-
1
-
-
78449288259
-
Semiconductor-based photocatalytic hydrogen generation
-
[1] Chen, X., Shen, S., Guo, L., Mao, S.S., Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110 (2010), 6503–6570.
-
(2010)
Chem. Rev.
, vol.110
, pp. 6503-6570
-
-
Chen, X.1
Shen, S.2
Guo, L.3
Mao, S.S.4
-
2
-
-
0039129509
-
Environmental applications of semiconductor photocatalysis
-
[2] Hoffmann, M.R., Martin, S.T., Choi, W., Bahnemann, D.W., Environmental applications of semiconductor photocatalysis. Chem. Rev. 95 (1995), 69–96.
-
(1995)
Chem. Rev.
, vol.95
, pp. 69-96
-
-
Hoffmann, M.R.1
Martin, S.T.2
Choi, W.3
Bahnemann, D.W.4
-
3
-
-
33748258877
-
A review and recent developments in photocatalytic water-splitting using for hydrogen production
-
[3] Ni, M., Leung, M.K.H., Leung, D.Y.C., Sumathy, L.K., A review and recent developments in photocatalytic water-splitting using for hydrogen production. Renew. Sustain. Energy Rev. 11 (2007), 401–425.
-
(2007)
Renew. Sustain. Energy Rev.
, vol.11
, pp. 401-425
-
-
Ni, M.1
Leung, M.K.H.2
Leung, D.Y.C.3
Sumathy, L.K.4
-
4
-
-
34547486889
-
Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications
-
[4] Chen, X., Mao, S.S., Titanium dioxide nanomaterials: synthesis, properties, modifications, and applications. Chem. Rev. 107 (2007), 2891–2959.
-
(2007)
Chem. Rev.
, vol.107
, pp. 2891-2959
-
-
Chen, X.1
Mao, S.S.2
-
6
-
-
0001177238
-
Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature
-
[6] Yanagisawa, K., Ovenstone, J., Crystallization of anatase from amorphous titania using the hydrothermal technique: effects of starting material and temperature. J. Phys. Chem. B 103 (1999), 7781–7787.
-
(1999)
J. Phys. Chem. B
, vol.103
, pp. 7781-7787
-
-
Yanagisawa, K.1
Ovenstone, J.2
-
7
-
-
33847356473
-
Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy
-
[7] Finnegan, M.P., Zhang, H., Banfield, J.F., Phase stability and transformation in titania nanoparticles in aqueous solutions dominated by surface energy. J. Phys. Chem. C 111 (2007), 1962–1968.
-
(2007)
J. Phys. Chem. C
, vol.111
, pp. 1962-1968
-
-
Finnegan, M.P.1
Zhang, H.2
Banfield, J.F.3
-
8
-
-
84882602309
-
Roles of cocatalysts in photocatalysis and photoelectrocatalysis
-
[8] Yang, J., Wang, D., Han, H., Li, C., Roles of cocatalysts in photocatalysis and photoelectrocatalysis. Acc. Chem. Res. 46 (2013), 1900–1909.
-
(2013)
Acc. Chem. Res.
, vol.46
, pp. 1900-1909
-
-
Yang, J.1
Wang, D.2
Han, H.3
Li, C.4
-
9
-
-
84924359199
-
Visible-light driven heterojunction photocatalysts for water splitting—a critical review
-
[9] Moniz, S.J.A., Shevlin, S.A., Martin, D.J., Guo, Z.-X., Tang, J., Visible-light driven heterojunction photocatalysts for water splitting—a critical review. Energy Environ. Sci. 8 (2015), 731–759.
-
(2015)
Energy Environ. Sci.
, vol.8
, pp. 731-759
-
-
Moniz, S.J.A.1
Shevlin, S.A.2
Martin, D.J.3
Guo, Z.-X.4
Tang, J.5
-
10
-
-
84896521395
-
Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting
-
[10] Ran, J., Zhang, J., Yu, J., Jaroniec, M., Qiao, S.Z., Earth-abundant cocatalysts for semiconductor-based photocatalytic water splitting. Chem. Soc. Rev. 43 (2014), 7787–7812.
-
(2014)
Chem. Soc. Rev.
, vol.43
, pp. 7787-7812
-
-
Ran, J.1
Zhang, J.2
Yu, J.3
Jaroniec, M.4
Qiao, S.Z.5
-
11
-
-
67649827352
-
2 production
-
2 production. ChemSusChem 2 (2009), 230–233.
-
(2009)
ChemSusChem
, vol.2
, pp. 230-233
-
-
Barreca, D.1
Fornasiero, P.2
Gasparotto, A.3
Gombac, V.4
Maccato, C.5
Montini, T.6
Tondello, E.7
-
12
-
-
76549122592
-
2 sustainable production and sensing
-
2 sustainable production and sensing. ECS Trans. 25 (2009), 1169–1176.
-
(2009)
ECS Trans.
, vol.25
, pp. 1169-1176
-
-
Gasparotto, A.1
Barreca, D.2
Fornasiero, P.3
Gombac, V.4
Lebedev, O.I.5
Maccato, C.6
Montini, T.7
Tondello, E.8
Tendeloo, G.V.9
Comini, E.10
Sberveglieri, G.11
-
13
-
-
84958818451
-
Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films
-
[13] Artioli, G.A., Mancini, A., Barbieri, V.R., Quattrini, M.C., Quartarone, E., Mozzati, M.C., Drera, G., Sangaletti, L., Gombac, V., Fornasiero, P., Malavasi, L., Correlation between deposition parameters and hydrogen production in CuO nanostructured thin films. Langmuir 32 (2016), 1510–1520.
-
(2016)
Langmuir
, vol.32
, pp. 1510-1520
-
-
Artioli, G.A.1
Mancini, A.2
Barbieri, V.R.3
Quattrini, M.C.4
Quartarone, E.5
Mozzati, M.C.6
Drera, G.7
Sangaletti, L.8
Gombac, V.9
Fornasiero, P.10
Malavasi, L.11
-
15
-
-
84866978324
-
2 nanosheets to enhance the visible-light photoactivity
-
2 nanosheets to enhance the visible-light photoactivity. Nanoscale 4 (2012), 6351–6359.
-
(2012)
Nanoscale
, vol.4
, pp. 6351-6359
-
-
Liu, L.1
Gu, X.2
Sun, C.3
Li, H.4
Deng, Y.5
Gao, F.6
Dong, L.7
-
21
-
-
84955208577
-
2 O (ultrathin film shell) nanorods as efficient and stable photocatalyst for water reduction
-
2 O (ultrathin film shell) nanorods as efficient and stable photocatalyst for water reduction. Angew. Chem. Int. Ed. 54 (2015), 15260–15265.
-
(2015)
Angew. Chem. Int. Ed.
, vol.54
, pp. 15260-15265
-
-
Liu, Y.1
Zhang, B.2
Luo, L.3
Chen, X.4
Wang, Z.5
Wu, E.6
Su, D.7
Huang, W.8
-
23
-
-
2342519339
-
2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes
-
2 catalysts and their application in the liquid phase selective hydrogenation of long chain alkadienes. J. Mol. Catal. A: Chem. 216 (2004), 107–114.
-
(2004)
J. Mol. Catal. A: Chem.
, vol.216
, pp. 107-114
-
-
Li, Y.1
Xu, B.2
Fan, Y.3
Feng, N.4
Qiu, A.5
Miao, J.6
He, J.7
Yang, H.8
Chen, Y.9
-
25
-
-
79953029915
-
Effect of titania structure on the properties of its supported copper oxide catalysts
-
[25] Zhu, H., Dong, L., Chen, Y., Effect of titania structure on the properties of its supported copper oxide catalysts. J. Colloid Interface Sci. 357 (2011), 497–503.
-
(2011)
J. Colloid Interface Sci.
, vol.357
, pp. 497-503
-
-
Zhu, H.1
Dong, L.2
Chen, Y.3
-
26
-
-
84891930616
-
2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor
-
2 photocatalysts via the surface-phase junction strategy employing a titanate nanotube precursor. J. Catal. 310 (2014), 16–23.
-
(2014)
J. Catal.
, vol.310
, pp. 16-23
-
-
Liu, Y.1
Wang, Z.2
Wang, W.3
Huang, W.4
-
27
-
-
71749098978
-
2 (B) nanofibers with a shell of anatase nanocrystals
-
2 (B) nanofibers with a shell of anatase nanocrystals. J. Am. Chem. Soc. 131 (2009), 17885–17893.
-
(2009)
J. Am. Chem. Soc.
, vol.131
, pp. 17885-17893
-
-
Yang, D.1
Liu, H.2
Zheng, Z.3
Yuan, Y.4
Zhao, J.-C.5
Waclawik, E.R.6
Ke, X.7
Zhu, H.8
-
30
-
-
0032543263
-
3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons
-
3 solids during redox treatments. Correlation with the selective reduction of nitric oxide by hydrocarbons. Appl. Catal. B: Environ. 16 (1998), 359–374.
-
(1998)
Appl. Catal. B: Environ.
, vol.16
, pp. 359-374
-
-
Praliaud, S.1
Mikhailenko, Z.2
Chajar, M.3
-
31
-
-
0004140796
-
Adsorption of Cu(II) and Co(II) complexes on a silica gel surface chemically modified with 2-mercaptoimidazole
-
[31] Dias, N.L., Adsorption of Cu(II) and Co(II) complexes on a silica gel surface chemically modified with 2-mercaptoimidazole. Mikrochim. Acta 130 (1999), 233–240.
-
(1999)
Mikrochim. Acta
, vol.130
, pp. 233-240
-
-
Dias, N.L.1
-
39
-
-
84863442360
-
2 -Supported Cu catalysts used for CO oxidation
-
2 -Supported Cu catalysts used for CO oxidation. Langmuir 28 (2012), 9996–10006.
-
(2012)
Langmuir
, vol.28
, pp. 9996-10006
-
-
Chen, C.S.1
Chen, T.C.2
Chen, C.C.3
Lai, Y.T.4
You, J.H.5
Chou, T.M.6
Chen, C.H.7
Lee, J.-F.8
-
43
-
-
84919386700
-
2 /H-titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution
-
2 /H-titanate nanofiber composite photocatalysts for efficient photocatalytic hydrogen evolution. Appl. Surf. Sci. 315 (2014), 314–322.
-
(2014)
Appl. Surf. Sci.
, vol.315
, pp. 314-322
-
-
Liu, Y.1
Wang, Z.2
Wang, W.3
An, X.4
Mi, S.5
Tang, J.6
Huang, W.7
-
44
-
-
84860390003
-
2 Production from ethanol and glycerol aqueous solutions
-
2 Production from ethanol and glycerol aqueous solutions. ChemCatChem 3 (2011), 574–577.
-
(2011)
ChemCatChem
, vol.3
, pp. 574-577
-
-
Montini, T.1
Gombac, V.2
Sordelli, L.3
Delgado, J.J.4
Chen, X.5
Adami, G.6
Fornasiero, P.7
-
45
-
-
84886465564
-
2 nanocomposites
-
2 nanocomposites. RSC Adv. 3 (2013), 21776–21788.
-
(2013)
RSC Adv.
, vol.3
, pp. 21776-21788
-
-
Ampelli, C.1
Passalacqua, R.2
Genovese, C.3
Perathoner, S.4
Centi, G.5
Montini, T.6
Gombac, V.7
Delgado, J.J.8
Fornasiero, P.9
-
46
-
-
77949804569
-
2 production from ethanol and glycerol Solutions
-
2 production from ethanol and glycerol Solutions. J. Phys. Chem. A 114 (2010), 3916–3925.
-
(2010)
J. Phys. Chem. A
, vol.114
, pp. 3916-3925
-
-
Gombac, V.1
Sordelli, L.2
Montini, T.3
Delgado, J.J.4
Adamski, A.5
Adami, G.6
Cargnello, M.7
Bernal, S.8
Fornasiero, P.9
-
49
-
-
84943649878
-
2 nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper
-
2 nanocomposites: a mechanism based on the switching of photocatalytic reduction potential being controlled by the valence state of copper. Appl. Catal. B: Environ. 182 (2016), 414–423.
-
(2016)
Appl. Catal. B: Environ.
, vol.182
, pp. 414-423
-
-
Lei, M.1
Wang, N.2
Zhu, L.3
Zhou, Q.4
Nie, G.5
Tang, H.6
-
51
-
-
84897980333
-
2 -supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production
-
2 -supported copper nanoparticles prepared via ion exchange for photocatalytic hydrogen production. J. Mater. Chem. A 2 (2014), 6432–6438.
-
(2014)
J. Mater. Chem. A
, vol.2
, pp. 6432-6438
-
-
Tian, H.1
Zhang, X.L.2
Scott, J.3
Ng, C.4
Amal, R.5
|