-
1
-
-
0025198570
-
A comparison of the contribution of various gases to the greenhouse effect
-
[1] Rodhe, H., A comparison of the contribution of various gases to the greenhouse effect. Science, 248(4960), 1990, 1217.
-
(1990)
Science
, vol.248
, Issue.4960
, pp. 1217
-
-
Rodhe, H.1
-
2
-
-
0016218461
-
Acid rain: a serious regional environmental problem
-
[2] Likens, G.E., Bormann, F.H., Acid rain: a serious regional environmental problem. Science 184:4142 (1974), 1176–1179.
-
(1974)
Science
, vol.184
, Issue.4142
, pp. 1176-1179
-
-
Likens, G.E.1
Bormann, F.H.2
-
3
-
-
84890158951
-
Solar energy captured by a curved collector designed for architectural integration
-
[3] Rodríguez-Sánchez, D., Belmonte, J.F., Izquierdo-Barrientos, M.A., et al. Solar energy captured by a curved collector designed for architectural integration. Appl Energy 116 (2014), 66–75.
-
(2014)
Appl Energy
, vol.116
, pp. 66-75
-
-
Rodríguez-Sánchez, D.1
Belmonte, J.F.2
Izquierdo-Barrientos, M.A.3
-
4
-
-
84871381835
-
A review of solar collectors and thermal energy storage in solar thermal applications
-
[4] Tian, Y., Zhao, C.Y., A review of solar collectors and thermal energy storage in solar thermal applications. Appl Energy 104 (2013), 538–553.
-
(2013)
Appl Energy
, vol.104
, pp. 538-553
-
-
Tian, Y.1
Zhao, C.Y.2
-
5
-
-
84930939822
-
Experimental test of an innovative high concentration nanofluid solar collector
-
[5] Colangelo, G., Favale, E., Miglietta, P., et al. Experimental test of an innovative high concentration nanofluid solar collector. Appl Energy 154 (2015), 874–881.
-
(2015)
Appl Energy
, vol.154
, pp. 874-881
-
-
Colangelo, G.1
Favale, E.2
Miglietta, P.3
-
6
-
-
2342469952
-
Solar thermal collectors and applications
-
[6] Kalogirou, S.A., Solar thermal collectors and applications. Prog Energy Combust Sci 30:3 (2004), 231–295.
-
(2004)
Prog Energy Combust Sci
, vol.30
, Issue.3
, pp. 231-295
-
-
Kalogirou, S.A.1
-
7
-
-
84878517898
-
A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids
-
[7] Colangelo, G., Favale, E., De Risi, A., et al. A new solution for reduced sedimentation flat panel solar thermal collector using nanofluids. Appl Energy 111 (2013), 80–93.
-
(2013)
Appl Energy
, vol.111
, pp. 80-93
-
-
Colangelo, G.1
Favale, E.2
De Risi, A.3
-
8
-
-
80755176723
-
Low temperature desalination using solar collectors augmented by thermal energy storage
-
[8] Gude, V.G., Nirmalakhandan, N., Deng, S., et al. Low temperature desalination using solar collectors augmented by thermal energy storage. Appl Energy 91:1 (2012), 466–474.
-
(2012)
Appl Energy
, vol.91
, Issue.1
, pp. 466-474
-
-
Gude, V.G.1
Nirmalakhandan, N.2
Deng, S.3
-
9
-
-
0018286624
-
Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation
-
[9] Abdelrahman, M., Fumeaux, P., Suter, P., Study of solid-gas-suspensions used for direct absorption of concentrated solar radiation. Sol Energy 22:1 (1979), 45–48.
-
(1979)
Sol Energy
, vol.22
, Issue.1
, pp. 45-48
-
-
Abdelrahman, M.1
Fumeaux, P.2
Suter, P.3
-
10
-
-
79952592696
-
Nanofluid-based direct absorption solar collector
-
[10] Otanicar, T.P., Phelan, P.E., Prasher, R.S., et al. Nanofluid-based direct absorption solar collector. J Renew Sustain Energy, 2(3), 2010, 033102.
-
(2010)
J Renew Sustain Energy
, vol.2
, Issue.3
, pp. 033102
-
-
Otanicar, T.P.1
Phelan, P.E.2
Prasher, R.S.3
-
11
-
-
84879532752
-
Applicability of graphite nanofluids in direct solar energy absorption
-
[11] Ladjevardi, S.M., Asnaghi, A., Izadkhast, P.S., et al. Applicability of graphite nanofluids in direct solar energy absorption. Sol Energy 94 (2013), 327–334.
-
(2013)
Sol Energy
, vol.94
, pp. 327-334
-
-
Ladjevardi, S.M.1
Asnaghi, A.2
Izadkhast, P.S.3
-
12
-
-
84929612371
-
Progress of nanofluid application in solar collectors: a review
-
[12] Verma, S.K., TiwariA, K., Progress of nanofluid application in solar collectors: a review. Energy Convers Manage 100 (2015), 324–346.
-
(2015)
Energy Convers Manage
, vol.100
, pp. 324-346
-
-
Verma, S.K.1
TiwariA, K.2
-
13
-
-
84882435598
-
Energy, economic and environmental analysis of metal oxides nanofluidfor flat-plate solar collector
-
[13] Faizal, M., Saidur, R., Mekhilef, S., et al. Energy, economic and environmental analysis of metal oxides nanofluidfor flat-plate solar collector. Energy Convers Manage 76 (2013), 162–168.
-
(2013)
Energy Convers Manage
, vol.76
, pp. 162-168
-
-
Faizal, M.1
Saidur, R.2
Mekhilef, S.3
-
14
-
-
77955180865
-
Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector
-
[14] Tyagi, H., Phelan, P., Prasher, R., Predicted efficiency of a low-temperature nanofluid-based direct absorption solar collector. J Sol Energy Eng, 131(4), 2009, 041004.
-
(2009)
J Sol Energy Eng
, vol.131
, Issue.4
, pp. 041004
-
-
Tyagi, H.1
Phelan, P.2
Prasher, R.3
-
15
-
-
84878499268
-
3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications
-
3 nanoparticles suspended in a mixture of ethylene glycol and water for high temperature applications. Appl Energy 111 (2013), 40–45.
-
(2013)
Appl Energy
, vol.111
, pp. 40-45
-
-
Yiamsawas, T.1
Mahian, O.2
Dalkilic, A.S.3
-
16
-
-
18144386609
-
Thermal conductivity of nanoscale colloidal solutions (nanofluids)
-
[16] Prasher, R., Bhattacharya, P., Phelan, P.E., Thermal conductivity of nanoscale colloidal solutions (nanofluids). Phys Rev Lett, 94(2), 2005, 025901.
-
(2005)
Phys Rev Lett
, vol.94
, Issue.2
, pp. 025901
-
-
Prasher, R.1
Bhattacharya, P.2
Phelan, P.E.3
-
17
-
-
33645407639
-
Enhanced mass transport in nanofluids
-
[17] Krishnamurthy, S., Bhattacharya, P., Phelan, P.E., et al. Enhanced mass transport in nanofluids. Nano Lett 6:3 (2006), 419–423.
-
(2006)
Nano Lett
, vol.6
, Issue.3
, pp. 419-423
-
-
Krishnamurthy, S.1
Bhattacharya, P.2
Phelan, P.E.3
-
18
-
-
39449114611
-
Investigations of thermal conductivity and viscosity of nanofluids
-
[18] Murshed, S.M.S., Leong, K.C., Yang, C., Investigations of thermal conductivity and viscosity of nanofluids. Int J Therm Sci 47:5 (2008), 560–568.
-
(2008)
Int J Therm Sci
, vol.47
, Issue.5
, pp. 560-568
-
-
Murshed, S.M.S.1
Leong, K.C.2
Yang, C.3
-
19
-
-
84907522434
-
3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels
-
3-water nanofluid flow on heat transfer and flow characteristics of sinusoidal-corrugated channels. Energy Convers Manage 88 (2014), 96–105.
-
(2014)
Energy Convers Manage
, vol.88
, pp. 96-105
-
-
Morteza, K.A.1
-
20
-
-
84952683772
-
Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer
-
[20] Myers, P.D., Alam, T.E., Kamal, R., et al. Nitrate salts doped with CuO nanoparticles for thermal energy storage with improved heat transfer. Appl Energy 165 (2016), 225–233.
-
(2016)
Appl Energy
, vol.165
, pp. 225-233
-
-
Myers, P.D.1
Alam, T.E.2
Kamal, R.3
-
21
-
-
84971419911
-
The use of nanofluids for enhancing the thermal performance of stationary solar collectors: a review
-
[21] Muhammad, M.J., Muhammad, I.A., Sidik, N.A.C., et al. The use of nanofluids for enhancing the thermal performance of stationary solar collectors: a review. Renew Sustain Energy Rev 63 (2016), 226–236.
-
(2016)
Renew Sustain Energy Rev
, vol.63
, pp. 226-236
-
-
Muhammad, M.J.1
Muhammad, I.A.2
Sidik, N.A.C.3
-
22
-
-
84947460927
-
A review of studies on using nanofluids in flat-plate solar collectors
-
[22] Sarsam, W.S., Kazi, S.N., Badarudin, A., A review of studies on using nanofluids in flat-plate solar collectors. Sol Energy 122 (2015), 1245–1265.
-
(2015)
Sol Energy
, vol.122
, pp. 1245-1265
-
-
Sarsam, W.S.1
Kazi, S.N.2
Badarudin, A.3
-
23
-
-
84888618344
-
A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector
-
[23] Karami, M., Bahabadi, M.A.A., Delfani, S., et al. A new application of carbon nanotubes nanofluid as working fluid of low-temperature direct absorption solar collector. Sol Energy Mater Sol Cells 121 (2014), 114–118.
-
(2014)
Sol Energy Mater Sol Cells
, vol.121
, pp. 114-118
-
-
Karami, M.1
Bahabadi, M.A.A.2
Delfani, S.3
-
24
-
-
84864283515
-
Evaluation of the effect of nanofluid-based absorbers on direct solar collector
-
[24] Saidur, R., Meng, T.C., Said, Z., et al. Evaluation of the effect of nanofluid-based absorbers on direct solar collector. Int J Heat Mass Trans 55:21 (2012), 5899–5907.
-
(2012)
Int J Heat Mass Trans
, vol.55
, Issue.21
, pp. 5899-5907
-
-
Saidur, R.1
Meng, T.C.2
Said, Z.3
-
26
-
-
84877943079
-
Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems
-
[26] He, Q., Wang, S., Zeng, S., et al. Experimental investigation on photothermal properties of nanofluids for direct absorption solar thermal energy systems. Energy Convers Manage 73 (2013), 150–157.
-
(2013)
Energy Convers Manage
, vol.73
, pp. 150-157
-
-
He, Q.1
Wang, S.2
Zeng, S.3
-
27
-
-
84954421433
-
Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes
-
[27] Chen, M., He, Y., Zhu, J., et al. Enhancement of photo-thermal conversion using gold nanofluids with different particle sizes. Energy Convers Manage 112 (2016), 21–30.
-
(2016)
Energy Convers Manage
, vol.112
, pp. 21-30
-
-
Chen, M.1
He, Y.2
Zhu, J.3
-
28
-
-
84890959640
-
Photothermal conversion characteristics of gold nanoparticle dispersions
-
[28] Zhang, H., Chen, H.J., Du, X., et al. Photothermal conversion characteristics of gold nanoparticle dispersions. Sol Energy 100 (2014), 141–147.
-
(2014)
Sol Energy
, vol.100
, pp. 141-147
-
-
Zhang, H.1
Chen, H.J.2
Du, X.3
-
29
-
-
84899819382
-
Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system
-
[29] BandarraFilho, E.P., Mendoza, O.S.H., Beicker, C.L.L., et al. Experimental investigation of a silver nanoparticle-based direct absorption solar thermal system. Energy Convers Manage 84 (2014), 261–267.
-
(2014)
Energy Convers Manage
, vol.84
, pp. 261-267
-
-
BandarraFilho, E.P.1
Mendoza, O.S.H.2
Beicker, C.L.L.3
-
30
-
-
51849157131
-
Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine
-
[30] Jain, P.K., Huang, X., El-Sayed, I.H., et al. Noble metals on the nanoscale: optical and photothermal properties and some applications in imaging, sensing, biology, and medicine. Acc Chem Res 41:12 (2008), 1578–1586.
-
(2008)
Acc Chem Res
, vol.41
, Issue.12
, pp. 1578-1586
-
-
Jain, P.K.1
Huang, X.2
El-Sayed, I.H.3
-
31
-
-
79958831682
-
Controlling the synthesis and assembly of silver nanostructures for plasmonic applications
-
[31] Matthew, R., Cobley, C.M., Jie, Z., et al. Controlling the synthesis and assembly of silver nanostructures for plasmonic applications. Chem Rev 111:6 (2011), 3669–3712.
-
(2011)
Chem Rev
, vol.111
, Issue.6
, pp. 3669-3712
-
-
Matthew, R.1
Cobley, C.M.2
Jie, Z.3
-
32
-
-
84888160269
-
Synthesis and optical absorption of Ag/CdS core/shell plasmonic nanostructure
-
[32] Duan, H., Xuan, Y., Synthesis and optical absorption of Ag/CdS core/shell plasmonic nanostructure. Sol Energy Mater Sol Cells 121 (2014), 8–13.
-
(2014)
Sol Energy Mater Sol Cells
, vol.121
, pp. 8-13
-
-
Duan, H.1
Xuan, Y.2
-
33
-
-
85013880823
-
Radiative heat transfer
-
Academic Press
-
[33] Modest, M.F., Radiative heat transfer. 2013, Academic Press.
-
(2013)
-
-
Modest, M.F.1
-
34
-
-
0347006618
-
Thermal radiation in packed and fluidized beds
-
[34] Tien, C.L., Thermal radiation in packed and fluidized beds. J Heat Trans 110:4b (1988), 1230–1242.
-
(1988)
J Heat Trans
, vol.110
, Issue.4b
, pp. 1230-1242
-
-
Tien, C.L.1
-
35
-
-
33646735359
-
Thermal conductivity of nanoparticle suspensions
-
[35] Putnam, S.A., Cahill, D.G., Braun, P.V., et al. Thermal conductivity of nanoparticle suspensions. J Appl Phys, 99(8), 2006, 084308.
-
(2006)
J Appl Phys
, vol.99
, Issue.8
, pp. 084308
-
-
Putnam, S.A.1
Cahill, D.G.2
Braun, P.V.3
-
36
-
-
4444269179
-
Nanoscale energy transport and conversion
-
Oxford University Press
-
[36] Chen, G., Nanoscale energy transport and conversion. 2005, Oxford University Press.
-
(2005)
-
-
Chen, G.1
-
37
-
-
47349115762
-
Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity
-
[37] Ho, C.J., Chen, M.W., Li, Z.W., Numerical simulation of natural convection of nanofluid in a square enclosure: effects due to uncertainties of viscosity and thermal conductivity. Int J Heat Mass Trans 51:17 (2008), 4506–4516.
-
(2008)
Int J Heat Mass Trans
, vol.51
, Issue.17
, pp. 4506-4516
-
-
Ho, C.J.1
Chen, M.W.2
Li, Z.W.3
-
38
-
-
84924331552
-
An experimental investigation on sunlight absorption characteristics of silver nanofluids
-
[38] Chen, M., He, Y., Zhu, J., et al. An experimental investigation on sunlight absorption characteristics of silver nanofluids. Sol Energy 115 (2015), 85–94.
-
(2015)
Sol Energy
, vol.115
, pp. 85-94
-
-
Chen, M.1
He, Y.2
Zhu, J.3
-
39
-
-
84982102501
-
Handbook of optical constants of metals
-
World Scientific
-
[39] Sadao, A., Handbook of optical constants of metals. 2014, World Scientific.
-
(2014)
-
-
Sadao, A.1
-
40
-
-
0015604413
-
Optical constants of water in the 200-nm to 200-μm wavelength region
-
[40] Hale, G.M., Querry, M.R., Optical constants of water in the 200-nm to 200-μm wavelength region. Appl Opt 12:3 (1973), 555–563.
-
(1973)
Appl Opt
, vol.12
, Issue.3
, pp. 555-563
-
-
Hale, G.M.1
Querry, M.R.2
-
41
-
-
78649444697
-
Size control over spherical silver nanoparticles by ascorbic acid reduction
-
[41] Qin, Y., Ji, X., Jing, J., et al. Size control over spherical silver nanoparticles by ascorbic acid reduction. Colloids Surf, A 372:1 (2010), 172–176.
-
(2010)
Colloids Surf, A
, vol.372
, Issue.1
, pp. 172-176
-
-
Qin, Y.1
Ji, X.2
Jing, J.3
|