via graphical models," IEEE Geosci. Remote Sens. Lett., vol. 10, no. 3, pp. 505-509, May 2013.
    • (2013) IEEE Geosci. Remote Sens. Lett. , vol.10 , Issue.3 , pp. 505-509
    • Srinivas, U.1    Chen, Y.2    Monga, V.3    Nasrabadi, N.M.4    Tran, T.D.5
  • 40
    • 84871731919 scopus 로고    scopus 로고
    • Hyperspectral image classification via kernel sparse representation
    • Jan.
    • Y. Chen, N. M. Nasrabadi, and T. D. Tran, "Hyperspectral image classification via kernel sparse representation," IEEE Trans. Geosci. Remote Sens., vol. 51, no. 1, pp. 217-231, Jan. 2013.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.51 , Issue.1 , pp. 217-231
    • Chen, Y.1    Nasrabadi, N.M.2    Tran, T.D.3
  • 41
  • 43
    • 84856731167 scopus 로고    scopus 로고
    • Dictionary learning for noisy and incomplete hyperspectral images
    • Z. Xing, M. Zhou, A. Castrodad, G. Sapiro, and L. Carin, "Dictionary learning for noisy and incomplete hyperspectral images," SIAM J. Imag. Sci., vol. 5, no. 1, pp. 33-56, 2012.
    • (2012) SIAM J. Imag. Sci. , vol.5 , Issue.1 , pp. 33-56
    • Xing, Z.1    Zhou, M.2    Castrodad, A.3    Sapiro, G.4    Carin, L.5
  • 44
    • 84901201294 scopus 로고    scopus 로고
    • Joint collaborative representation with multi-task learning for hyperspectral image classification
    • Jun.
    • J. Li, H. Zhang, L. Zhang, X. Huang, and L. Zhang, "Joint collaborative representation with multi-task learning for hyperspectral image classification," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 9, pp. 5923-5936, Jun. 2013, doi:10.1109/TGRS.2013.2293732.
    • (2013) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.9 , pp. 5923-5936
    • Li, J.1    Zhang, H.2    Zhang, L.3    Huang, X.4    Zhang, L.5
  • 45
    • 84896401103 scopus 로고    scopus 로고
    • Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary
    • Jun.
    • J. Li, H. Zhang, Y. Huang, and L. Zhang, "Hyperspectral image classification by nonlocal joint collaborative representation with a locally adaptive dictionary," IEEE Trans. Geosci. Remote Sens., vol. 52, no. 6, pp. 3707-3719, Jun. 2014.
    • (2014) IEEE Trans. Geosci. Remote Sens. , vol.52 , Issue.6 , pp. 3707-3719
    • Li, J.1    Zhang, H.2    Huang, Y.3    Zhang, L.4
  • 46
    • 84905922593 scopus 로고    scopus 로고
    • A nonlocal weighted joint sparse representation classification method for hyperspectral imagery
    • Jun.
    • H. Zhang, J. Li, Y. Huang, and L. Zhang, "A nonlocal weighted joint sparse representation classification method for hyperspectral imagery," IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 7, no. 6, pp. 2056-2065, Jun. 2014, doi:10.1109/JS-TARS.2013.2264720.
    • (2014) IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. , vol.7 , Issue.6 , pp. 2056-2065
    • Zhang, H.1    Li, J.2    Huang, Y.3    Zhang, L.4
  • 48
    • 85027920785 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model
    • Aug.
    • L. Fang, S. Li, X. Kang, and J. A. Benediktsson, "Spectral-spatial classification of hyperspectral images with a superpixel-based discriminative sparse model," IEEE Trans. Geosci. Remote Sens., vol. 53, no. 8, pp. 4186-4201, Aug. 2015.
    • (2015) IEEE Trans. Geosci. Remote Sens. , vol.53 , Issue.8 , pp. 4186-4201
    • Fang, L.1    Li, S.2    Kang, X.3    Benediktsson, J.A.4
  • 49
    • 67949115614 scopus 로고    scopus 로고
    • Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques
    • Aug.
    • Y. Tarabalka, J. A. Benediktsson, and J. Chanussot, "Spectral-spatial classification of hyperspectral imagery based on partitional clustering techniques," IEEE Trans. Geosci. Remote Sens., vol. 47, no. 8, pp. 2973-2987, Aug. 2009.
    • (2009) IEEE Trans. Geosci. Remote Sens. , vol.47 , Issue.8 , pp. 2973-2987
    • Tarabalka, Y.1    Benediktsson, J.A.2    Chanussot, J.3
  • 50
    • 77956694762 scopus 로고    scopus 로고
    • Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers
    • Oct.
    • Y. Tarabalka, J. Chanussot, and J. A. Benediktsson, "Segmentation and classification of hyperspectral images using minimum spanning forest grown from automatically selected markers," IEEE Trans. Syst., Man, Cybern. B, Cybern., vol. 40, no. 5, pp. 1267-1279, Oct. 2010.
    • (2010) IEEE Trans. Syst., Man, Cybern. B, Cybern. , vol.40 , Issue.5 , pp. 1267-1279
    • Tarabalka, Y.1    Chanussot, J.2    Benediktsson, J.A.3
  • 51
    • 70350153353 scopus 로고    scopus 로고
    • An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery
    • Dec.
    • X. Huang and L. Zhang, "An adaptive mean-shift analysis approach for object extraction and classification from urban hyperspectral imagery," IEEE Trans. Geosci. Remote Sens., vol. 46, no. 12, pp. 4173-4185, Dec. 2008.
    • (2008) IEEE Trans. Geosci. Remote Sens. , vol.46 , Issue.12 , pp. 4173-4185
    • Huang, X.1    Zhang, L.2
  • 52
    • 0036565814 scopus 로고    scopus 로고
    • Mean shift: A robust approach toward feature space analysis
    • May
    • D. Comaniciu and P. Meer, "Mean shift: A robust approach toward feature space analysis," IEEE Trans. Pattern Anal. Mach. Intell., vol. 24, no. 5, pp. 603-619, May 2002.
    • (2002) IEEE Trans. Pattern Anal. Mach. Intell. , vol.24 , Issue.5 , pp. 603-619
    • Comaniciu, D.1    Meer, P.2
  • 55
    • 78149331496 scopus 로고    scopus 로고
    • Efficient match kernels between sets of features for visual recognition
    • L. Bo and C. Sminchisescu, "Efficient match kernels between sets of features for visual recognition," in Proc. 23rd Adv. Neural Inf. Process. Syst., 2009, pp. 135-143.
    • (2009) Proc. 23rd Adv. Neural Inf. Process. Syst. , pp. 135-143
    • Bo, L.1    Sminchisescu, C.2
  • 56
    • 0141978306 scopus 로고    scopus 로고
    • The fixed-point algorithm and maximum likelihood estimation for independent component analysis
    • Aug.
    • A. Hyvarinen, "The fixed-point algorithm and maximum likelihood estimation for independent component analysis," Neural Process. Lett., vol. 10, no. 1, pp. 1-5, Aug. 1999.
    • (1999) Neural Process. Lett. , vol.10 , Issue.1 , pp. 1-5
    • Hyvarinen, A.1
  • 60
    • 67650436064 scopus 로고    scopus 로고
    • Recent advances in techniques for hyperspectral image processing
    • Sep.
    • A. Plaza et al., "Recent advances in techniques for hyperspectral image processing," Remote Sens. Environ., vol. 113, no. Supplement 1, pp. S110-S122, Sep. 2009.
    • (2009) Remote Sens. Environ. , vol.113 , pp. S110-S122
    • Plaza, A.1
  • 61
    • 84911382221 scopus 로고    scopus 로고
    • Superpixel-based classification of hyperspectral data using sparse representation and conditional random fields
    • R. Roscher and B. Waske, "Superpixel-based classification of hyperspectral data using sparse representation and conditional random fields," in Proc. IEEE Int. Geosci. Remote Sens. Symp., 2014, pp. 3674-3677.
    • (2014) Proc. IEEE Int. Geosci. Remote Sens. Symp. , pp. 3674-3677
    • Roscher, R.1    Waske, B.2
  • 62
    • 84997447910 scopus 로고    scopus 로고
    • Polarimetric contextual classification of pol-SAR images using sparse representation and superpixels
    • J. Feng, Z. Cao, and Y. Pi, "Polarimetric contextual classification of Pol-SAR images using sparse representation and superpixels," Remote Sens., 2014, vol. 6, no. 8, pp. 7158-7181.
    • (2014) Remote Sens. , vol.6 , Issue.8 , pp. 7158-7181
    • Feng, J.1    Cao, Z.2    Pi, Y.3
  • 63
    • 70450177775 scopus 로고    scopus 로고
    • Learning invariant features through topographic filter maps
    • K. Kavukcuoglu et al., "Learning invariant features through topographic filter maps," in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2009, pp. 1605-1612.
    • (2009) Proc. IEEE Conf. Comput. Vis. Pattern Recognit , pp. 1605-1612
    • Kavukcuoglu, K.1


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.