-
2
-
-
65249163404
-
Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
-
Wassermann, A.M.; Geppert, H.; Bajorath, J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Mod. 2009, 49, 582-592.
-
(2009)
J. Chem. Inf. Mod.
, vol.49
, pp. 582-592
-
-
Wassermann, A.M.1
Geppert, H.2
Bajorath, J.3
-
3
-
-
20744453541
-
Biological applications of support vector machines
-
Yang, Z.R. Biological applications of support vector machines. Brief. Bioinform. 2004, 5, 328-338.
-
(2004)
Brief. Bioinform.
, vol.5
, pp. 328-338
-
-
Yang, Z.R.1
-
4
-
-
33745373904
-
Classification tree models for the prediction of blood-brain barrier passage of drugs
-
Deconinck, E.; Zhang, M.H.; Coomans, D.; Vander Heyden, Y. Classification tree models for the prediction of blood-brain barrier passage of drugs. J. Chem. Inf. Mod. 2006, 46, 1410-1419.
-
(2006)
J. Chem. Inf. Mod.
, vol.46
, pp. 1410-1419
-
-
Deconinck, E.1
Zhang, M.H.2
Coomans, D.3
Vander Heyden, Y.4
-
5
-
-
0345548657
-
Random forest: A classification and regression tool for compound classification and QSAR modeling
-
Svetnik, V.; Liaw, A.; Tong, C.; Culberson, J.C.; Sheridan, R.P.; Feuston, B.P. Random Forest: A Classification and Regression Tool for Compound Classification and QSAR Modeling. J. Chem. Inf. Comput. Sci. 2003, 43, 1947-1958.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1947-1958
-
-
Svetnik, V.1
Liaw, A.2
Tong, C.3
Culberson, J.C.4
Sheridan, R.P.5
Feuston, B.P.6
-
6
-
-
0035498337
-
QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
-
Kauffman, G.W.; Jurs, P.C. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J. Chem. Inf. Comput. Sci. 2001, 41, 1553-1560.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1553-1560
-
-
Kauffman, G.W.1
Jurs, P.C.2
-
7
-
-
84883239935
-
Silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window
-
Koutsoukas, A.; Lowe, R.; KalantarMotamedi, Y.; Mussa, H.Y.; Klaffke, W.; Mitchell, J.B.; Glen, R.C.; Bender, A. In silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window. J. Chem. Inf. Mod. 2013, 53, 1957-1966.
-
(2013)
J. Chem. Inf. Mod.
, vol.53
, pp. 1957-1966
-
-
Koutsoukas, A.1
Lowe, R.2
KalantarMotamedi, Y.3
Mussa, H.Y.4
Klaffke, W.5
Mitchell, J.B.6
Glen, R.C.7
Bender, A.8
-
9
-
-
84925400066
-
Machine-learning approaches in drug discovery: Methods and applications
-
Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 2015, 20, 318-331.
-
(2015)
Drug Discov. Today
, vol.20
, pp. 318-331
-
-
Lavecchia, A.1
-
10
-
-
33847181085
-
The supervised learning no-free-lunch theorems
-
Springer: London, UK
-
Wolpert, D.H. The supervised learning no-free-lunch theorems. In Soft Computing and Industry; Springer: London, UK, 2002; pp. 25-42.
-
(2002)
Soft Computing and Industry
, pp. 25-42
-
-
Wolpert, D.H.1
-
11
-
-
0035470889
-
Greedy function approximation: A gradient boosting machine
-
Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232.
-
(2001)
Ann. Stat.
, vol.29
, pp. 1189-1232
-
-
Friedman, J.H.1
-
12
-
-
84961886868
-
The higgs machine learning challenge
-
Adam-Bourdarios, C.; Cowan, G.; Germain-Renaud, C.; Guyon, I.; Kégl, B.; Rousseau, D. The Higgs Machine Learning Challenge. J. Phys. Conf. Ser. 2015.
-
(2015)
J. Phys. Conf. Ser.
-
-
Adam-Bourdarios, C.1
Cowan, G.2
Germain-Renaud, C.3
Guyon, I.4
Kégl, B.5
Rousseau, D.6
-
13
-
-
84980358786
-
Machine learning wins the higgs challenge
-
accessed on 24 April 2016
-
Phoboo, A.E. Machine Learning wins the Higgs Challenge. CERN Bull. 2014. Available online: http://cds.cern.ch/journal/CERNBulletin/2014/49/News%20Articles/1972036 (accessed on 24 April 2016).
-
(2014)
CERN Bull.
-
-
Phoboo, A.E.1
-
14
-
-
0035438388
-
Prediction of biological activity for high-throughput screening using binary kernel discrimination
-
Harper, G.; Bradshaw, J.; Gittins, J.C.; Green, D.V.; Leach, A.R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300.
-
(2001)
J. Chem. Inf. Comput. Sci.
, vol.41
, pp. 1295-1300
-
-
Harper, G.1
Bradshaw, J.2
Gittins, J.C.3
Green, D.V.4
Leach, A.R.5
-
17
-
-
0000468432
-
Estimating continuous distributions in Bayesian classifiers
-
Montreal, QC, Canada, 18-20 August
-
John, G.H.; Langley, P. Estimating Continuous Distributions in Bayesian Classifiers. In Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence, Montreal, QC, Canada, 18-20 August 1995.
-
(1995)
Proceedings of the Eleventh Conference on Uncertainty in Artificial Intelligence
-
-
John, G.H.1
Langley, P.2
-
18
-
-
0032584954
-
Normalized Gaussian radial basis function networks
-
Bugmann, G. Normalized Gaussian radial basis function networks. Neurocomputing 1998, 20, 97-110.
-
(1998)
Neurocomputing
, vol.20
, pp. 97-110
-
-
Bugmann, G.1
-
19
-
-
0344686488
-
Spline-fitting with a genetic algorithm: A method for developing classification structuréactivity relationships
-
Sutherland, J.J.; O'Brien, L.A.; Weaver, D.F. Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification StructuréActivity Relationships. J. Chem. Inf. Comput. Sci. 2003, 43, 1906-1915.
-
(2003)
J. Chem. Inf. Comput. Sci.
, vol.43
, pp. 1906-1915
-
-
Sutherland, J.J.1
O'Brien, L.A.2
Weaver, D.F.3
-
20
-
-
4043167653
-
Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
-
Helma, C.; Cramer, T.; Kramer, S.; de Raedt, L. Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 1402-1411.
-
(2004)
J. Chem. Inf. Comput. Sci.
, vol.44
, pp. 1402-1411
-
-
Helma, C.1
Cramer, T.2
Kramer, S.3
De Raedt, L.4
-
21
-
-
33750991346
-
Benchmarking sets for molecular docking
-
Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem. 2006, 49, 6789-6801.
-
(2006)
J. Med. Chem.
, vol.49
, pp. 6789-6801
-
-
Huang, N.1
Shoichet, B.K.2
Irwin, J.J.3
-
22
-
-
84946137134
-
A quantum-based similarity method in virtual screening
-
Al-Dabbagh, M.M.; Salim, N.; Himmat, M.; Ahmed, A.; Saeed, F. A Quantum-Based Similarity Method in Virtual Screening. Molecules 2015, 20, 18107-18127.
-
(2015)
Molecules
, vol.20
, pp. 18107-18127
-
-
Al-Dabbagh, M.M.1
Salim, N.2
Himmat, M.3
Ahmed, A.4
Saeed, F.5
-
23
-
-
77956019866
-
FLAP: GRID molecular interaction fields in virtual screening. Validation using the DUD data set
-
Cross, S.; Baroni, M.; Carosati, E.; Benedetti, P.; Clementi, S. FLAP: GRID molecular interaction fields in virtual screening. Validation using the DUD data set. J. Chem. Inf. Mod. 2010, 50, 1442-1450.
-
(2010)
J. Chem. Inf. Mod.
, vol.50
, pp. 1442-1450
-
-
Cross, S.1
Baroni, M.2
Carosati, E.3
Benedetti, P.4
Clementi, S.5
-
24
-
-
84980317571
-
-
Retrieved 15-07 accessed on 15 July 2015
-
BIOVIA. MDDR. Retrieved 15-07, 2015. Available online: http://accelrys.com/products/databases/ bioactivity/mddr.html (accessed on 15 July 2015).
-
(2015)
MDDR
-
-
BIOVIA1
-
25
-
-
84863083740
-
Ligand expansion in ligand-based virtual screening using relevance feedback
-
Abdo, A.; Saeed, F.; Hamza, H.; Ahmed, A.; Salim, N. Ligand expansion in ligand-based virtual screening using relevance feedback. J. Comput. Aided Mol. Design 2012, 26, 279-287.
-
(2012)
J. Comput. Aided Mol. Design
, vol.26
, pp. 279-287
-
-
Abdo, A.1
Saeed, F.2
Hamza, H.3
Ahmed, A.4
Salim, N.5
-
26
-
-
84893365556
-
Prediction of new bioactive molecules using a Bayesian belief network
-
Abdo, A.; Leclère, V.; Jacques, P.; Salim, N.; Pupin, M. Prediction of New Bioactive Molecules using a Bayesian Belief Network. J. Chem. Inf. Model. 2014, 54, 30-36.
-
(2014)
J. Chem. Inf. Model.
, vol.54
, pp. 30-36
-
-
Abdo, A.1
Leclère, V.2
Jacques, P.3
Salim, N.4
Pupin, M.5
-
27
-
-
33646249968
-
New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching
-
Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Mod. 2006, 46, 462-470.
-
(2006)
J. Chem. Inf. Mod.
, vol.46
, pp. 462-470
-
-
Hert, J.1
Willett, P.2
Wilton, D.J.3
Acklin, P.4
Azzaoui, K.5
Jacoby, E.6
Schuffenhauer, A.7
|