메뉴 건너뛰기




Volumn 108, Issue , 2016, Pages 144-154

Learning word dependencies in text by means of a deep recurrent belief network

Author keywords

Deep belief networks; Gaussian networks; Markov Chain Monte Carlo; Time delays; Variable order

Indexed keywords

CHAINS; GAUSSIAN DISTRIBUTION; MARKOV PROCESSES; MONTE CARLO METHODS; TIME DELAY;

EID: 84981722706     PISSN: 09507051     EISSN: None     Source Type: Journal    
DOI: 10.1016/j.knosys.2016.07.019     Document Type: Article
Times cited : (99)

References (40)
  • 2
    • 34249761849 scopus 로고
    • Learning bayesian networks: the combination of knowledge and statistical data
    • [2] Heckerman, D., Geiger, D., Chickering, D.M., Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20:3 (1995), 197–243.
    • (1995) Mach. Learn. , vol.20 , Issue.3 , pp. 197-243
    • Heckerman, D.1    Geiger, D.2    Chickering, D.M.3
  • 3
    • 58249092623 scopus 로고    scopus 로고
    • State estimation for jumping recurrent neural networks with discrete and distributed delays
    • [3] Wang, Z., Liu, Y., Liu, X., State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Networks 22:1 (2009), 41–48.
    • (2009) Neural Networks , vol.22 , Issue.1 , pp. 41-48
    • Wang, Z.1    Liu, Y.2    Liu, X.3
  • 4
    • 84919336343 scopus 로고    scopus 로고
    • Extreme learning machines
    • [4] Cambria, E., Huang, G.-B., et al. Extreme learning machines. IEEE Intell. Syst. 28:6 (2013), 30–59.
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.6 , pp. 30-59
    • Cambria, E.1    Huang, G.-B.2
  • 12
    • 84910651844 scopus 로고    scopus 로고
    • Deep learning in neural networks: An overview
    • 0
    • [12] Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 61:0 (2015), 85–117.
    • (2015) Neural Networks , vol.61 , pp. 85-117
    • Schmidhuber, J.1
  • 14
    • 84864026688 scopus 로고    scopus 로고
    • Modeling human motion using binary latent variables
    • B. Schölkopf J. Platt T. Hoffman MIT Press Cambridge, MA
    • [14] Taylor, G.W., Hinton, G.E., Roweis, S.T., Modeling human motion using binary latent variables. Schölkopf, B., Platt, J., Hoffman, T., (eds.) Advances in Neural Information Processing Systems 19, 2007, MIT Press, Cambridge, MA, 1345–1352.
    • (2007) Advances in Neural Information Processing Systems 19 , pp. 1345-1352
    • Taylor, G.W.1    Hinton, G.E.2    Roweis, S.T.3
  • 15
    • 33746600649 scopus 로고    scopus 로고
    • Reducing the dimensionality of data with neural networks
    • [15] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507, 10.1126/science.1127647.
    • (2006) Science , vol.313 , Issue.5786 , pp. 504-507
    • Hinton, G.E.1    Salakhutdinov, R.R.2
  • 16
    • 0013344078 scopus 로고    scopus 로고
    • Training products of experts by minimizing contrastive divergence
    • [16] Hinton, G.E., Training products of experts by minimizing contrastive divergence. Neural Comput. 14:8 (2002), 1771–1800.
    • (2002) Neural Comput. , vol.14 , Issue.8 , pp. 1771-1800
    • Hinton, G.E.1
  • 21
    • 80053443013 scopus 로고    scopus 로고
    • Domain adaptation for large-scale sentiment classification: a deep learning approach
    • [21] Glorot, X., Bordes, A., Bengio, Y., Domain adaptation for large-scale sentiment classification: a deep learning approach. ICML, vol. 27, 2011, 97–110.
    • (2011) ICML , vol.27 , pp. 97-110
    • Glorot, X.1    Bordes, A.2    Bengio, Y.3
  • 22
    • 79957804437 scopus 로고    scopus 로고
    • Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space
    • D. Liu H. Zhang M. Polycarpou C. Alippi H. He Springer-Verlag Berlin
    • [22] Cambria, E., Mazzocco, T., Hussain, A., Eckl, C., Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space. Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H., (eds.) Advances in Neural Networks Lecture Notes in Computer Science, vol. 6677, 2011, Springer-Verlag, Berlin, 601–610.
    • (2011) Advances in Neural Networks, Lecture Notes in Computer Science , vol.6677 , pp. 601-610
    • Cambria, E.1    Mazzocco, T.2    Hussain, A.3    Eckl, C.4
  • 24
    • 2942525652 scopus 로고    scopus 로고
    • Modelling credit default swap spreads by means of normal mixtures and copulas
    • [24] Bee, M., Modelling credit default swap spreads by means of normal mixtures and copulas. Appl. Math. Finance 11:2 (2004), 125–146.
    • (2004) Appl. Math. Finance , vol.11 , Issue.2 , pp. 125-146
    • Bee, M.1
  • 25
    • 84981733900 scopus 로고    scopus 로고
    • Wikipedia, Stanford classifier, 20 newsgroup dataset @ONLINE, 2012. URL
    • [25] Wikipedia, Stanford classifier, 20 newsgroup dataset @ONLINE, 2012. URL http://nlp.stanford.edu/wiki/Software/Classifier.
  • 26
    • 84963783209 scopus 로고    scopus 로고
    • Affective computing and sentiment analysis
    • [26] Cambria, E., Affective computing and sentiment analysis. IEEE Intell. Syst. 31:2 (2016), 102–107.
    • (2016) IEEE Intell. Syst. , vol.31 , Issue.2 , pp. 102-107
    • Cambria, E.1
  • 27
    • 84924596504 scopus 로고    scopus 로고
    • EmoSenticSpace: a novel framework for affective common-sense reasoning
    • [27] Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B., EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowledge Based Syst. 69 (2014), 108–123.
    • (2014) Knowledge Based Syst. , vol.69 , pp. 108-123
    • Poria, S.1    Gelbukh, A.2    Cambria, E.3    Hussain, A.4    Huang, G.-B.5
  • 29
    • 84884180388 scopus 로고    scopus 로고
    • Statistical approaches to concept-level sentiment analysis
    • [29] Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C., Statistical approaches to concept-level sentiment analysis. IEEE Intell. Syst. 28:3 (2013), 6–9.
    • (2013) IEEE Intell. Syst. , vol.28 , Issue.3 , pp. 6-9
    • Cambria, E.1    Schuller, B.2    Liu, B.3    Wang, H.4    Havasi, C.5
  • 30
    • 67650495465 scopus 로고    scopus 로고
    • Dynamic Bayesian Networks for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application New Frontiers in Applied Data Mining
    • Springer Berlin / Heidelberg
    • [30] Prinzie, A., Van den Poel, D., Dynamic Bayesian Networks for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application New Frontiers in Applied Data Mining. Lecture Notes in Computer Science, vol. 5433, 2009, Springer Berlin / Heidelberg, 123–133.
    • (2009) Lecture Notes in Computer Science , vol.5433 , pp. 123-133
    • Prinzie, A.1    Van den Poel, D.2
  • 31
    • 84965028982 scopus 로고    scopus 로고
    • Methods of Multivariate Analysis
    • 2nd Wiley
    • [31] Rencher, A.C., Methods of Multivariate Analysis. 2nd, 2002, Wiley.
    • (2002)
    • Rencher, A.C.1
  • 32
    • 0003462302 scopus 로고    scopus 로고
    • Expert Systems and Probabilistic Network Models
    • Springer-Verlag New York, Inc.
    • [32] Castillo, E., Gutierrez, J.M., Hadi, A.S., Expert Systems and Probabilistic Network Models. 1996, Springer-Verlag New York, Inc.
    • (1996)
    • Castillo, E.1    Gutierrez, J.M.2    Hadi, A.S.3
  • 33
    • 47949113974 scopus 로고    scopus 로고
    • Stability and time-delay modeling of negative feedback loops
    • [33] Wagner, J., Stolovitzky, G., Stability and time-delay modeling of negative feedback loops. Proc. IEEE 96:8 (2008), 1398–1410.
    • (2008) Proc. IEEE , vol.96 , Issue.8 , pp. 1398-1410
    • Wagner, J.1    Stolovitzky, G.2
  • 36
    • 33646241633 scopus 로고    scopus 로고
    • Learning long-term dependencies in narx recurrent neural networks
    • [36] Tsungnan, L., Horne, B.G., Tino, P., Giles, C.L., Learning long-term dependencies in narx recurrent neural networks. Neural Networks IEEE Trans. 7:6 (1996), 1329–1338.
    • (1996) Neural Networks IEEE Trans. , vol.7 , Issue.6 , pp. 1329-1338
    • Tsungnan, L.1    Horne, B.G.2    Tino, P.3    Giles, C.L.4
  • 37
    • 0035505385 scopus 로고    scopus 로고
    • Lstm recurrent networks learn simple context-free and context-sensitive languages
    • [37] Gers, F., Schmidhuber, J., Lstm recurrent networks learn simple context-free and context-sensitive languages. Neural Networks IEEE Trans. 12:6 (2001), 1333–1340.
    • (2001) Neural Networks IEEE Trans. , vol.12 , Issue.6 , pp. 1333-1340
    • Gers, F.1    Schmidhuber, J.2
  • 38
    • 84981726914 scopus 로고    scopus 로고
    • An analysis of herding behaviours in basketball as a function of skill level.
    • [38] Chow Jia Yi, K.Y.H., Chaturvedi, I., An analysis of herding behaviours in basketball as a function of skill level. ECSS, 2013.
    • (2013) ECSS
    • Chow Jia Yi, K.Y.H.1    Chaturvedi, I.2
  • 39
    • 84863226246 scopus 로고    scopus 로고
    • Recognizing tactic patterns in broadcast basketball video using player trajectory
    • [39] Chen, H.-T., Chou, C.-L., Fu, T.-S., Lee, S.-Y., Lin, B.-S. P., Recognizing tactic patterns in broadcast basketball video using player trajectory. J. Visual Commun. Image Represent. 23:6 (2012), 932–947.
    • (2012) J. Visual Commun. Image Represent. , vol.23 , Issue.6 , pp. 932-947
    • Chen, H.-T.1    Chou, C.-L.2    Fu, T.-S.3    Lee, S.-Y.4    Lin, B.-S.P.5
  • 40
    • 84923095154 scopus 로고    scopus 로고
    • Deep transfer learning for classification of time-delayed gaussian networks
    • 0
    • [40] Chaturvedi, I., Ong, Y.-S., Arumugam, R.V., Deep transfer learning for classification of time-delayed gaussian networks. Signal Process. 110:0 (2015), 250–262.
    • (2015) Signal Process. , vol.110 , pp. 250-262
    • Chaturvedi, I.1    Ong, Y.-S.2    Arumugam, R.V.3


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.