메뉴 건너뛰기




Volumn 53, Issue 8, 2016, Pages 964-977

A method for real-time trajectory monitoring to improve taxi service using GPS big data

Author keywords

Behavior analysis; GPS big data; Taxi service; Trajectory detection

Indexed keywords

COMMERCE; DATA HANDLING; ELECTRONIC EQUIPMENT; GLOBAL POSITIONING SYSTEM; INFORMATION ANALYSIS; MOTOR TRANSPORTATION; OSCILLATORS (ELECTRONIC); QUALITY CONTROL; TAXICABS; TRAJECTORIES;

EID: 84981744746     PISSN: 03787206     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.im.2016.04.004     Document Type: Article
Times cited : (65)

References (36)
  • 1
    • 84905002769 scopus 로고    scopus 로고
    • Building a network highway for big data: architecture and challenges
    • [1] Yi, X., Liu, F., Jin, H., Building a network highway for big data: architecture and challenges. IEEE Netw. 28:4 (2014), 5–13.
    • (2014) IEEE Netw. , vol.28 , Issue.4 , pp. 5-13
    • Yi, X.1    Liu, F.2    Jin, H.3
  • 3
    • 84996713799 scopus 로고    scopus 로고
    • Big data, big impact: New possibilities for international development, 2012.
    • [3] W.E. Forum, Big data, big impact: New possibilities for international development, http://www.weforum.org/docs/WEF_TC_MFS_BigData BigImpact_Briefing_2012. pdf, 2012.
    • Forum, W.E.1
  • 8
    • 78149286189 scopus 로고    scopus 로고
    • Uncovering cabdrivers behavior patterns from their digital traces
    • [8] Liu, L., Andris, C., Ratti, C., Uncovering cabdrivers behavior patterns from their digital traces. Comput. Environ. Urban Syst. 34:6 (2010), 541–548.
    • (2010) Comput. Environ. Urban Syst. , vol.34 , Issue.6 , pp. 541-548
    • Liu, L.1    Andris, C.2    Ratti, C.3
  • 9
    • 80052959472 scopus 로고    scopus 로고
    • Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models
    • [9] Wang, X., Ma, K.T., Ng, G.-W., Grimson, W.E.L., Trajectory analysis and semantic region modeling using nonparametric hierarchical Bayesian models. Int. J. Comput. Vision 95:3 (2011), 287–312.
    • (2011) Int. J. Comput. Vision , vol.95 , Issue.3 , pp. 287-312
    • Wang, X.1    Ma, K.T.2    Ng, G.-W.3    Grimson, W.E.L.4
  • 15
    • 0012905555 scopus 로고    scopus 로고
    • Finding intensional knowledge of distance-based outliers
    • [15] Knorr, E.M., Ng, R.T., Finding intensional knowledge of distance-based outliers. VLDB 99 (1999), 211–222.
    • (1999) VLDB , vol.99 , pp. 211-222
    • Knorr, E.M.1    Ng, R.T.2
  • 16
    • 0034133513 scopus 로고    scopus 로고
    • Distance-based outliers: algorithms and applications
    • [16] Knorr, E.M., Ng, R.T., Tucakov, V., Distance-based outliers: algorithms and applications. VLDB J. 8:3–4 (2000), 237–253.
    • (2000) VLDB J. , vol.8 , Issue.3-4 , pp. 237-253
    • Knorr, E.M.1    Ng, R.T.2    Tucakov, V.3
  • 17
    • 0039845384 scopus 로고    scopus 로고
    • Efficient algorithms for mining outliers from large data sets
    • [17] Ramaswamy, S., Rastogi, R., Shim, K., Efficient algorithms for mining outliers from large data sets. ACM SIGMOD Rec., 29, 2000.
    • (2000) ACM SIGMOD Rec. , vol.29
    • Ramaswamy, S.1    Rastogi, R.2    Shim, K.3
  • 21
    • 0038969998 scopus 로고    scopus 로고
    • Outlier detection for high dimensional data
    • [21] Aggarwal, C.C., Yu, P.S., Outlier detection for high dimensional data. ACM SIGMOD Rec., 30, 2001.
    • (2001) ACM SIGMOD Rec. , vol.30
    • Aggarwal, C.C.1    Yu, P.S.2
  • 23
    • 70449100637 scopus 로고    scopus 로고
    • Roam rule-and motif-based anomaly detection in massive moving object data sets., in: SDM, Vol. 7, SIAM, 2007, pp. 273–284.
    • [23] X. Li, J. Han, S. Kim, H. Gonzalez, Roam rule-and motif-based anomaly detection in massive moving object data sets., in: SDM, Vol. 7, SIAM, 2007, pp. 273–284.
    • Li, X.1    Han, J.2    Kim, S.3    Gonzalez, H.4
  • 24
    • 84898480411 scopus 로고    scopus 로고
    • Semi-supervised learning for anomalous trajectory detection
    • [24] Sillito, R.R., Fisher, R.B., Semi-supervised learning for anomalous trajectory detection. BMVC, 2008, 1–10.
    • (2008) BMVC , pp. 1-10
    • Sillito, R.R.1    Fisher, R.B.2
  • 25
    • 84879095417 scopus 로고    scopus 로고
    • From taxi GPS traces to social and community dynamics: a survey
    • [25] Castro, P.S., Zhang, D., Chen, C., Li, S., Pan, G., From taxi GPS traces to social and community dynamics: a survey. ACM Comput. Surv. (CSUR), 46(2), 2013, 17.
    • (2013) ACM Comput. Surv. (CSUR) , vol.46 , Issue.2 , pp. 17
    • Castro, P.S.1    Zhang, D.2    Chen, C.3    Li, S.4    Pan, G.5
  • 26
    • 84996860829 scopus 로고    scopus 로고
    • Wikipedia, Openstreetmap, (accessed 01.02.15).
    • [26] Wikipedia, Openstreetmap, http://en.wikipedia.org/wiki/OpenStreetMap (accessed 01.02.15).
  • 27
    • 54849431370 scopus 로고    scopus 로고
    • Openstreetmap user-generated street maps
    • [27] Haklay, M., Weber, P., Openstreetmap user-generated street maps. IEEE Pervasive Comput. 7:4 (2008), 12–18.
    • (2008) IEEE Pervasive Comput. , vol.7 , Issue.4 , pp. 12-18
    • Haklay, M.1    Weber, P.2
  • 30
    • 0032108018 scopus 로고    scopus 로고
    • Finding the k shortest paths
    • [30] Eppstein, D., Finding the k shortest paths. SIAM J. Comput. 28:2 (1998), 652–673.
    • (1998) SIAM J. Comput. , vol.28 , Issue.2 , pp. 652-673
    • Eppstein, D.1
  • 31
    • 0000663732 scopus 로고
    • Finding the k shortest loopless paths in a network
    • [31] Yen, J.Y., Finding the k shortest loopless paths in a network. Manag. Sci. 17:11 (1971), 712–716.
    • (1971) Manag. Sci. , vol.17 , Issue.11 , pp. 712-716
    • Yen, J.Y.1
  • 32
    • 84996712226 scopus 로고    scopus 로고
    • CRAW-DAD data set epfl/mobility (v. 2009-02-24), Downloaded from (February, 2009).
    • [32] M. Piorkowski, N. Sarafijanovic-Djukic, M. Grossglauser, CRAW-DAD data set epfl/mobility (v. 2009-02-24), Downloaded from http://crawdad.org/epfl/mobility/ (February, 2009).
    • Piorkowski, M.1    Sarafijanovic-Djukic, N.2    Grossglauser, M.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.