메뉴 건너뛰기




Volumn 21, Issue 8, 2016, Pages

Bioactive molecule prediction using extreme gradient boosting

Author keywords

Biological data; Drug discovery; Prediction of biological activity; Virtual screening

Indexed keywords


EID: 84980378875     PISSN: None     EISSN: 14203049     Source Type: Journal    
DOI: 10.3390/molecules21080983     Document Type: Article
Times cited : (187)

References (28)
  • 2
    • 65249163404 scopus 로고    scopus 로고
    • Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors
    • Wassermann, A.M.; Geppert, H.; Bajorath, J. Searching for target-selective compounds using different combinations of multiclass support vector machine ranking methods, kernel functions, and fingerprint descriptors. J. Chem. Inf. Mod. 2009, 49, 582-592.
    • (2009) J. Chem. Inf. Mod. , vol.49 , pp. 582-592
    • Wassermann, A.M.1    Geppert, H.2    Bajorath, J.3
  • 3
    • 20744453541 scopus 로고    scopus 로고
    • Biological applications of support vector machines
    • Yang, Z.R. Biological applications of support vector machines. Brief. Bioinform. 2004, 5, 328-338.
    • (2004) Brief. Bioinform. , vol.5 , pp. 328-338
    • Yang, Z.R.1
  • 4
    • 33745373904 scopus 로고    scopus 로고
    • Classification tree models for the prediction of blood-brain barrier passage of drugs
    • Deconinck, E.; Zhang, M.H.; Coomans, D.; Vander Heyden, Y. Classification tree models for the prediction of blood-brain barrier passage of drugs. J. Chem. Inf. Mod. 2006, 46, 1410-1419.
    • (2006) J. Chem. Inf. Mod. , vol.46 , pp. 1410-1419
    • Deconinck, E.1    Zhang, M.H.2    Coomans, D.3    Vander Heyden, Y.4
  • 6
    • 0035498337 scopus 로고    scopus 로고
    • QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors
    • Kauffman, G.W.; Jurs, P.C. QSAR and k-nearest neighbor classification analysis of selective cyclooxygenase-2 inhibitors using topologically-based numerical descriptors. J. Chem. Inf. Comput. Sci. 2001, 41, 1553-1560.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1553-1560
    • Kauffman, G.W.1    Jurs, P.C.2
  • 7
    • 84883239935 scopus 로고    scopus 로고
    • Silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window
    • Koutsoukas, A.; Lowe, R.; KalantarMotamedi, Y.; Mussa, H.Y.; Klaffke, W.; Mitchell, J.B.; Glen, R.C.; Bender, A. In silico target predictions: Defining a benchmarking data set and comparison of performance of the multiclass naïve bayes and parzen-rosenblatt window. J. Chem. Inf. Mod. 2013, 53, 1957-1966.
    • (2013) J. Chem. Inf. Mod. , vol.53 , pp. 1957-1966
    • Koutsoukas, A.1    Lowe, R.2    KalantarMotamedi, Y.3    Mussa, H.Y.4    Klaffke, W.5    Mitchell, J.B.6    Glen, R.C.7    Bender, A.8
  • 9
    • 84925400066 scopus 로고    scopus 로고
    • Machine-learning approaches in drug discovery: Methods and applications
    • Lavecchia, A. Machine-learning approaches in drug discovery: Methods and applications. Drug Discov. Today 2015, 20, 318-331.
    • (2015) Drug Discov. Today , vol.20 , pp. 318-331
    • Lavecchia, A.1
  • 10
    • 33847181085 scopus 로고    scopus 로고
    • The supervised learning no-free-lunch theorems
    • Springer: London, UK
    • Wolpert, D.H. The supervised learning no-free-lunch theorems. In Soft Computing and Industry; Springer: London, UK, 2002; pp. 25-42.
    • (2002) Soft Computing and Industry , pp. 25-42
    • Wolpert, D.H.1
  • 11
    • 0035470889 scopus 로고    scopus 로고
    • Greedy function approximation: A gradient boosting machine
    • Friedman, J.H. Greedy function approximation: A gradient boosting machine. Ann. Stat. 2001, 29, 1189-1232.
    • (2001) Ann. Stat. , vol.29 , pp. 1189-1232
    • Friedman, J.H.1
  • 13
    • 84980358786 scopus 로고    scopus 로고
    • Machine learning wins the higgs challenge
    • accessed on 24 April 2016
    • Phoboo, A.E. Machine Learning wins the Higgs Challenge. CERN Bull. 2014. Available online: http://cds.cern.ch/journal/CERNBulletin/2014/49/News%20Articles/1972036 (accessed on 24 April 2016).
    • (2014) CERN Bull.
    • Phoboo, A.E.1
  • 14
    • 0035438388 scopus 로고    scopus 로고
    • Prediction of biological activity for high-throughput screening using binary kernel discrimination
    • Harper, G.; Bradshaw, J.; Gittins, J.C.; Green, D.V.; Leach, A.R. Prediction of biological activity for high-throughput screening using binary kernel discrimination. J. Chem. Inf. Comput. Sci. 2001, 41, 1295-1300.
    • (2001) J. Chem. Inf. Comput. Sci. , vol.41 , pp. 1295-1300
    • Harper, G.1    Bradshaw, J.2    Gittins, J.C.3    Green, D.V.4    Leach, A.R.5
  • 18
    • 0032584954 scopus 로고    scopus 로고
    • Normalized Gaussian radial basis function networks
    • Bugmann, G. Normalized Gaussian radial basis function networks. Neurocomputing 1998, 20, 97-110.
    • (1998) Neurocomputing , vol.20 , pp. 97-110
    • Bugmann, G.1
  • 19
    • 0344686488 scopus 로고    scopus 로고
    • Spline-fitting with a genetic algorithm: A method for developing classification structuréactivity relationships
    • Sutherland, J.J.; O'Brien, L.A.; Weaver, D.F. Spline-Fitting with a Genetic Algorithm: A Method for Developing Classification StructuréActivity Relationships. J. Chem. Inf. Comput. Sci. 2003, 43, 1906-1915.
    • (2003) J. Chem. Inf. Comput. Sci. , vol.43 , pp. 1906-1915
    • Sutherland, J.J.1    O'Brien, L.A.2    Weaver, D.F.3
  • 20
    • 4043167653 scopus 로고    scopus 로고
    • Data mining and machine learning techniques for the identification of mutagenicity inducing substructures and structure activity relationships of noncongeneric compounds
    • Helma, C.; Cramer, T.; Kramer, S.; de Raedt, L. Data Mining and Machine Learning Techniques for the Identification of Mutagenicity Inducing Substructures and Structure Activity Relationships of Noncongeneric Compounds. J. Chem. Inf. Comput. Sci. 2004, 44, 1402-1411.
    • (2004) J. Chem. Inf. Comput. Sci. , vol.44 , pp. 1402-1411
    • Helma, C.1    Cramer, T.2    Kramer, S.3    De Raedt, L.4
  • 21
    • 33750991346 scopus 로고    scopus 로고
    • Benchmarking sets for molecular docking
    • Huang, N.; Shoichet, B.K.; Irwin, J.J. Benchmarking sets for molecular docking. J. Med. Chem. 2006, 49, 6789-6801.
    • (2006) J. Med. Chem. , vol.49 , pp. 6789-6801
    • Huang, N.1    Shoichet, B.K.2    Irwin, J.J.3
  • 22
    • 84946137134 scopus 로고    scopus 로고
    • A quantum-based similarity method in virtual screening
    • Al-Dabbagh, M.M.; Salim, N.; Himmat, M.; Ahmed, A.; Saeed, F. A Quantum-Based Similarity Method in Virtual Screening. Molecules 2015, 20, 18107-18127.
    • (2015) Molecules , vol.20 , pp. 18107-18127
    • Al-Dabbagh, M.M.1    Salim, N.2    Himmat, M.3    Ahmed, A.4    Saeed, F.5
  • 23
    • 77956019866 scopus 로고    scopus 로고
    • FLAP: GRID molecular interaction fields in virtual screening. Validation using the DUD data set
    • Cross, S.; Baroni, M.; Carosati, E.; Benedetti, P.; Clementi, S. FLAP: GRID molecular interaction fields in virtual screening. Validation using the DUD data set. J. Chem. Inf. Mod. 2010, 50, 1442-1450.
    • (2010) J. Chem. Inf. Mod. , vol.50 , pp. 1442-1450
    • Cross, S.1    Baroni, M.2    Carosati, E.3    Benedetti, P.4    Clementi, S.5
  • 24
    • 84980317571 scopus 로고    scopus 로고
    • Retrieved 15-07 accessed on 15 July 2015
    • BIOVIA. MDDR. Retrieved 15-07, 2015. Available online: http://accelrys.com/products/databases/ bioactivity/mddr.html (accessed on 15 July 2015).
    • (2015) MDDR
    • BIOVIA1
  • 25
    • 84863083740 scopus 로고    scopus 로고
    • Ligand expansion in ligand-based virtual screening using relevance feedback
    • Abdo, A.; Saeed, F.; Hamza, H.; Ahmed, A.; Salim, N. Ligand expansion in ligand-based virtual screening using relevance feedback. J. Comput. Aided Mol. Design 2012, 26, 279-287.
    • (2012) J. Comput. Aided Mol. Design , vol.26 , pp. 279-287
    • Abdo, A.1    Saeed, F.2    Hamza, H.3    Ahmed, A.4    Salim, N.5
  • 26
    • 84893365556 scopus 로고    scopus 로고
    • Prediction of new bioactive molecules using a Bayesian belief network
    • Abdo, A.; Leclère, V.; Jacques, P.; Salim, N.; Pupin, M. Prediction of New Bioactive Molecules using a Bayesian Belief Network. J. Chem. Inf. Model. 2014, 54, 30-36.
    • (2014) J. Chem. Inf. Model. , vol.54 , pp. 30-36
    • Abdo, A.1    Leclère, V.2    Jacques, P.3    Salim, N.4    Pupin, M.5
  • 27
    • 33646249968 scopus 로고    scopus 로고
    • New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching
    • Hert, J.; Willett, P.; Wilton, D.J.; Acklin, P.; Azzaoui, K.; Jacoby, E.; Schuffenhauer, A. New methods for ligand-based virtual screening: Use of data fusion and machine learning to enhance the effectiveness of similarity searching. J. Chem. Inf. Mod. 2006, 46, 462-470.
    • (2006) J. Chem. Inf. Mod. , vol.46 , pp. 462-470
    • Hert, J.1    Willett, P.2    Wilton, D.J.3    Acklin, P.4    Azzaoui, K.5    Jacoby, E.6    Schuffenhauer, A.7


* 이 정보는 Elsevier사의 SCOPUS DB에서 KISTI가 분석하여 추출한 것입니다.