-
2
-
-
34249761849
-
Learning bayesian networks: the combination of knowledge and statistical data
-
[2] Heckerman, D., Geiger, D., Chickering, D.M., Learning bayesian networks: the combination of knowledge and statistical data. Mach. Learn. 20:3 (1995), 197–243.
-
(1995)
Mach. Learn.
, vol.20
, Issue.3
, pp. 197-243
-
-
Heckerman, D.1
Geiger, D.2
Chickering, D.M.3
-
3
-
-
58249092623
-
State estimation for jumping recurrent neural networks with discrete and distributed delays
-
[3] Wang, Z., Liu, Y., Liu, X., State estimation for jumping recurrent neural networks with discrete and distributed delays. Neural Networks 22:1 (2009), 41–48.
-
(2009)
Neural Networks
, vol.22
, Issue.1
, pp. 41-48
-
-
Wang, Z.1
Liu, Y.2
Liu, X.3
-
4
-
-
84919336343
-
Extreme learning machines
-
[4] Cambria, E., Huang, G.-B., et al. Extreme learning machines. IEEE Intell. Syst. 28:6 (2013), 30–59.
-
(2013)
IEEE Intell. Syst.
, vol.28
, Issue.6
, pp. 30-59
-
-
Cambria, E.1
Huang, G.-B.2
-
5
-
-
84928102005
-
New trends of learning in computational intelligence
-
[5] Huang, G.-B., Cambria, E., Toh, K.-A., Widrow, B., Xu, Z., New trends of learning in computational intelligence. IEEE Comput. Intell. Mag. 10:2 (2015), 16–17.
-
(2015)
IEEE Comput. Intell. Mag.
, vol.10
, Issue.2
, pp. 16-17
-
-
Huang, G.-B.1
Cambria, E.2
Toh, K.-A.3
Widrow, B.4
Xu, Z.5
-
7
-
-
84867593805
-
Polyphonic piano note transcription with recurrent neural networks
-
[7] Bock, S., Schedl, M., Polyphonic piano note transcription with recurrent neural networks. Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on, 2012, 121–124.
-
(2012)
Acoustics, Speech and Signal Processing (ICASSP), 2012 IEEE International Conference on
, pp. 121-124
-
-
Bock, S.1
Schedl, M.2
-
8
-
-
84905247594
-
Social signal classification using deep blstm recurrent neural networks
-
[8] Brueckner, R., Schulter, B., Social signal classification using deep blstm recurrent neural networks. Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, 2014, 4823–4827.
-
(2014)
Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on
, pp. 4823-4827
-
-
Brueckner, R.1
Schulter, B.2
-
9
-
-
80053459857
-
Generating text with recurrent neural networks
-
[9] Sutskever, I., Martens, J., Hinton, G., Generating text with recurrent neural networks. Proceedings of the 28th International Conference on Machine Learning (ICML-11) ICML ’11, 2011, 1017–1024.
-
(2011)
Proceedings of the 28th International Conference on Machine Learning (ICML-11), ICML ’11
, pp. 1017-1024
-
-
Sutskever, I.1
Martens, J.2
Hinton, G.3
-
10
-
-
84867129067
-
Marginalized denoising autoencoders for domain adaptation
-
[10] Chen, M., Xu, Z., Weinberger, K., Sha, F., Marginalized denoising autoencoders for domain adaptation. Proceedings of the 29th International Conference on Machine Learning (ICML-12) ICML ’12, 2012, 767–774.
-
(2012)
Proceedings of the 29th International Conference on Machine Learning (ICML-12), ICML ’12
, pp. 767-774
-
-
Chen, M.1
Xu, Z.2
Weinberger, K.3
Sha, F.4
-
11
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: a deep learning approach
-
[11] Glorot, X., Bordes, A., Bengio, Y., Domain adaptation for large-scale sentiment classification: a deep learning approach. In Proceedings of the Twenty-eight International Conference on Machine Learning, ICML, 2011.
-
(2011)
In Proceedings of the Twenty-eight International Conference on Machine Learning, ICML
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
12
-
-
84910651844
-
Deep learning in neural networks: An overview
-
0
-
[12] Schmidhuber, J., Deep learning in neural networks: An overview. Neural Networks 61:0 (2015), 85–117.
-
(2015)
Neural Networks
, vol.61
, pp. 85-117
-
-
Schmidhuber, J.1
-
13
-
-
78049408551
-
Evaluation of pooling operations in convolutional architectures for object recognition
-
[13] Scherer, D., Müller, A., Behnke, S., Evaluation of pooling operations in convolutional architectures for object recognition. Proceedings of the 20th International Conference on Artificial Neural Networks: Part III ICANN’10, 2010, 92–101.
-
(2010)
Proceedings of the 20th International Conference on Artificial Neural Networks: Part III, ICANN’10
, pp. 92-101
-
-
Scherer, D.1
Müller, A.2
Behnke, S.3
-
14
-
-
84864026688
-
Modeling human motion using binary latent variables
-
B. Schölkopf J. Platt T. Hoffman MIT Press Cambridge, MA
-
[14] Taylor, G.W., Hinton, G.E., Roweis, S.T., Modeling human motion using binary latent variables. Schölkopf, B., Platt, J., Hoffman, T., (eds.) Advances in Neural Information Processing Systems 19, 2007, MIT Press, Cambridge, MA, 1345–1352.
-
(2007)
Advances in Neural Information Processing Systems 19
, pp. 1345-1352
-
-
Taylor, G.W.1
Hinton, G.E.2
Roweis, S.T.3
-
15
-
-
33746600649
-
Reducing the dimensionality of data with neural networks
-
[15] Hinton, G.E., Salakhutdinov, R.R., Reducing the dimensionality of data with neural networks. Science 313:5786 (2006), 504–507, 10.1126/science.1127647.
-
(2006)
Science
, vol.313
, Issue.5786
, pp. 504-507
-
-
Hinton, G.E.1
Salakhutdinov, R.R.2
-
16
-
-
0013344078
-
Training products of experts by minimizing contrastive divergence
-
[16] Hinton, G.E., Training products of experts by minimizing contrastive divergence. Neural Comput. 14:8 (2002), 1771–1800.
-
(2002)
Neural Comput.
, vol.14
, Issue.8
, pp. 1771-1800
-
-
Hinton, G.E.1
-
17
-
-
85032751458
-
Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups
-
[17] Hinton, G., Deng, L., Yu, D., Dahl, G., Mohamed, A., Jaitly, N., Senior, A., Vanhoucke, V., Nguyen, P., Sainath, T., Kingsbury, B., Deep neural networks for acoustic modeling in speech recognition: the shared views of four research groups. Signal Processing Mag. IEEE 29:6 (2012), 82–97.
-
(2012)
Signal Processing Mag. IEEE
, vol.29
, Issue.6
, pp. 82-97
-
-
Hinton, G.1
Deng, L.2
Yu, D.3
Dahl, G.4
Mohamed, A.5
Jaitly, N.6
Senior, A.7
Vanhoucke, V.8
Nguyen, P.9
Sainath, T.10
Kingsbury, B.11
-
18
-
-
84055211743
-
Acoustic modeling using deep belief networks
-
[18] Mohamed, A., Dahl, G., Hinton, G., Acoustic modeling using deep belief networks. Audio Speech Lang. Process. IEEE Trans. 20:1 (2012), 14–22.
-
(2012)
Audio Speech Lang. Process. IEEE Trans.
, vol.20
, Issue.1
, pp. 14-22
-
-
Mohamed, A.1
Dahl, G.2
Hinton, G.3
-
19
-
-
71149119164
-
Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations
-
[19] Lee, H., Grosse, R., Ranganath, R., Ng, A.Y., Convolutional deep belief networks for scalable unsupervised learning of hierarchical representations. Proceedings of the 26th Annual International Conference on Machine Learning ICML ’09, 2009, 609–616.
-
(2009)
Proceedings of the 26th Annual International Conference on Machine Learning, ICML ’09
, pp. 609-616
-
-
Lee, H.1
Grosse, R.2
Ranganath, R.3
Ng, A.Y.4
-
20
-
-
77952031812
-
Sentic computing: exploitation of common sense for the development of emotion-sensitive systems
-
A. Esposito N. Campbell C. Vogel A. Hussain A. Nijholt Springer Berlin
-
[20] Cambria, E., Hussain, A., Havasi, C., Eckl, C., Sentic computing: exploitation of common sense for the development of emotion-sensitive systems. Esposito, A., Campbell, N., Vogel, C., Hussain, A., Nijholt, A., (eds.) Development of Multimodal Interfaces: Active Listening and Synchrony Lecture Notes in Computer Science, 2010, Springer, Berlin, 148–156.
-
(2010)
Development of Multimodal Interfaces: Active Listening and Synchrony, Lecture Notes in Computer Science
, pp. 148-156
-
-
Cambria, E.1
Hussain, A.2
Havasi, C.3
Eckl, C.4
-
21
-
-
80053443013
-
Domain adaptation for large-scale sentiment classification: a deep learning approach
-
[21] Glorot, X., Bordes, A., Bengio, Y., Domain adaptation for large-scale sentiment classification: a deep learning approach. ICML, vol. 27, 2011, 97–110.
-
(2011)
ICML
, vol.27
, pp. 97-110
-
-
Glorot, X.1
Bordes, A.2
Bengio, Y.3
-
22
-
-
79957804437
-
Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space
-
D. Liu H. Zhang M. Polycarpou C. Alippi H. He Springer-Verlag Berlin
-
[22] Cambria, E., Mazzocco, T., Hussain, A., Eckl, C., Sentic medoids: organizing affective common sense knowledge in a multi-dimensional vector space. Liu, D., Zhang, H., Polycarpou, M., Alippi, C., He, H., (eds.) Advances in Neural Networks Lecture Notes in Computer Science, vol. 6677, 2011, Springer-Verlag, Berlin, 601–610.
-
(2011)
Advances in Neural Networks, Lecture Notes in Computer Science
, vol.6677
, pp. 601-610
-
-
Cambria, E.1
Mazzocco, T.2
Hussain, A.3
Eckl, C.4
-
23
-
-
79959435843
-
Gene regulatory networks with variable-order dynamic bayesian networks
-
[23] Rajapakse, J., Chaturvedi, I., Gene regulatory networks with variable-order dynamic bayesian networks. Neural Networks (IJCNN), The 2010 International Joint Conference on, 2010, 1–5.
-
(2010)
Neural Networks (IJCNN), The 2010 International Joint Conference on
, pp. 1-5
-
-
Rajapakse, J.1
Chaturvedi, I.2
-
24
-
-
2942525652
-
Modelling credit default swap spreads by means of normal mixtures and copulas
-
[24] Bee, M., Modelling credit default swap spreads by means of normal mixtures and copulas. Appl. Math. Finance 11:2 (2004), 125–146.
-
(2004)
Appl. Math. Finance
, vol.11
, Issue.2
, pp. 125-146
-
-
Bee, M.1
-
25
-
-
84981733900
-
-
Wikipedia, Stanford classifier, 20 newsgroup dataset @ONLINE, 2012. URL
-
[25] Wikipedia, Stanford classifier, 20 newsgroup dataset @ONLINE, 2012. URL http://nlp.stanford.edu/wiki/Software/Classifier.
-
-
-
-
26
-
-
84963783209
-
Affective computing and sentiment analysis
-
[26] Cambria, E., Affective computing and sentiment analysis. IEEE Intell. Syst. 31:2 (2016), 102–107.
-
(2016)
IEEE Intell. Syst.
, vol.31
, Issue.2
, pp. 102-107
-
-
Cambria, E.1
-
27
-
-
84924596504
-
EmoSenticSpace: a novel framework for affective common-sense reasoning
-
[27] Poria, S., Gelbukh, A., Cambria, E., Hussain, A., Huang, G.-B., EmoSenticSpace: a novel framework for affective common-sense reasoning. Knowledge Based Syst. 69 (2014), 108–123.
-
(2014)
Knowledge Based Syst.
, vol.69
, pp. 108-123
-
-
Poria, S.1
Gelbukh, A.2
Cambria, E.3
Hussain, A.4
Huang, G.-B.5
-
28
-
-
78651089151
-
Sentic computing for patient centered application
-
[28] Cambria, E., Hussain, A., Durrani, T., Havasi, C., Eckl, C., Munro, J., Sentic computing for patient centered application. IEEE ICSP, Beijing, 2010, 1279–1282.
-
(2010)
IEEE ICSP, Beijing
, pp. 1279-1282
-
-
Cambria, E.1
Hussain, A.2
Durrani, T.3
Havasi, C.4
Eckl, C.5
Munro, J.6
-
29
-
-
84884180388
-
Statistical approaches to concept-level sentiment analysis
-
[29] Cambria, E., Schuller, B., Liu, B., Wang, H., Havasi, C., Statistical approaches to concept-level sentiment analysis. IEEE Intell. Syst. 28:3 (2013), 6–9.
-
(2013)
IEEE Intell. Syst.
, vol.28
, Issue.3
, pp. 6-9
-
-
Cambria, E.1
Schuller, B.2
Liu, B.3
Wang, H.4
Havasi, C.5
-
30
-
-
67650495465
-
Dynamic Bayesian Networks for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application New Frontiers in Applied Data Mining
-
Springer Berlin / Heidelberg
-
[30] Prinzie, A., Van den Poel, D., Dynamic Bayesian Networks for Acquisition Pattern Analysis: A Financial-Services Cross-Sell Application New Frontiers in Applied Data Mining. Lecture Notes in Computer Science, vol. 5433, 2009, Springer Berlin / Heidelberg, 123–133.
-
(2009)
Lecture Notes in Computer Science
, vol.5433
, pp. 123-133
-
-
Prinzie, A.1
Van den Poel, D.2
-
31
-
-
84965028982
-
Methods of Multivariate Analysis
-
2nd Wiley
-
[31] Rencher, A.C., Methods of Multivariate Analysis. 2nd, 2002, Wiley.
-
(2002)
-
-
Rencher, A.C.1
-
32
-
-
0003462302
-
Expert Systems and Probabilistic Network Models
-
Springer-Verlag New York, Inc.
-
[32] Castillo, E., Gutierrez, J.M., Hadi, A.S., Expert Systems and Probabilistic Network Models. 1996, Springer-Verlag New York, Inc.
-
(1996)
-
-
Castillo, E.1
Gutierrez, J.M.2
Hadi, A.S.3
-
33
-
-
47949113974
-
Stability and time-delay modeling of negative feedback loops
-
[33] Wagner, J., Stolovitzky, G., Stability and time-delay modeling of negative feedback loops. Proc. IEEE 96:8 (2008), 1398–1410.
-
(2008)
Proc. IEEE
, vol.96
, Issue.8
, pp. 1398-1410
-
-
Wagner, J.1
Stolovitzky, G.2
-
34
-
-
0000854197
-
Learning the structure of dynamic probabilistic networks
-
139–14
-
[34] Friedman, N., Murphy, K., Russell, S., Learning the structure of dynamic probabilistic networks. Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98), 1998 139–14.
-
(1998)
Proceedings of the 14th Annual Conference on Uncertainty in Artificial Intelligence (UAI-98)
-
-
Friedman, N.1
Murphy, K.2
Russell, S.3
-
35
-
-
85162069624
-
Phone recognition with the mean-covariance restricted boltzmann machine
-
[35] Dahl, G., Ranzato, M.A, Mohamed, A.R, Hinton, G.E., Phone recognition with the mean-covariance restricted boltzmann machine. Advances in Neural Information Processing Systems 23, 2010, 469–477.
-
(2010)
Advances in Neural Information Processing Systems 23
, pp. 469-477
-
-
Dahl, G.1
Ranzato, M.A.2
Mohamed, A.R.3
Hinton, G.E.4
-
36
-
-
33646241633
-
Learning long-term dependencies in narx recurrent neural networks
-
[36] Tsungnan, L., Horne, B.G., Tino, P., Giles, C.L., Learning long-term dependencies in narx recurrent neural networks. Neural Networks IEEE Trans. 7:6 (1996), 1329–1338.
-
(1996)
Neural Networks IEEE Trans.
, vol.7
, Issue.6
, pp. 1329-1338
-
-
Tsungnan, L.1
Horne, B.G.2
Tino, P.3
Giles, C.L.4
-
37
-
-
0035505385
-
Lstm recurrent networks learn simple context-free and context-sensitive languages
-
[37] Gers, F., Schmidhuber, J., Lstm recurrent networks learn simple context-free and context-sensitive languages. Neural Networks IEEE Trans. 12:6 (2001), 1333–1340.
-
(2001)
Neural Networks IEEE Trans.
, vol.12
, Issue.6
, pp. 1333-1340
-
-
Gers, F.1
Schmidhuber, J.2
-
38
-
-
84981726914
-
An analysis of herding behaviours in basketball as a function of skill level.
-
[38] Chow Jia Yi, K.Y.H., Chaturvedi, I., An analysis of herding behaviours in basketball as a function of skill level. ECSS, 2013.
-
(2013)
ECSS
-
-
Chow Jia Yi, K.Y.H.1
Chaturvedi, I.2
-
39
-
-
84863226246
-
Recognizing tactic patterns in broadcast basketball video using player trajectory
-
[39] Chen, H.-T., Chou, C.-L., Fu, T.-S., Lee, S.-Y., Lin, B.-S. P., Recognizing tactic patterns in broadcast basketball video using player trajectory. J. Visual Commun. Image Represent. 23:6 (2012), 932–947.
-
(2012)
J. Visual Commun. Image Represent.
, vol.23
, Issue.6
, pp. 932-947
-
-
Chen, H.-T.1
Chou, C.-L.2
Fu, T.-S.3
Lee, S.-Y.4
Lin, B.-S.P.5
-
40
-
-
84923095154
-
Deep transfer learning for classification of time-delayed gaussian networks
-
0
-
[40] Chaturvedi, I., Ong, Y.-S., Arumugam, R.V., Deep transfer learning for classification of time-delayed gaussian networks. Signal Process. 110:0 (2015), 250–262.
-
(2015)
Signal Process.
, vol.110
, pp. 250-262
-
-
Chaturvedi, I.1
Ong, Y.-S.2
Arumugam, R.V.3
|